xref: /qemu/hw/riscv/spike.c (revision 2e8f72ac)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  * 2) PLIC (Platform Level Interrupt Controller)
12  *
13  * This program is free software; you can redistribute it and/or modify it
14  * under the terms and conditions of the GNU General Public License,
15  * version 2 or later, as published by the Free Software Foundation.
16  *
17  * This program is distributed in the hope it will be useful, but WITHOUT
18  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
19  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
20  * more details.
21  *
22  * You should have received a copy of the GNU General Public License along with
23  * this program.  If not, see <http://www.gnu.org/licenses/>.
24  */
25 
26 #include "qemu/osdep.h"
27 #include "qemu/log.h"
28 #include "qemu/error-report.h"
29 #include "qapi/error.h"
30 #include "hw/boards.h"
31 #include "hw/loader.h"
32 #include "hw/sysbus.h"
33 #include "target/riscv/cpu.h"
34 #include "hw/riscv/riscv_hart.h"
35 #include "hw/riscv/spike.h"
36 #include "hw/riscv/boot.h"
37 #include "hw/riscv/numa.h"
38 #include "hw/char/riscv_htif.h"
39 #include "hw/intc/sifive_clint.h"
40 #include "chardev/char.h"
41 #include "sysemu/arch_init.h"
42 #include "sysemu/device_tree.h"
43 #include "sysemu/qtest.h"
44 #include "sysemu/sysemu.h"
45 
46 static const struct MemmapEntry {
47     hwaddr base;
48     hwaddr size;
49 } spike_memmap[] = {
50     [SPIKE_MROM] =     {     0x1000,     0xf000 },
51     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
52     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
53 };
54 
55 static void create_fdt(SpikeState *s, const struct MemmapEntry *memmap,
56                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
57 {
58     void *fdt;
59     uint64_t addr, size;
60     unsigned long clint_addr;
61     int cpu, socket;
62     MachineState *mc = MACHINE(s);
63     uint32_t *clint_cells;
64     uint32_t cpu_phandle, intc_phandle, phandle = 1;
65     char *name, *mem_name, *clint_name, *clust_name;
66     char *core_name, *cpu_name, *intc_name;
67 
68     fdt = s->fdt = create_device_tree(&s->fdt_size);
69     if (!fdt) {
70         error_report("create_device_tree() failed");
71         exit(1);
72     }
73 
74     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
75     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
76     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
77     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
78 
79     qemu_fdt_add_subnode(fdt, "/htif");
80     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
81 
82     qemu_fdt_add_subnode(fdt, "/soc");
83     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
84     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
85     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
86     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
87 
88     qemu_fdt_add_subnode(fdt, "/cpus");
89     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
90         SIFIVE_CLINT_TIMEBASE_FREQ);
91     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
92     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
93     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
94 
95     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
96         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
97         qemu_fdt_add_subnode(fdt, clust_name);
98 
99         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
100 
101         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
102             cpu_phandle = phandle++;
103 
104             cpu_name = g_strdup_printf("/cpus/cpu@%d",
105                 s->soc[socket].hartid_base + cpu);
106             qemu_fdt_add_subnode(fdt, cpu_name);
107             if (is_32_bit) {
108                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
109             } else {
110                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
111             }
112             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
113             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
114             g_free(name);
115             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
116             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
117             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
118                 s->soc[socket].hartid_base + cpu);
119             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
120             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
121             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
122 
123             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
124             qemu_fdt_add_subnode(fdt, intc_name);
125             intc_phandle = phandle++;
126             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
127             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
128                 "riscv,cpu-intc");
129             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
130             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
131 
132             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
133             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
134             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
135             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
136 
137             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
138             qemu_fdt_add_subnode(fdt, core_name);
139             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
140 
141             g_free(core_name);
142             g_free(intc_name);
143             g_free(cpu_name);
144         }
145 
146         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(mc, socket);
147         size = riscv_socket_mem_size(mc, socket);
148         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
149         qemu_fdt_add_subnode(fdt, mem_name);
150         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
151             addr >> 32, addr, size >> 32, size);
152         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
153         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
154         g_free(mem_name);
155 
156         clint_addr = memmap[SPIKE_CLINT].base +
157             (memmap[SPIKE_CLINT].size * socket);
158         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
159         qemu_fdt_add_subnode(fdt, clint_name);
160         qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
161         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
162             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
163         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
164             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
165         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
166 
167         g_free(clint_name);
168         g_free(clint_cells);
169         g_free(clust_name);
170     }
171 
172     riscv_socket_fdt_write_distance_matrix(mc, fdt);
173 
174     if (cmdline) {
175         qemu_fdt_add_subnode(fdt, "/chosen");
