xref: /qemu/hw/ppc/spapr_vio.c (revision 6f0dd6c5)
1 /*
2  * QEMU sPAPR VIO code
3  *
4  * Copyright (c) 2010 David Gibson, IBM Corporation <dwg@au1.ibm.com>
5  * Based on the s390 virtio bus code:
6  * Copyright (c) 2009 Alexander Graf <agraf@suse.de>
7  *
8  * This library is free software; you can redistribute it and/or
9  * modify it under the terms of the GNU Lesser General Public
10  * License as published by the Free Software Foundation; either
11  * version 2 of the License, or (at your option) any later version.
12  *
13  * This library is distributed in the hope that it will be useful,
14  * but WITHOUT ANY WARRANTY; without even the implied warranty of
15  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
16  * Lesser General Public License for more details.
17  *
18  * You should have received a copy of the GNU Lesser General Public
19  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
20  */
21 
22 #include "qemu/osdep.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "qapi/visitor.h"
26 #include "hw/irq.h"
27 #include "qemu/log.h"
28 #include "hw/loader.h"
29 #include "elf.h"
30 #include "hw/sysbus.h"
31 #include "sysemu/kvm.h"
32 #include "sysemu/device_tree.h"
33 #include "kvm_ppc.h"
34 #include "migration/vmstate.h"
35 #include "sysemu/qtest.h"
36 
37 #include "hw/ppc/spapr.h"
38 #include "hw/ppc/spapr_vio.h"
39 #include "hw/ppc/fdt.h"
40 #include "trace.h"
41 
42 #include <libfdt.h>
43 
44 #define SPAPR_VIO_REG_BASE 0x71000000
45 
46 static char *spapr_vio_get_dev_name(DeviceState *qdev)
47 {
48     SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
49     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
50 
51     /* Device tree style name device@reg */
52     return g_strdup_printf("%s@%x", pc->dt_name, dev->reg);
53 }
54 
55 static void spapr_vio_bus_class_init(ObjectClass *klass, void *data)
56 {
57     BusClass *k = BUS_CLASS(klass);
58 
59     k->get_dev_path = spapr_vio_get_dev_name;
60     k->get_fw_dev_path = spapr_vio_get_dev_name;
61 }
62 
63 static const TypeInfo spapr_vio_bus_info = {
64     .name = TYPE_SPAPR_VIO_BUS,
65     .parent = TYPE_BUS,
66     .class_init = spapr_vio_bus_class_init,
67     .instance_size = sizeof(SpaprVioBus),
68 };
69 
70 SpaprVioDevice *spapr_vio_find_by_reg(SpaprVioBus *bus, uint32_t reg)
71 {
72     BusChild *kid;
73     SpaprVioDevice *dev = NULL;
74 
75     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
76         dev = (SpaprVioDevice *)kid->child;
77         if (dev->reg == reg) {
78             return dev;
79         }
80     }
81 
82     return NULL;
83 }
84 
85 static int vio_make_devnode(SpaprVioDevice *dev,
86                             void *fdt)
87 {
88     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
89     int vdevice_off, node_off, ret;
90     char *dt_name;
91 
92     vdevice_off = fdt_path_offset(fdt, "/vdevice");
93     if (vdevice_off < 0) {
94         return vdevice_off;
95     }
96 
97     dt_name = spapr_vio_get_dev_name(DEVICE(dev));
98     node_off = fdt_add_subnode(fdt, vdevice_off, dt_name);
99     g_free(dt_name);
100     if (node_off < 0) {
101         return node_off;
102     }
103 
104     ret = fdt_setprop_cell(fdt, node_off, "reg", dev->reg);
105     if (ret < 0) {
106         return ret;
107     }
108 
109     if (pc->dt_type) {
110         ret = fdt_setprop_string(fdt, node_off, "device_type",
111                                  pc->dt_type);
112         if (ret < 0) {
113             return ret;
114         }
115     }
116 
117     if (pc->dt_compatible) {
118         ret = fdt_setprop_string(fdt, node_off, "compatible",
119                                  pc->dt_compatible);
120         if (ret < 0) {
121             return ret;
122         }
123     }
124 
125     if (dev->irq) {
126         uint32_t ints_prop[2];
127 
128         spapr_dt_irq(ints_prop, dev->irq, false);
129         ret = fdt_setprop(fdt, node_off, "interrupts", ints_prop,
130                           sizeof(ints_prop));
131         if (ret < 0) {
132             return ret;
133         }
134     }
135 
136     ret = spapr_tcet_dma_dt(fdt, node_off, "ibm,my-dma-window", dev->tcet);
137     if (ret < 0) {
138         return ret;
