xref: /qemu/hw/riscv/microchip_pfsoc.c (revision e3a6e0da)
1 /*
2  * QEMU RISC-V Board Compatible with Microchip PolarFire SoC Icicle Kit
3  *
4  * Copyright (c) 2020 Wind River Systems, Inc.
5  *
6  * Author:
7  *   Bin Meng <bin.meng@windriver.com>
8  *
9  * Provides a board compatible with the Microchip PolarFire SoC Icicle Kit
10  *
11  * 0) CLINT (Core Level Interruptor)
12  * 1) PLIC (Platform Level Interrupt Controller)
13  * 2) eNVM (Embedded Non-Volatile Memory)
14  * 3) MMUARTs (Multi-Mode UART)
15  * 4) Cadence eMMC/SDHC controller and an SD card connected to it
16  * 5) SiFive Platform DMA (Direct Memory Access Controller)
17  * 6) GEM (Gigabit Ethernet MAC Controller)
18  *
19  * This board currently generates devicetree dynamically that indicates at least
20  * two harts and up to five harts.
21  *
22  * This program is free software; you can redistribute it and/or modify it
23  * under the terms and conditions of the GNU General Public License,
24  * version 2 or later, as published by the Free Software Foundation.
25  *
26  * This program is distributed in the hope it will be useful, but WITHOUT
27  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
28  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
29  * more details.
30  *
31  * You should have received a copy of the GNU General Public License along with
32  * this program.  If not, see <http://www.gnu.org/licenses/>.
33  */
34 
35 #include "qemu/osdep.h"
36 #include "qemu/error-report.h"
37 #include "qemu/log.h"
38 #include "qemu/units.h"
39 #include "qemu/cutils.h"
40 #include "qapi/error.h"
41 #include "hw/boards.h"
42 #include "hw/irq.h"
43 #include "hw/loader.h"
44 #include "hw/sysbus.h"
45 #include "chardev/char.h"
46 #include "hw/cpu/cluster.h"
47 #include "target/riscv/cpu.h"
48 #include "hw/misc/unimp.h"
49 #include "hw/riscv/boot.h"
50 #include "hw/riscv/riscv_hart.h"
51 #include "hw/riscv/microchip_pfsoc.h"
52 #include "hw/intc/sifive_clint.h"
53 #include "hw/intc/sifive_plic.h"
54 #include "sysemu/sysemu.h"
55 
56 /*
57  * The BIOS image used by this machine is called Hart Software Services (HSS).
58  * See https://github.com/polarfire-soc/hart-software-services
59  */
60 #define BIOS_FILENAME   "hss.bin"
61 #define RESET_VECTOR    0x20220000
62 
63 /* CLINT timebase frequency */
64 #define CLINT_TIMEBASE_FREQ 1000000
65 
66 /* GEM version */
67 #define GEM_REVISION    0x0107010c
68 
69 static const struct MemmapEntry {
70     hwaddr base;
71     hwaddr size;
72 } microchip_pfsoc_memmap[] = {
73     [MICROCHIP_PFSOC_DEBUG] =           {        0x0,     0x1000 },
74     [MICROCHIP_PFSOC_E51_DTIM] =        {  0x1000000,     0x2000 },
75     [MICROCHIP_PFSOC_BUSERR_UNIT0] =    {  0x1700000,     0x1000 },
76     [MICROCHIP_PFSOC_BUSERR_UNIT1] =    {  0x1701000,     0x1000 },
77     [MICROCHIP_PFSOC_BUSERR_UNIT2] =    {  0x1702000,     0x1000 },
78     [MICROCHIP_PFSOC_BUSERR_UNIT3] =    {  0x1703000,     0x1000 },
79     [MICROCHIP_PFSOC_BUSERR_UNIT4] =    {  0x1704000,     0x1000 },
80     [MICROCHIP_PFSOC_CLINT] =           {  0x2000000,    0x10000 },
81     [MICROCHIP_PFSOC_L2CC] =            {  0x2010000,     0x1000 },
82     [MICROCHIP_PFSOC_DMA] =             {  0x3000000,   0x100000 },
83     [MICROCHIP_PFSOC_L2LIM] =           {  0x8000000,  0x2000000 },
