xref: /qemu/hw/riscv/virt.c (revision 2e8f72ac)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/log.h"
24 #include "qemu/error-report.h"
25 #include "qapi/error.h"
26 #include "hw/boards.h"
27 #include "hw/loader.h"
28 #include "hw/sysbus.h"
29 #include "hw/qdev-properties.h"
30 #include "hw/char/serial.h"
31 #include "target/riscv/cpu.h"
32 #include "hw/riscv/riscv_hart.h"
33 #include "hw/riscv/virt.h"
34 #include "hw/riscv/boot.h"
35 #include "hw/riscv/numa.h"
36 #include "hw/intc/sifive_clint.h"
37 #include "hw/intc/sifive_plic.h"
38 #include "hw/misc/sifive_test.h"
39 #include "chardev/char.h"
40 #include "sysemu/arch_init.h"
41 #include "sysemu/device_tree.h"
42 #include "sysemu/sysemu.h"
43 #include "hw/pci/pci.h"
44 #include "hw/pci-host/gpex.h"
45 
46 static const struct MemmapEntry {
47     hwaddr base;
48     hwaddr size;
49 } virt_memmap[] = {
50     [VIRT_DEBUG] =       {        0x0,         0x100 },
51     [VIRT_MROM] =        {     0x1000,        0xf000 },
52     [VIRT_TEST] =        {   0x100000,        0x1000 },
53     [VIRT_RTC] =         {   0x101000,        0x1000 },
54     [VIRT_CLINT] =       {  0x2000000,       0x10000 },
55     [VIRT_PCIE_PIO] =    {  0x3000000,       0x10000 },
56     [VIRT_PLIC] =        {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
57     [VIRT_UART0] =       { 0x10000000,         0x100 },
58     [VIRT_VIRTIO] =      { 0x10001000,        0x1000 },
59     [VIRT_FLASH] =       { 0x20000000,     0x4000000 },
60     [VIRT_PCIE_ECAM] =   { 0x30000000,    0x10000000 },
61     [VIRT_PCIE_MMIO] =   { 0x40000000,    0x40000000 },
62     [VIRT_DRAM] =        { 0x80000000,           0x0 },
63 };
64 
65 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
66 
67 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
68                                        const char *name,
69                                        const char *alias_prop_name)
70 {
71     /*
72      * Create a single flash device.  We use the same parameters as
73      * the flash devices on the ARM virt board.
74      */
75     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
76 
77     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
78     qdev_prop_set_uint8(dev, "width", 4);
79     qdev_prop_set_uint8(dev, "device-width", 2);
80     qdev_prop_set_bit(dev, "big-endian", false);
81     qdev_prop_set_uint16(dev, "id0", 0x89);
82     qdev_prop_set_uint16(dev, "id1", 0x18);
83     qdev_prop_set_uint16(dev, "id2", 0x00);
84     qdev_prop_set_uint16(dev, "id3", 0x00);
85     qdev_prop_set_string(dev, "name", name);
86 
87     object_property_add_child(OBJECT(s), name, OBJECT(dev));
88     object_property_add_alias(OBJECT(s), alias_prop_name,
89                               OBJECT(dev), "drive");
90 
91     return PFLASH_CFI01(dev);
92 }
93 
94 static void virt_flash_create(RISCVVirtState *s)
95 {
96     s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
97     s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
98 }
99 
100 static void virt_flash_map1(PFlashCFI01 *flash,
101                             hwaddr base, hwaddr size,
102                             MemoryRegion *sysmem)
103 {
104     DeviceState *dev = DEVICE(flash);
105 
106     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
107     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
108     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
109     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
110 
111     memory_region_add_subregion(sysmem, base,
112                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
113                                                        0));
114 }
115 
116 static void virt_flash_map(RISCVVirtState *s,
117                            MemoryRegion *sysmem)
118 {
119     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
120     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
121 
122     virt_flash_map1(s->flash[0], flashbase, flashsize,
123                     sysmem);
124     virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
125                     sysmem);
126 }
127 
128 static void create_pcie_irq_map(void *fdt, char *nodename,
129                                 uint32_t plic_phandle)
130 {
131     int pin, dev;
132     uint32_t
133         full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
134     uint32_t *irq_map = full_irq_map;
135 
136     /* This code creates a standard swizzle of interrupts such that
137      * each device's first interrupt is based on it's PCI_SLOT number.
138      * (See pci_swizzle_map_irq_fn())
139      *
140      * We only need one entry per interrupt in the table (not one per
141      * possible slot) seeing the interrupt-map-mask will allow the table
142      * to wrap to any number of devices.
