xref: /qemu/hw/riscv/spike.c (revision d884e272)
1 /*
2  * QEMU RISC-V Spike Board
3  *
4  * Copyright (c) 2016-2017 Sagar Karandikar, sagark@eecs.berkeley.edu
5  * Copyright (c) 2017-2018 SiFive, Inc.
6  *
7  * This provides a RISC-V Board with the following devices:
8  *
9  * 0) HTIF Console and Poweroff
10  * 1) CLINT (Timer and IPI)
11  *
12  * This program is free software; you can redistribute it and/or modify it
13  * under the terms and conditions of the GNU General Public License,
14  * version 2 or later, as published by the Free Software Foundation.
15  *
16  * This program is distributed in the hope it will be useful, but WITHOUT
17  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
18  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
19  * more details.
20  *
21  * You should have received a copy of the GNU General Public License along with
22  * this program.  If not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/error-report.h"
27 #include "qapi/error.h"
28 #include "hw/boards.h"
29 #include "hw/loader.h"
30 #include "hw/sysbus.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/spike.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/char/riscv_htif.h"
37 #include "hw/intc/riscv_aclint.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 
42 #include <libfdt.h>
43 
44 static const MemMapEntry spike_memmap[] = {
45     [SPIKE_MROM] =     {     0x1000,     0xf000 },
46     [SPIKE_HTIF] =     {  0x1000000,     0x1000 },
47     [SPIKE_CLINT] =    {  0x2000000,    0x10000 },
48     [SPIKE_DRAM] =     { 0x80000000,        0x0 },
49 };
50 
51 static void create_fdt(SpikeState *s, const MemMapEntry *memmap,
52                        bool is_32_bit, bool htif_custom_base)
53 {
54     void *fdt;
55     int fdt_size;
56     uint64_t addr, size;
57     unsigned long clint_addr;
58     int cpu, socket;
59     MachineState *ms = MACHINE(s);
60     uint32_t *clint_cells;
61     uint32_t cpu_phandle, intc_phandle, phandle = 1;
62     char *mem_name, *clint_name, *clust_name;
63     char *core_name, *cpu_name, *intc_name;
64     static const char * const clint_compat[2] = {
65         "sifive,clint0", "riscv,clint0"
66     };
67 
68     fdt = ms->fdt = create_device_tree(&fdt_size);
69     if (!fdt) {
70         error_report("create_device_tree() failed");
71         exit(1);
72     }
73 
74     qemu_fdt_setprop_string(fdt, "/", "model", "ucbbar,spike-bare,qemu");
75     qemu_fdt_setprop_string(fdt, "/", "compatible", "ucbbar,spike-bare-dev");
76     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
77     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
78 
79     qemu_fdt_add_subnode(fdt, "/htif");
80     qemu_fdt_setprop_string(fdt, "/htif", "compatible", "ucb,htif0");
81     if (htif_custom_base) {
82         qemu_fdt_setprop_cells(fdt, "/htif", "reg",
83             0x0, memmap[SPIKE_HTIF].base, 0x0, memmap[SPIKE_HTIF].size);
84     }
85 
86     qemu_fdt_add_subnode(fdt, "/soc");
87     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
88     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
89     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
90     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
91 
92     qemu_fdt_add_subnode(fdt, "/cpus");
93     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
94         RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
95     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
96     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
97     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
98 
99     for (socket = (riscv_socket_count(ms) - 1); socket >= 0; socket--) {
100         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
101         qemu_fdt_add_subnode(fdt, clust_name);
102 
103         clint_cells =  g_new0(uint32_t, s->soc[socket].num_harts * 4);
104 
105         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
106             cpu_phandle = phandle++;
107 
108             cpu_name = g_strdup_printf("/cpus/cpu@%d",
109                 s->soc[socket].hartid_base + cpu);
110             qemu_fdt_add_subnode(fdt, cpu_name);
111             if (is_32_bit) {
112                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
113             } else {
114                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
115             }
116             riscv_isa_write_fdt(&s->soc[socket].harts[cpu], fdt, cpu_name);
117             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
118             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
119             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
120                 s->soc[socket].hartid_base + cpu);
121             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
122             riscv_socket_fdt_write_id(ms, cpu_name, socket);
123             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
124 
125             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
126             qemu_fdt_add_subnode(fdt, intc_name);
127             intc_phandle = phandle++;
128             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
129             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
130                 "riscv,cpu-intc");
131             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
132             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
133 
134             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
135             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
136             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
137             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
138 