139     }
140 
141     if (pc->devnode) {
142         ret = (pc->devnode)(dev, fdt, node_off);
143         if (ret < 0) {
144             return ret;
145         }
146     }
147 
148     return node_off;
149 }
150 
151 /*
152  * CRQ handling
153  */
154 static target_ulong h_reg_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
155                               target_ulong opcode, target_ulong *args)
156 {
157     target_ulong reg = args[0];
158     target_ulong queue_addr = args[1];
159     target_ulong queue_len = args[2];
160     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
161 
162     if (!dev) {
163         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
164         return H_PARAMETER;
165     }
166 
167     /* We can't grok a queue size bigger than 256M for now */
168     if (queue_len < 0x1000 || queue_len > 0x10000000) {
169         hcall_dprintf("Queue size too small or too big (0x" TARGET_FMT_lx
170                       ")\n", queue_len);
171         return H_PARAMETER;
172     }
173 
174     /* Check queue alignment */
175     if (queue_addr & 0xfff) {
176         hcall_dprintf("Queue not aligned (0x" TARGET_FMT_lx ")\n", queue_addr);
177         return H_PARAMETER;
178     }
179 
180     /* Check if device supports CRQs */
181     if (!dev->crq.SendFunc) {
182         hcall_dprintf("Device does not support CRQ\n");
183         return H_NOT_FOUND;
184     }
185 
186     /* Already a queue ? */
187     if (dev->crq.qsize) {
188         hcall_dprintf("CRQ already registered\n");
189         return H_RESOURCE;
190     }
191     dev->crq.qladdr = queue_addr;
192     dev->crq.qsize = queue_len;
193     dev->crq.qnext = 0;
194 
195     trace_spapr_vio_h_reg_crq(reg, queue_addr, queue_len);
196     return H_SUCCESS;
197 }
198 
199 static target_ulong free_crq(SpaprVioDevice *dev)
200 {
201     dev->crq.qladdr = 0;
202     dev->crq.qsize = 0;
203     dev->crq.qnext = 0;
204 
205     trace_spapr_vio_free_crq(dev->reg);
206 
207     return H_SUCCESS;
208 }
209 
210 static target_ulong h_free_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
211                                target_ulong opcode, target_ulong *args)
212 {
213     target_ulong reg = args[0];
214     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
215 
216     if (!dev) {
217         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
218         return H_PARAMETER;
219     }
220 
221     return free_crq(dev);
222 }
223 
224 static target_ulong h_send_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
225                                target_ulong opcode, target_ulong *args)
226 {
227     target_ulong reg = args[0];
228     target_ulong msg_hi = args[1];
229     target_ulong msg_lo = args[2];
230     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
231     uint64_t crq_mangle[2];
232 
233     if (!dev) {
234         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
235         return H_PARAMETER;
236     }
237     crq_mangle[0] = cpu_to_be64(msg_hi);
238     crq_mangle[1] = cpu_to_be64(msg_lo);
239 
240     if (dev->crq.SendFunc) {
241         return dev->crq.SendFunc(dev, (uint8_t *)crq_mangle);
242     }
243 
244     return H_HARDWARE;
245 }
246 
247 static target_ulong h_enable_crq(PowerPCCPU *cpu, SpaprMachineState *spapr,
248                                  target_ulong opcode, target_ulong *args)
249 {
250     target_ulong reg = args[0];
251     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
252 
253     if (!dev) {
254         hcall_dprintf("Unit 0x" TARGET_FMT_lx " does not exist\n", reg);
255         return H_PARAMETER;
256     }
257 
258     return 0;
259 }
260 
261 /* Returns negative error, 0 success, or positive: queue full */
262 int spapr_vio_send_crq(SpaprVioDevice *dev, uint8_t *crq)
263 {
264     int rc;
265     uint8_t byte;
266 
267     if (!dev->crq.qsize) {
268         error_report("spapr_vio_send_creq on uninitialized queue");
269         return -1;
270     }
271 
272     /* Maybe do a fast path for KVM just writing to the pages */
273     rc = spapr_vio_dma_read(dev, dev->crq.qladdr + dev->crq.qnext, &byte, 1);
274     if (rc) {
275         return rc;
276     }
277     if (byte != 0) {