84     [MICROCHIP_PFSOC_PLIC] =            {  0xc000000,  0x4000000 },
85     [MICROCHIP_PFSOC_MMUART0] =         { 0x20000000,     0x1000 },
86     [MICROCHIP_PFSOC_SYSREG] =          { 0x20002000,     0x2000 },
87     [MICROCHIP_PFSOC_MPUCFG] =          { 0x20005000,     0x1000 },
88     [MICROCHIP_PFSOC_EMMC_SD] =         { 0x20008000,     0x1000 },
89     [MICROCHIP_PFSOC_MMUART1] =         { 0x20100000,     0x1000 },
90     [MICROCHIP_PFSOC_MMUART2] =         { 0x20102000,     0x1000 },
91     [MICROCHIP_PFSOC_MMUART3] =         { 0x20104000,     0x1000 },
92     [MICROCHIP_PFSOC_MMUART4] =         { 0x20106000,     0x1000 },
93     [MICROCHIP_PFSOC_GEM0] =            { 0x20110000,     0x2000 },
94     [MICROCHIP_PFSOC_GEM1] =            { 0x20112000,     0x2000 },
95     [MICROCHIP_PFSOC_GPIO0] =           { 0x20120000,     0x1000 },
96     [MICROCHIP_PFSOC_GPIO1] =           { 0x20121000,     0x1000 },
97     [MICROCHIP_PFSOC_GPIO2] =           { 0x20122000,     0x1000 },
98     [MICROCHIP_PFSOC_ENVM_CFG] =        { 0x20200000,     0x1000 },
99     [MICROCHIP_PFSOC_ENVM_DATA] =       { 0x20220000,    0x20000 },
100     [MICROCHIP_PFSOC_IOSCB_CFG] =       { 0x37080000,     0x1000 },
101     [MICROCHIP_PFSOC_DRAM] =            { 0x80000000,        0x0 },
102 };
103 
104 static void microchip_pfsoc_soc_instance_init(Object *obj)
105 {
106     MachineState *ms = MACHINE(qdev_get_machine());
107     MicrochipPFSoCState *s = MICROCHIP_PFSOC(obj);
108 
109     object_initialize_child(obj, "e-cluster", &s->e_cluster, TYPE_CPU_CLUSTER);
110     qdev_prop_set_uint32(DEVICE(&s->e_cluster), "cluster-id", 0);
111 
112     object_initialize_child(OBJECT(&s->e_cluster), "e-cpus", &s->e_cpus,
113                             TYPE_RISCV_HART_ARRAY);
114     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "num-harts", 1);
115     qdev_prop_set_uint32(DEVICE(&s->e_cpus), "hartid-base", 0);
116     qdev_prop_set_string(DEVICE(&s->e_cpus), "cpu-type",
117                          TYPE_RISCV_CPU_SIFIVE_E51);
118     qdev_prop_set_uint64(DEVICE(&s->e_cpus), "resetvec", RESET_VECTOR);
119 
120     object_initialize_child(obj, "u-cluster", &s->u_cluster, TYPE_CPU_CLUSTER);
121     qdev_prop_set_uint32(DEVICE(&s->u_cluster), "cluster-id", 1);
122 
123     object_initialize_child(OBJECT(&s->u_cluster), "u-cpus", &s->u_cpus,
124                             TYPE_RISCV_HART_ARRAY);
125     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "num-harts", ms->smp.cpus - 1);
126     qdev_prop_set_uint32(DEVICE(&s->u_cpus), "hartid-base", 1);
127     qdev_prop_set_string(DEVICE(&s->u_cpus), "cpu-type",
128                          TYPE_RISCV_CPU_SIFIVE_U54);
129     qdev_prop_set_uint64(DEVICE(&s->u_cpus), "resetvec", RESET_VECTOR);
130 
131     object_initialize_child(obj, "dma-controller", &s->dma,
132                             TYPE_SIFIVE_PDMA);
133 
134     object_initialize_child(obj, "gem0", &s->gem0, TYPE_CADENCE_GEM);
135     object_initialize_child(obj, "gem1", &s->gem1, TYPE_CADENCE_GEM);
136 
137     object_initialize_child(obj, "sd-controller", &s->sdhci,
138                             TYPE_CADENCE_SDHCI);
139 }
140 
141 static void microchip_pfsoc_soc_realize(DeviceState *dev, Error **errp)
142 {
143     MachineState *ms = MACHINE(qdev_get_machine());
144     MicrochipPFSoCState *s = MICROCHIP_PFSOC(dev);