139             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
140             qemu_fdt_add_subnode(fdt, core_name);
141             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
142 
143             g_free(core_name);
144             g_free(intc_name);
145             g_free(cpu_name);
146         }
147 
148         addr = memmap[SPIKE_DRAM].base + riscv_socket_mem_offset(ms, socket);
149         size = riscv_socket_mem_size(ms, socket);
150         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
151         qemu_fdt_add_subnode(fdt, mem_name);
152         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
153             addr >> 32, addr, size >> 32, size);
154         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
155         riscv_socket_fdt_write_id(ms, mem_name, socket);
156         g_free(mem_name);
157 
158         clint_addr = memmap[SPIKE_CLINT].base +
159             (memmap[SPIKE_CLINT].size * socket);
160         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
161         qemu_fdt_add_subnode(fdt, clint_name);
162         qemu_fdt_setprop_string_array(fdt, clint_name, "compatible",
163             (char **)&clint_compat, ARRAY_SIZE(clint_compat));
164         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
165             0x0, clint_addr, 0x0, memmap[SPIKE_CLINT].size);
166         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
167             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
168         riscv_socket_fdt_write_id(ms, clint_name, socket);
169 
170         g_free(clint_name);
171         g_free(clint_cells);
172         g_free(clust_name);
173     }
174 
175     riscv_socket_fdt_write_distance_matrix(ms);
176 
177     qemu_fdt_add_subnode(fdt, "/chosen");
178     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", "/htif");
179 }
180 
181 static bool spike_test_elf_image(char *filename)
182 {
183     Error *err = NULL;
184 
185     load_elf_hdr(filename, NULL, NULL, &err);
186     if (err) {
187         error_free(err);
188         return false;
189     } else {
190         return true;
191     }
192 }
193 
194 static void spike_board_init(MachineState *machine)
195 {
196     const MemMapEntry *memmap = spike_memmap;
197     SpikeState *s = SPIKE_MACHINE(machine);
198     MemoryRegion *system_memory = get_system_memory();
199     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
200     target_ulong firmware_end_addr = memmap[SPIKE_DRAM].base;
201     target_ulong kernel_start_addr;
202     char *firmware_name;
203     uint32_t fdt_load_addr;
204     uint64_t kernel_entry;
205     char *soc_name;
206     int i, base_hartid, hart_count;
207     bool htif_custom_base = false;
208 
209     /* Check socket count limit */
210     if (SPIKE_SOCKETS_MAX < riscv_socket_count(machine)) {
211         error_report("number of sockets/nodes should be less than %d",
212             SPIKE_SOCKETS_MAX);
213         exit(1);
214     }
215 
216     /* Initialize sockets */
217     for (i = 0; i < riscv_socket_count(machine); i++) {
218         if (!riscv_socket_check_hartids(machine, i)) {
219             error_report("discontinuous hartids in socket%d", i);
220             exit(1);
221         }
222 
223         base_hartid = riscv_socket_first_hartid(machine, i);
224         if (base_hartid < 0) {
225             error_report("can't find hartid base for socket%d", i);
226             exit(1);
227         }
228 
229         hart_count = riscv_socket_hart_count(machine, i);
230         if (hart_count < 0) {
231             error_report("can't find hart count for socket%d", i);
232             exit(1);
233         }
234 
235         soc_name = g_strdup_printf("soc%d", i);
236         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
237                                 TYPE_RISCV_HART_ARRAY);
238         g_free(soc_name);
239         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
240                                 machine->cpu_type, &error_abort);
241         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
242                                 base_hartid, &error_abort);
243         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
244                                 hart_count, &error_abort);
245         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_fatal);
246 
247         /* Core Local Interruptor (timer and IPI) for each socket */
248         riscv_aclint_swi_create(
249             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size,
250             base_hartid, hart_count, false);
251         riscv_aclint_mtimer_create(
252             memmap[SPIKE_CLINT].base + i * memmap[SPIKE_CLINT].size +
253                 RISCV_ACLINT_SWI_SIZE,
254             RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
255             RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
256             RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, false);
257     }
258 
259     /* register system main memory (actual RAM) */
260     memory_region_add_subregion(system_memory, memmap[SPIKE_DRAM].base,
261         machine->ram);
262 
263     /* boot rom */
264     memory_region_init_rom(mask_rom, NULL, "riscv.spike.mrom",
265                            memmap[SPIKE_MROM].size, &error_fatal);
266     memory_region_add_subregion(system_memory, memmap[SPIKE_MROM].base,
267                                 mask_rom);
268 
269     /* Find firmware */
270     firmware_name = riscv_find_firmware(machine->firmware,
271                         riscv_default_firmware_name(&s->soc[0]));
272 
273     /*
274      * Test the given firmware or kernel file to see if it is an ELF image.