278         return 1;
279     }
280 
281     rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext + 8,
282                              &crq[8], 8);
283     if (rc) {
284         return rc;
285     }
286 
287     kvmppc_eieio();
288 
289     rc = spapr_vio_dma_write(dev, dev->crq.qladdr + dev->crq.qnext, crq, 8);
290     if (rc) {
291         return rc;
292     }
293 
294     dev->crq.qnext = (dev->crq.qnext + 16) % dev->crq.qsize;
295 
296     if (dev->signal_state & 1) {
297         qemu_irq_pulse(spapr_vio_qirq(dev));
298     }
299 
300     return 0;
301 }
302 
303 /* "quiesce" handling */
304 
305 static void spapr_vio_quiesce_one(SpaprVioDevice *dev)
306 {
307     if (dev->tcet) {
308         device_reset(DEVICE(dev->tcet));
309     }
310     free_crq(dev);
311 }
312 
313 void spapr_vio_set_bypass(SpaprVioDevice *dev, bool bypass)
314 {
315     if (!dev->tcet) {
316         return;
317     }
318 
319     memory_region_set_enabled(&dev->mrbypass, bypass);
320     memory_region_set_enabled(spapr_tce_get_iommu(dev->tcet), !bypass);
321 
322     dev->tcet->bypass = bypass;
323 }
324 
325 static void rtas_set_tce_bypass(PowerPCCPU *cpu, SpaprMachineState *spapr,
326                                 uint32_t token,
327                                 uint32_t nargs, target_ulong args,
328                                 uint32_t nret, target_ulong rets)
329 {
330     SpaprVioBus *bus = spapr->vio_bus;
331     SpaprVioDevice *dev;
332     uint32_t unit, enable;
333 
334     if (nargs != 2) {
335         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
336         return;
337     }
338     unit = rtas_ld(args, 0);
339     enable = rtas_ld(args, 1);
340     dev = spapr_vio_find_by_reg(bus, unit);
341     if (!dev) {
342         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
343         return;
344     }
345 
346     if (!dev->tcet) {
347         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
348         return;
349     }
350 
351     spapr_vio_set_bypass(dev, !!enable);
352 
353     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
354 }
355 
356 static void rtas_quiesce(PowerPCCPU *cpu, SpaprMachineState *spapr,
357                          uint32_t token,
358                          uint32_t nargs, target_ulong args,
359                          uint32_t nret, target_ulong rets)
360 {
361     SpaprVioBus *bus = spapr->vio_bus;
362     BusChild *kid;
363     SpaprVioDevice *dev = NULL;
364 
365     if (nargs != 0) {
366         rtas_st(rets, 0, RTAS_OUT_PARAM_ERROR);
367         return;
368     }
369 
370     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
371         dev = (SpaprVioDevice *)kid->child;
372         spapr_vio_quiesce_one(dev);
373     }
374 
375     rtas_st(rets, 0, RTAS_OUT_SUCCESS);
376 }
377 
378 static SpaprVioDevice *reg_conflict(SpaprVioDevice *dev)
379 {
380     SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
381     BusChild *kid;
382     SpaprVioDevice *other;
383 
384     /*
385      * Check for a device other than the given one which is already
386      * using the requested address. We have to open code this because
387      * the given dev might already be in the list.
388      */
389     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
390         other = VIO_SPAPR_DEVICE(kid->child);
391 
392         if (other != dev && other->reg == dev->reg) {
393             return other;
394         }
395     }
396 
397     return 0;
398 }
399 
400 static void spapr_vio_busdev_reset(DeviceState *qdev)
401 {
402     SpaprVioDevice *dev = VIO_SPAPR_DEVICE(qdev);
403     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
404 
405     /* Shut down the request queue and TCEs if necessary */
406     spapr_vio_quiesce_one(dev);
407 
408     dev->signal_state = 0;
409 
410     spapr_vio_set_bypass(dev, false);
411     if (pc->reset) {
412         pc->reset(dev);
413     }
414 }
415 
416 /*
417  * The register property of a VIO device is defined in livirt using
418  * 0x1000 as a base register number plus a 0x1000 increment. For the
419  * VIO tty device, the base number is changed to 0x30000000. QEMU uses
420  * a base register number of 0x71000000 and then a simple increment.