145     const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
146     MemoryRegion *system_memory = get_system_memory();
147     MemoryRegion *e51_dtim_mem = g_new(MemoryRegion, 1);
148     MemoryRegion *l2lim_mem = g_new(MemoryRegion, 1);
149     MemoryRegion *envm_data = g_new(MemoryRegion, 1);
150     char *plic_hart_config;
151     size_t plic_hart_config_len;
152     NICInfo *nd;
153     int i;
154 
155     sysbus_realize(SYS_BUS_DEVICE(&s->e_cpus), &error_abort);
156     sysbus_realize(SYS_BUS_DEVICE(&s->u_cpus), &error_abort);
157     /*
158      * The cluster must be realized after the RISC-V hart array container,
159      * as the container's CPU object is only created on realize, and the
160      * CPU must exist and have been parented into the cluster before the
161      * cluster is realized.
162      */
163     qdev_realize(DEVICE(&s->e_cluster), NULL, &error_abort);
164     qdev_realize(DEVICE(&s->u_cluster), NULL, &error_abort);
165 
166     /* E51 DTIM */
167     memory_region_init_ram(e51_dtim_mem, NULL, "microchip.pfsoc.e51_dtim_mem",
168                            memmap[MICROCHIP_PFSOC_E51_DTIM].size, &error_fatal);
169     memory_region_add_subregion(system_memory,
170                                 memmap[MICROCHIP_PFSOC_E51_DTIM].base,
171                                 e51_dtim_mem);
172 
173     /* Bus Error Units */
174     create_unimplemented_device("microchip.pfsoc.buserr_unit0_mem",
175         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].base,
176         memmap[MICROCHIP_PFSOC_BUSERR_UNIT0].size);
177     create_unimplemented_device("microchip.pfsoc.buserr_unit1_mem",
178         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].base,
179         memmap[MICROCHIP_PFSOC_BUSERR_UNIT1].size);
180     create_unimplemented_device("microchip.pfsoc.buserr_unit2_mem",
181         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].base,
182         memmap[MICROCHIP_PFSOC_BUSERR_UNIT2].size);
183     create_unimplemented_device("microchip.pfsoc.buserr_unit3_mem",
184         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].base,
185         memmap[MICROCHIP_PFSOC_BUSERR_UNIT3].size);
186     create_unimplemented_device("microchip.pfsoc.buserr_unit4_mem",
187         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].base,
188         memmap[MICROCHIP_PFSOC_BUSERR_UNIT4].size);
189 
190     /* CLINT */
191     sifive_clint_create(memmap[MICROCHIP_PFSOC_CLINT].base,
192         memmap[MICROCHIP_PFSOC_CLINT].size, 0, ms->smp.cpus,
193         SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
194         CLINT_TIMEBASE_FREQ, false);
195 
196     /* L2 cache controller */
197     create_unimplemented_device("microchip.pfsoc.l2cc",
198         memmap[MICROCHIP_PFSOC_L2CC].base, memmap[MICROCHIP_PFSOC_L2CC].size);
199 
200     /*
201      * Add L2-LIM at reset size.
202      * This should be reduced in size as the L2 Cache Controller WayEnable
203      * register is incremented. Unfortunately I don't see a nice (or any) way
204      * to handle reducing or blocking out the L2 LIM while still allowing it
205      * be re returned to all enabled after a reset. For the time being, just
206      * leave it enabled all the time. This won't break anything, but will be
207      * too generous to misbehaving guests.