176         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
177     }
178 }
179 
180 static void spike_board_init(MachineState *machine)
181 {
182     const struct MemmapEntry *memmap = spike_memmap;
183     SpikeState *s = SPIKE_MACHINE(machine);
184     MemoryRegion *system_memory = get_system_memory();
185     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
186     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
187     target_ulong firmware_end_addr, kernel_start_addr;
188     uint32_t fdt_load_addr;
189     uint64_t kernel_entry;
190     char *soc_name;
191     int i, base_hartid, hart_count;
192 
193     /* Check socket count limit */
194     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
195         error_report("number of sockets/nodes should be less than %d",
196             SPIKE_SOCKETS_MAX);
197         exit(1);
198     }
199 
200     /* Initialize sockets */
201     for (i = 0; i < riscv_socket_count(machine); i++) {
202         if (!riscv_socket_check_hartids(machine, i)) {
203             error_report("discontinuous hartids in socket%d", i);
204             exit(1);
205         }
206 
207         base_hartid = riscv_socket_first_hartid(machine, i);
208         if (base_hartid < 0) {
209             error_report("can't find hartid base for socket%d", i);
210             exit(1);
211         }
212 
213         hart_count = riscv_socket_hart_count(machine, i);
214         if (hart_count < 0) {
215             error_report("can't find hart count for socket%d", i);
216             exit(1);
217         }
218 
219         soc_name = g_strdup_printf("soc%d", i);
220         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
221                                 TYPE_RISCV_HART_ARRAY);
222         g_free(soc_name);
223         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
224                                 machine->cpu_type, &error_abort);
225         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
226                                 base_hartid, &error_abort);
227         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
228                                 hart_count, &error_abort);
229         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
230 
231         /* Core Local Interruptor (timer and IPI) for each socket */
232         sifive_clint_create(
233             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
234             memmap[SPIKE_CLINT].size, base_hartid, hart_count,
235             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
236             SIFIVE_CLINT_TIMEBASE_FREQ, false);
237     }
238 
239     /* register system main memory (actual RAM) */
240     memory_region_init_ram(main_mem, NULL, "riscv.spike.ram",
241                            machine->ram_size, &error_fatal);
242     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
243         main_mem);
244 
245     /* create device tree */
246     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
247                riscv_is_32bit(&s->soc[0]));
248 
249     /* boot rom */
250     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
251                            memmap[SPIKE_MROM].size, &error_fatal);
252     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
253                                 mask_rom);
254 
255     /*
256      * Not like other RISC-V machines that use plain binary bios images,
257      * keeping ELF files here was intentional because BIN files don't work
258      * for the Spike machine as HTIF emulation depends on ELF parsing.
259      */
260     if (riscv_is_32bit(&s->soc[0])) {
261         firmware_end_addr = riscv_find_and_load_firmware(machine,
262                                     "opensbi-riscv32-generic-fw_dynamic.elf",
263                                     memmap[SPIKE_DRAM].base,
264                                     htif_symbol_callback);
265     } else {
266         firmware_end_addr = riscv_find_and_load_firmware(machine,
267                                     "opensbi-riscv64-generic-fw_dynamic.elf",
268                                     memmap[SPIKE_DRAM].base,
269                                     htif_symbol_callback);
270     }
271 
272     if (machine->kernel_filename) {
273         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
274                                                          firmware_end_addr);
275 
276         kernel_entry = riscv_load_kernel(machine->kernel_filename,
277                                          kernel_start_addr,
278                                          htif_symbol_callback);
279 
280         if (machine->initrd_filename) {
281             hwaddr start;
282             hwaddr end = riscv_load_initrd(machine->initrd_filename,
283                                            machine->ram_size, kernel_entry,
284                                            &start);
285             qemu_fdt_setprop_cell(s->fdt, "/chosen",
286                                   "linux,initrd-start", start);
287             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
288                                   end);
289         }
290     } else {
291        /*
292         * If dynamic firmware is used, it doesn't know where is the next mode
293         * if kernel argument is not set.
294         */
295         kernel_entry = 0;
296     }
297 
298     /* Compute the fdt load address in dram */
299     fdt_load_addr = riscv_load_fdt(memmap[SPIKE_DRAM].base,
300                                    machine->ram_size, s->fdt);
301     /* load the reset vector */
302     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
303                               memmap[SPIKE_MROM].base,
304                               memmap[SPIKE_MROM].size, kernel_entry,
305                               fdt_load_addr, s->fdt);
306 
307     /* initialize HTIF using symbols found in load_kernel */
308     htif_mm_init(system_memory, mask_rom,
309                  &s->soc[0].harts[0].env, serial_hd(0));
310 }
311 
312 static void spike_machine_instance_init(Object *obj)
313 {
314 }
315 
316 static void spike_machine_class_init(ObjectClass *oc, void *data)
317 {
318     MachineClass *mc = MACHINE_CLASS(oc);
319 
320     mc->desc = "RISC-V Spike board";
321     mc->init = spike_board_init;
322     mc->max_cpus = SPIKE_CPUS_MAX;
323     mc->is_default = true;
324     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
325     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
326     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
327     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
328     mc->numa_mem_supported = true;
329 }
330 
331 static const TypeInfo spike_machine_typeinfo = {
332     .name       = MACHINE_TYPE_NAME("spike"),
333     .parent     = TYPE_MACHINE,
334     .class_init = spike_machine_class_init,
335     .instance_init = spike_machine_instance_init,
336     .instance_size = sizeof(SpikeState),
337 };
338 
339 static void spike_machine_init_register_types(void)
340 {
341     type_register_static(&spike_machine_typeinfo);
342 }
343 
344 type_init(spike_machine_init_register_types)
345