421  *
422  * The formula below tries to compute a unique index number from the
423  * register value that will be used to define the IRQ number of the
424  * VIO device.
425  *
426  * A maximum of 256 VIO devices is covered. Collisions are possible
427  * but they will be detected when the IRQ is claimed.
428  */
429 static inline uint32_t spapr_vio_reg_to_irq(uint32_t reg)
430 {
431     uint32_t irq;
432 
433     if (reg >= SPAPR_VIO_REG_BASE) {
434         /*
435          * VIO device register values when allocated by QEMU. For
436          * these, we simply mask the high bits to fit the overall
437          * range: [0x00 - 0xff].
438          *
439          * The nvram VIO device (reg=0x71000000) is a static device of
440          * the pseries machine and so is always allocated by QEMU. Its
441          * IRQ number is 0x0.
442          */
443         irq = reg & 0xff;
444 
445     } else if (reg >= 0x30000000) {
446         /*
447          * VIO tty devices register values, when allocated by livirt,
448          * are mapped in range [0xf0 - 0xff], gives us a maximum of 16
449          * vtys.
450          */
451         irq = 0xf0 | ((reg >> 12) & 0xf);
452 
453     } else {
454         /*
455          * Other VIO devices register values, when allocated by
456          * livirt, should be mapped in range [0x00 - 0xef]. Conflicts
457          * will be detected when IRQ is claimed.
458          */
459         irq = (reg >> 12) & 0xff;
460     }
461 
462     return SPAPR_IRQ_VIO | irq;
463 }
464 
465 static void spapr_vio_busdev_realize(DeviceState *qdev, Error **errp)
466 {
467     SpaprMachineState *spapr = SPAPR_MACHINE(qdev_get_machine());
468     SpaprVioDevice *dev = (SpaprVioDevice *)qdev;
469     SpaprVioDeviceClass *pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
470     char *id;
471     Error *local_err = NULL;
472 
473     if (dev->reg != -1) {
474         /*
475          * Explicitly assigned address, just verify that no-one else
476          * is using it.  other mechanism). We have to open code this
477          * rather than using spapr_vio_find_by_reg() because sdev
478          * itself is already in the list.
479          */
480         SpaprVioDevice *other = reg_conflict(dev);
481 
482         if (other) {
483             error_setg(errp, "%s and %s devices conflict at address %#x",
484                        object_get_typename(OBJECT(qdev)),
485                        object_get_typename(OBJECT(&other->qdev)),
486                        dev->reg);
487             return;
488         }
489     } else {
490         /* Need to assign an address */
491         SpaprVioBus *bus = SPAPR_VIO_BUS(dev->qdev.parent_bus);
492 
493         do {
494             dev->reg = bus->next_reg++;
495         } while (reg_conflict(dev));
496     }
497 
498     /* Don't overwrite ids assigned on the command line */
499     if (!dev->qdev.id) {
500         id = spapr_vio_get_dev_name(DEVICE(dev));
501         dev->qdev.id = id;
502     }
503 
504     dev->irq = spapr_vio_reg_to_irq(dev->reg);
505 
506     if (SPAPR_MACHINE_GET_CLASS(spapr)->legacy_irq_allocation) {
507         dev->irq = spapr_irq_findone(spapr, &local_err);
508         if (local_err) {
509             error_propagate(errp, local_err);
510             return;
511         }
512     }
513 
514     spapr_irq_claim(spapr, dev->irq, false, &local_err);
515     if (local_err) {
516         error_propagate(errp, local_err);
517         return;
518     }
519 
520     if (pc->rtce_window_size) {
521         uint32_t liobn = SPAPR_VIO_LIOBN(dev->reg);