208      */
209     memory_region_init_ram(l2lim_mem, NULL, "microchip.pfsoc.l2lim",
210                            memmap[MICROCHIP_PFSOC_L2LIM].size, &error_fatal);
211     memory_region_add_subregion(system_memory,
212                                 memmap[MICROCHIP_PFSOC_L2LIM].base,
213                                 l2lim_mem);
214 
215     /* create PLIC hart topology configuration string */
216     plic_hart_config_len = (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1) *
217                            ms->smp.cpus;
218     plic_hart_config = g_malloc0(plic_hart_config_len);
219     for (i = 0; i < ms->smp.cpus; i++) {
220         if (i != 0) {
221             strncat(plic_hart_config, "," MICROCHIP_PFSOC_PLIC_HART_CONFIG,
222                     plic_hart_config_len);
223         } else {
224             strncat(plic_hart_config, "M", plic_hart_config_len);
225         }
226         plic_hart_config_len -= (strlen(MICROCHIP_PFSOC_PLIC_HART_CONFIG) + 1);
227     }
228 
229     /* PLIC */
230     s->plic = sifive_plic_create(memmap[MICROCHIP_PFSOC_PLIC].base,
231         plic_hart_config, 0,
232         MICROCHIP_PFSOC_PLIC_NUM_SOURCES,
233         MICROCHIP_PFSOC_PLIC_NUM_PRIORITIES,
234         MICROCHIP_PFSOC_PLIC_PRIORITY_BASE,
235         MICROCHIP_PFSOC_PLIC_PENDING_BASE,
236         MICROCHIP_PFSOC_PLIC_ENABLE_BASE,
237         MICROCHIP_PFSOC_PLIC_ENABLE_STRIDE,
238         MICROCHIP_PFSOC_PLIC_CONTEXT_BASE,
239         MICROCHIP_PFSOC_PLIC_CONTEXT_STRIDE,
240         memmap[MICROCHIP_PFSOC_PLIC].size);
241     g_free(plic_hart_config);
242 
243     /* DMA */
244     sysbus_realize(SYS_BUS_DEVICE(&s->dma), errp);
245     sysbus_mmio_map(SYS_BUS_DEVICE(&s->dma), 0,
246                     memmap[MICROCHIP_PFSOC_DMA].base);
247     for (i = 0; i < SIFIVE_PDMA_IRQS; i++) {
248         sysbus_connect_irq(SYS_BUS_DEVICE(&s->dma), i,
249                            qdev_get_gpio_in(DEVICE(s->plic),
250                                             MICROCHIP_PFSOC_DMA_IRQ0 + i));
251     }
252 
253     /* SYSREG */
254     create_unimplemented_device("microchip.pfsoc.sysreg",
255         memmap[MICROCHIP_PFSOC_SYSREG].base,
256         memmap[MICROCHIP_PFSOC_SYSREG].size);
257 
258     /* MPUCFG */
259     create_unimplemented_device("microchip.pfsoc.mpucfg",
260         memmap[MICROCHIP_PFSOC_MPUCFG].base,
261         memmap[MICROCHIP_PFSOC_MPUCFG].size);
262 
263     /* SDHCI */
264     sysbus_realize(SYS_BUS_DEVICE(&s->sdhci), errp);
265     sysbus_mmio_map(SYS_BUS_DEVICE(&s->sdhci), 0,
266                     memmap[MICROCHIP_PFSOC_EMMC_SD].base);
267     sysbus_connect_irq(SYS_BUS_DEVICE(&s->sdhci), 0,
268         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_EMMC_SD_IRQ));
269 
270     /* MMUARTs */
271     s->serial0 = mchp_pfsoc_mmuart_create(system_memory,
272         memmap[MICROCHIP_PFSOC_MMUART0].base,
273         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART0_IRQ),
274         serial_hd(0));
275     s->serial1 = mchp_pfsoc_mmuart_create(system_memory,
276         memmap[MICROCHIP_PFSOC_MMUART1].base,
277         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART1_IRQ),
278         serial_hd(1));
279     s->serial2 = mchp_pfsoc_mmuart_create(system_memory,
280         memmap[MICROCHIP_PFSOC_MMUART2].base,