275      * If it is an ELF, we assume it contains the symbols required for
276      * the HTIF console, otherwise we fall back to use the custom base
277      * passed from device tree for the HTIF console.
278      */
279     if (!firmware_name && !machine->kernel_filename) {
280         htif_custom_base = true;
281     } else {
282         if (firmware_name) {
283             htif_custom_base = !spike_test_elf_image(firmware_name);
284         }
285         if (!htif_custom_base && machine->kernel_filename) {
286             htif_custom_base = !spike_test_elf_image(machine->kernel_filename);
287         }
288     }
289 
290     /* Load firmware */
291     if (firmware_name) {
292         firmware_end_addr = riscv_load_firmware(firmware_name,
293                                                 memmap[SPIKE_DRAM].base,
294                                                 htif_symbol_callback);
295         g_free(firmware_name);
296     }
297 
298     /* Create device tree */
299     create_fdt(s, memmap, riscv_is_32bit(&s->soc[0]), htif_custom_base);
300 
301     /* Load kernel */
302     if (machine->kernel_filename) {
303         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
304                                                          firmware_end_addr);
305 
306         kernel_entry = riscv_load_kernel(machine, &s->soc[0],
307                                          kernel_start_addr,
308                                          true, htif_symbol_callback);
309     } else {
310        /*
311         * If dynamic firmware is used, it doesn't know where is the next mode
312         * if kernel argument is not set.
313         */
314         kernel_entry = 0;
315     }
316 
317     fdt_load_addr = riscv_compute_fdt_addr(memmap[SPIKE_DRAM].base,
318                                            memmap[SPIKE_DRAM].size,
319                                            machine);
320     riscv_load_fdt(fdt_load_addr, machine->fdt);
321 
322     /* load the reset vector */
323     riscv_setup_rom_reset_vec(machine, &s->soc[0], memmap[SPIKE_DRAM].base,
324                               memmap[SPIKE_MROM].base,
325                               memmap[SPIKE_MROM].size, kernel_entry,
326                               fdt_load_addr);
327 
328     /* initialize HTIF using symbols found in load_kernel */
329     htif_mm_init(system_memory, serial_hd(0), memmap[SPIKE_HTIF].base,
330                  htif_custom_base);
331 }
332 
333 static void spike_set_signature(Object *obj, const char *val, Error **errp)
334 {
335     sig_file = g_strdup(val);
336 }
337 
338 static void spike_machine_instance_init(Object *obj)
339 {
340 }
341 
342 static void spike_machine_class_init(ObjectClass *oc, void *data)
343 {
344     MachineClass *mc = MACHINE_CLASS(oc);
345 
346     mc->desc = "RISC-V Spike board";
347     mc->init = spike_board_init;
348     mc->max_cpus = SPIKE_CPUS_MAX;
349     mc->is_default = true;
350     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
351     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
352     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
353     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
354     mc->numa_mem_supported = true;
355     /* platform instead of architectural choice */
356     mc->cpu_cluster_has_numa_boundary = true;
357     mc->default_ram_id = "riscv.spike.ram";
358     object_class_property_add_str(oc, "signature", NULL, spike_set_signature);
359     object_class_property_set_description(oc, "signature",
360                                           "File to write ACT test signature");
361     object_class_property_add_uint8_ptr(oc, "signature-granularity",
362                                         &line_size, OBJ_PROP_FLAG_WRITE);
363     object_class_property_set_description(oc, "signature-granularity",
364                                           "Size of each line in ACT signature "
365                                           "file");
366 }
367 
368 static const TypeInfo spike_machine_typeinfo = {
369     .name       = MACHINE_TYPE_NAME("spike"),
370     .parent     = TYPE_MACHINE,
371     .class_init = spike_machine_class_init,
372     .instance_init = spike_machine_instance_init,
373     .instance_size = sizeof(SpikeState),
374 };
375 
376 static void spike_machine_init_register_types(void)
377 {
378     type_register_static(&spike_machine_typeinfo);
379 }
380 
381 type_init(spike_machine_init_register_types)
382