522 
523         memory_region_init(&dev->mrroot, OBJECT(dev), "iommu-spapr-root",
524                            ram_size);
525         memory_region_init_alias(&dev->mrbypass, OBJECT(dev),
526                                  "iommu-spapr-bypass", get_system_memory(),
527                                  0, ram_size);
528         memory_region_add_subregion_overlap(&dev->mrroot, 0, &dev->mrbypass, 1);
529         address_space_init(&dev->as, &dev->mrroot, qdev->id);
530 
531         dev->tcet = spapr_tce_new_table(qdev, liobn);
532         spapr_tce_table_enable(dev->tcet, SPAPR_TCE_PAGE_SHIFT, 0,
533                                pc->rtce_window_size >> SPAPR_TCE_PAGE_SHIFT);
534         dev->tcet->vdev = dev;
535         memory_region_add_subregion_overlap(&dev->mrroot, 0,
536                                             spapr_tce_get_iommu(dev->tcet), 2);
537     }
538 
539     pc->realize(dev, errp);
540 }
541 
542 static target_ulong h_vio_signal(PowerPCCPU *cpu, SpaprMachineState *spapr,
543                                  target_ulong opcode,
544                                  target_ulong *args)
545 {
546     target_ulong reg = args[0];
547     target_ulong mode = args[1];
548     SpaprVioDevice *dev = spapr_vio_find_by_reg(spapr->vio_bus, reg);
549     SpaprVioDeviceClass *pc;
550 
551     if (!dev) {
552         return H_PARAMETER;
553     }
554 
555     pc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
556 
557     if (mode & ~pc->signal_mask) {
558         return H_PARAMETER;
559     }
560 
561     dev->signal_state = mode;
562 
563     return H_SUCCESS;
564 }
565 
566 SpaprVioBus *spapr_vio_bus_init(void)
567 {
568     SpaprVioBus *bus;
569     BusState *qbus;
570     DeviceState *dev;
571 
572     /* Create bridge device */
573     dev = qdev_create(NULL, TYPE_SPAPR_VIO_BRIDGE);
574     qdev_init_nofail(dev);
575 
576     /* Create bus on bridge device */
577     qbus = qbus_create(TYPE_SPAPR_VIO_BUS, dev, "spapr-vio");
578     bus = SPAPR_VIO_BUS(qbus);
579     bus->next_reg = SPAPR_VIO_REG_BASE;
580 
581     /* hcall-vio */
582     spapr_register_hypercall(H_VIO_SIGNAL, h_vio_signal);
583 
584     /* hcall-crq */
585     spapr_register_hypercall(H_REG_CRQ, h_reg_crq);
586     spapr_register_hypercall(H_FREE_CRQ, h_free_crq);
587     spapr_register_hypercall(H_SEND_CRQ, h_send_crq);
588     spapr_register_hypercall(H_ENABLE_CRQ, h_enable_crq);
589 
590     /* RTAS calls */
591     spapr_rtas_register(RTAS_IBM_SET_TCE_BYPASS, "ibm,set-tce-bypass",
592                         rtas_set_tce_bypass);
593     spapr_rtas_register(RTAS_QUIESCE, "quiesce", rtas_quiesce);
594 
595     return bus;
596 }
597 
598 static void spapr_vio_bridge_class_init(ObjectClass *klass, void *data)
599 {
600     DeviceClass *dc = DEVICE_CLASS(klass);
601 
602     dc->fw_name = "vdevice";
603 }
604 
605 static const TypeInfo spapr_vio_bridge_info = {
606     .name          = TYPE_SPAPR_VIO_BRIDGE,
607     .parent        = TYPE_SYS_BUS_DEVICE,
608     .class_init    = spapr_vio_bridge_class_init,
609 };
610 
611 const VMStateDescription vmstate_spapr_vio = {
612     .name = "spapr_vio",
613     .version_id = 1,
614     .minimum_version_id = 1,
615     .fields = (VMStateField[]) {
616         /* Sanity check */
617         VMSTATE_UINT32_EQUAL(reg, SpaprVioDevice, NULL),
618         VMSTATE_UINT32_EQUAL(irq, SpaprVioDevice, NULL),
619 
620         /* General VIO device state */
621         VMSTATE_UINT64(signal_state, SpaprVioDevice),
622         VMSTATE_UINT64(crq.qladdr, SpaprVioDevice),