281         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART2_IRQ),
282         serial_hd(2));
283     s->serial3 = mchp_pfsoc_mmuart_create(system_memory,
284         memmap[MICROCHIP_PFSOC_MMUART3].base,
285         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART3_IRQ),
286         serial_hd(3));
287     s->serial4 = mchp_pfsoc_mmuart_create(system_memory,
288         memmap[MICROCHIP_PFSOC_MMUART4].base,
289         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_MMUART4_IRQ),
290         serial_hd(4));
291 
292     /* GEMs */
293 
294     nd = &nd_table[0];
295     if (nd->used) {
296         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
297         qdev_set_nic_properties(DEVICE(&s->gem0), nd);
298     }
299     nd = &nd_table[1];
300     if (nd->used) {
301         qemu_check_nic_model(nd, TYPE_CADENCE_GEM);
302         qdev_set_nic_properties(DEVICE(&s->gem1), nd);
303     }
304 
305     object_property_set_int(OBJECT(&s->gem0), "revision", GEM_REVISION, errp);
306     object_property_set_int(OBJECT(&s->gem0), "phy-addr", 8, errp);
307     sysbus_realize(SYS_BUS_DEVICE(&s->gem0), errp);
308     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem0), 0,
309                     memmap[MICROCHIP_PFSOC_GEM0].base);
310     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem0), 0,
311         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM0_IRQ));
312 
313     object_property_set_int(OBJECT(&s->gem1), "revision", GEM_REVISION, errp);
314     object_property_set_int(OBJECT(&s->gem1), "phy-addr", 9, errp);
315     sysbus_realize(SYS_BUS_DEVICE(&s->gem1), errp);
316     sysbus_mmio_map(SYS_BUS_DEVICE(&s->gem1), 0,
317                     memmap[MICROCHIP_PFSOC_GEM1].base);
318     sysbus_connect_irq(SYS_BUS_DEVICE(&s->gem1), 0,
319         qdev_get_gpio_in(DEVICE(s->plic), MICROCHIP_PFSOC_GEM1_IRQ));
320 
321     /* GPIOs */
322     create_unimplemented_device("microchip.pfsoc.gpio0",
323         memmap[MICROCHIP_PFSOC_GPIO0].base,
324         memmap[MICROCHIP_PFSOC_GPIO0].size);
325     create_unimplemented_device("microchip.pfsoc.gpio1",
326         memmap[MICROCHIP_PFSOC_GPIO1].base,
327         memmap[MICROCHIP_PFSOC_GPIO1].size);
328     create_unimplemented_device("microchip.pfsoc.gpio2",
329         memmap[MICROCHIP_PFSOC_GPIO2].base,
330         memmap[MICROCHIP_PFSOC_GPIO2].size);
331 
332     /* eNVM */
333     memory_region_init_rom(envm_data, OBJECT(dev), "microchip.pfsoc.envm.data",
334                            memmap[MICROCHIP_PFSOC_ENVM_DATA].size,
335                            &error_fatal);
336     memory_region_add_subregion(system_memory,
337                                 memmap[MICROCHIP_PFSOC_ENVM_DATA].base,
338                                 envm_data);
339 
340     /* IOSCBCFG */
341     create_unimplemented_device("microchip.pfsoc.ioscb.cfg",
342         memmap[MICROCHIP_PFSOC_IOSCB_CFG].base,
343         memmap[MICROCHIP_PFSOC_IOSCB_CFG].size);
344 }
345 
346 static void microchip_pfsoc_soc_class_init(ObjectClass *oc, void *data)
347 {
348     DeviceClass *dc = DEVICE_CLASS(oc);
349 
350     dc->realize = microchip_pfsoc_soc_realize;
351     /* Reason: Uses serial_hds in realize function, thus can't be used twice */
352     dc->user_creatable = false;
353 }
354 