623         VMSTATE_UINT32(crq.qsize, SpaprVioDevice),
624         VMSTATE_UINT32(crq.qnext, SpaprVioDevice),
625 
626         VMSTATE_END_OF_LIST()
627     },
628 };
629 
630 static void vio_spapr_device_class_init(ObjectClass *klass, void *data)
631 {
632     DeviceClass *k = DEVICE_CLASS(klass);
633     k->realize = spapr_vio_busdev_realize;
634     k->reset = spapr_vio_busdev_reset;
635     k->bus_type = TYPE_SPAPR_VIO_BUS;
636 }
637 
638 static const TypeInfo spapr_vio_type_info = {
639     .name = TYPE_VIO_SPAPR_DEVICE,
640     .parent = TYPE_DEVICE,
641     .instance_size = sizeof(SpaprVioDevice),
642     .abstract = true,
643     .class_size = sizeof(SpaprVioDeviceClass),
644     .class_init = vio_spapr_device_class_init,
645 };
646 
647 static void spapr_vio_register_types(void)
648 {
649     type_register_static(&spapr_vio_bus_info);
650     type_register_static(&spapr_vio_bridge_info);
651     type_register_static(&spapr_vio_type_info);
652 }
653 
654 type_init(spapr_vio_register_types)
655 
656 static int compare_reg(const void *p1, const void *p2)
657 {
658     SpaprVioDevice const *dev1, *dev2;
659 
660     dev1 = (SpaprVioDevice *)*(DeviceState **)p1;
661     dev2 = (SpaprVioDevice *)*(DeviceState **)p2;
662 
663     if (dev1->reg < dev2->reg) {
664         return -1;
665     }
666     if (dev1->reg == dev2->reg) {
667         return 0;
668     }
669 
670     /* dev1->reg > dev2->reg */
671     return 1;
672 }
673 
674 void spapr_dt_vdevice(SpaprVioBus *bus, void *fdt)
675 {
676     DeviceState *qdev, **qdevs;
677     BusChild *kid;
678     int i, num, ret = 0;
679     int node;
680 
681     _FDT(node = fdt_add_subnode(fdt, 0, "vdevice"));
682 
683     _FDT(fdt_setprop_string(fdt, node, "device_type", "vdevice"));
684     _FDT(fdt_setprop_string(fdt, node, "compatible", "IBM,vdevice"));
685     _FDT(fdt_setprop_cell(fdt, node, "#address-cells", 1));
686     _FDT(fdt_setprop_cell(fdt, node, "#size-cells", 0));
687     _FDT(fdt_setprop_cell(fdt, node, "#interrupt-cells", 2));
688     _FDT(fdt_setprop(fdt, node, "interrupt-controller", NULL, 0));
689 
690     /* Count qdevs on the bus list */
691     num = 0;
692     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
693         num++;
694     }
695 
696     /* Copy out into an array of pointers */
697     qdevs = g_new(DeviceState *, num);
698     num = 0;
699     QTAILQ_FOREACH(kid, &bus->bus.children, sibling) {
700         qdevs[num++] = kid->child;
701     }
702 
703     /* Sort the array */
704     qsort(qdevs, num, sizeof(qdev), compare_reg);
705 
706     /* Hack alert. Give the devices to libfdt in reverse order, we happen
707      * to know that will mean they are in forward order in the tree. */
708     for (i = num - 1; i >= 0; i--) {
709         SpaprVioDevice *dev = (SpaprVioDevice *)(qdevs[i]);
710         SpaprVioDeviceClass *vdc = VIO_SPAPR_DEVICE_GET_CLASS(dev);
711 
712         ret = vio_make_devnode(dev, fdt);
713         if (ret < 0) {
714             error_report("Couldn't create device node /vdevice/%s@%"PRIx32,
715                          vdc->dt_name, dev->reg);
716             exit(1);
717         }
718     }
719 
720     g_free(qdevs);
721 }
722 
723 gchar *spapr_vio_stdout_path(SpaprVioBus *bus)
724 {
725     SpaprVioDevice *dev;
726     char *name, *path;
727 
728     dev = spapr_vty_get_default(bus);
729     if (!dev) {
730         return NULL;
731     }
732 
733     name = spapr_vio_get_dev_name(DEVICE(dev));
734     path = g_strdup_printf("/vdevice/%s", name);
735 
736     g_free(name);
737     return path;
738 }
739