355 static const TypeInfo microchip_pfsoc_soc_type_info = {
356     .name = TYPE_MICROCHIP_PFSOC,
357     .parent = TYPE_DEVICE,
358     .instance_size = sizeof(MicrochipPFSoCState),
359     .instance_init = microchip_pfsoc_soc_instance_init,
360     .class_init = microchip_pfsoc_soc_class_init,
361 };
362 
363 static void microchip_pfsoc_soc_register_types(void)
364 {
365     type_register_static(&microchip_pfsoc_soc_type_info);
366 }
367 
368 type_init(microchip_pfsoc_soc_register_types)
369 
370 static void microchip_icicle_kit_machine_init(MachineState *machine)
371 {
372     MachineClass *mc = MACHINE_GET_CLASS(machine);
373     const struct MemmapEntry *memmap = microchip_pfsoc_memmap;
374     MicrochipIcicleKitState *s = MICROCHIP_ICICLE_KIT_MACHINE(machine);
375     MemoryRegion *system_memory = get_system_memory();
376     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
377     DriveInfo *dinfo = drive_get_next(IF_SD);
378 
379     /* Sanity check on RAM size */
380     if (machine->ram_size < mc->default_ram_size) {
381         char *sz = size_to_str(mc->default_ram_size);
382         error_report("Invalid RAM size, should be bigger than %s", sz);
383         g_free(sz);
384         exit(EXIT_FAILURE);
385     }
386 
387     /* Initialize SoC */
388     object_initialize_child(OBJECT(machine), "soc", &s->soc,
389                             TYPE_MICROCHIP_PFSOC);
390     qdev_realize(DEVICE(&s->soc), NULL, &error_abort);
391 
392     /* Register RAM */
393     memory_region_init_ram(main_mem, NULL, "microchip.icicle.kit.ram",
394                            machine->ram_size, &error_fatal);
395     memory_region_add_subregion(system_memory,
396                                 memmap[MICROCHIP_PFSOC_DRAM].base, main_mem);
397 
398     /* Load the firmware */
399     riscv_find_and_load_firmware(machine, BIOS_FILENAME, RESET_VECTOR, NULL);
400 
401     /* Attach an SD card */
402     if (dinfo) {
403         CadenceSDHCIState *sdhci = &(s->soc.sdhci);
404         DeviceState *card = qdev_new(TYPE_SD_CARD);
405 
406         qdev_prop_set_drive_err(card, "drive", blk_by_legacy_dinfo(dinfo),
407                                 &error_fatal);
408         qdev_realize_and_unref(card, sdhci->bus, &error_fatal);
409     }
410 }
411 
412 static void microchip_icicle_kit_machine_class_init(ObjectClass *oc, void *data)
413 {
414     MachineClass *mc = MACHINE_CLASS(oc);
415 
416     mc->desc = "Microchip PolarFire SoC Icicle Kit";
417     mc->init = microchip_icicle_kit_machine_init;
418     mc->max_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT +
419                    MICROCHIP_PFSOC_COMPUTE_CPU_COUNT;
420     mc->min_cpus = MICROCHIP_PFSOC_MANAGEMENT_CPU_COUNT + 1;
421     mc->default_cpus = mc->min_cpus;
422     mc->default_ram_size = 1 * GiB;
423 }
424 
425 static const TypeInfo microchip_icicle_kit_machine_typeinfo = {
426     .name       = MACHINE_TYPE_NAME("microchip-icicle-kit"),
427     .parent     = TYPE_MACHINE,
428     .class_init = microchip_icicle_kit_machine_class_init,
429     .instance_size = sizeof(MicrochipIcicleKitState),
430 };
431 
432 static void microchip_icicle_kit_machine_init_register_types(void)
433 {
434     type_register_static(&microchip_icicle_kit_machine_typeinfo);
435 }
436 
437 type_init(microchip_icicle_kit_machine_init_register_types)
438