143      */
144     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
145         int devfn = dev * 0x8;
146 
147         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
148             int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
149             int i = 0;
150 
151             irq_map[i] = cpu_to_be32(devfn << 8);
152 
153             i += FDT_PCI_ADDR_CELLS;
154             irq_map[i] = cpu_to_be32(pin + 1);
155 
156             i += FDT_PCI_INT_CELLS;
157             irq_map[i++] = cpu_to_be32(plic_phandle);
158 
159             i += FDT_PLIC_ADDR_CELLS;
160             irq_map[i] = cpu_to_be32(irq_nr);
161 
162             irq_map += FDT_INT_MAP_WIDTH;
163         }
164     }
165 
166     qemu_fdt_setprop(fdt, nodename, "interrupt-map",
167                      full_irq_map, sizeof(full_irq_map));
168 
169     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
170                            0x1800, 0, 0, 0x7);
171 }
172 
173 static void create_fdt(RISCVVirtState *s, const struct MemmapEntry *memmap,
174                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
175 {
176     void *fdt;
177     int i, cpu, socket;
178     MachineState *mc = MACHINE(s);
179     uint64_t addr, size;
180     uint32_t *clint_cells, *plic_cells;
181     unsigned long clint_addr, plic_addr;
182     uint32_t plic_phandle[MAX_NODES];
183     uint32_t cpu_phandle, intc_phandle, test_phandle;
184     uint32_t phandle = 1, plic_mmio_phandle = 1;
185     uint32_t plic_pcie_phandle = 1, plic_virtio_phandle = 1;
186     char *mem_name, *cpu_name, *core_name, *intc_name;
187     char *name, *clint_name, *plic_name, *clust_name;
188     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
189     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
190 
191     if (mc->dtb) {
192         fdt = s->fdt = load_device_tree(mc->dtb, &s->fdt_size);
193         if (!fdt) {
194             error_report("load_device_tree() failed");
195             exit(1);
196         }
197         goto update_bootargs;
198     } else {
199         fdt = s->fdt = create_device_tree(&s->fdt_size);
200         if (!fdt) {
201             error_report("create_device_tree() failed");
202             exit(1);
203         }
204     }
205 
206     qemu_fdt_setprop_string(fdt, "/", "model", "riscv-virtio,qemu");
207     qemu_fdt_setprop_string(fdt, "/", "compatible", "riscv-virtio");
208     qemu_fdt_setprop_cell(fdt, "/", "#size-cells", 0x2);
209     qemu_fdt_setprop_cell(fdt, "/", "#address-cells", 0x2);
210 
211     qemu_fdt_add_subnode(fdt, "/soc");
212     qemu_fdt_setprop(fdt, "/soc", "ranges", NULL, 0);
213     qemu_fdt_setprop_string(fdt, "/soc", "compatible", "simple-bus");
214     qemu_fdt_setprop_cell(fdt, "/soc", "#size-cells", 0x2);
215     qemu_fdt_setprop_cell(fdt, "/soc", "#address-cells", 0x2);
216 
217     qemu_fdt_add_subnode(fdt, "/cpus");
218     qemu_fdt_setprop_cell(fdt, "/cpus", "timebase-frequency",
219                           SIFIVE_CLINT_TIMEBASE_FREQ);
220     qemu_fdt_setprop_cell(fdt, "/cpus", "#size-cells", 0x0);
221     qemu_fdt_setprop_cell(fdt, "/cpus", "#address-cells", 0x1);
222     qemu_fdt_add_subnode(fdt, "/cpus/cpu-map");
223 
224     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
225         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
226         qemu_fdt_add_subnode(fdt, clust_name);
227 
228         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
229         clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
230 
231         for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
232             cpu_phandle = phandle++;
233 
234             cpu_name = g_strdup_printf("/cpus/cpu@%d",
235                 s->soc[socket].hartid_base + cpu);
236             qemu_fdt_add_subnode(fdt, cpu_name);
237             if (is_32_bit) {
238                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv32");
239             } else {
240                 qemu_fdt_setprop_string(fdt, cpu_name, "mmu-type", "riscv,sv48");
241             }
242             name = riscv_isa_string(&s->soc[socket].harts[cpu]);
243             qemu_fdt_setprop_string(fdt, cpu_name, "riscv,isa", name);
244             g_free(name);
245             qemu_fdt_setprop_string(fdt, cpu_name, "compatible", "riscv");
246             qemu_fdt_setprop_string(fdt, cpu_name, "status", "okay");
247             qemu_fdt_setprop_cell(fdt, cpu_name, "reg",
248                 s->soc[socket].hartid_base + cpu);
249             qemu_fdt_setprop_string(fdt, cpu_name, "device_type", "cpu");
250             riscv_socket_fdt_write_id(mc, fdt, cpu_name, socket);
251             qemu_fdt_setprop_cell(fdt, cpu_name, "phandle", cpu_phandle);
252 
253             intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
254             qemu_fdt_add_subnode(fdt, intc_name);
255             intc_phandle = phandle++;
256             qemu_fdt_setprop_cell(fdt, intc_name, "phandle", intc_phandle);
257             qemu_fdt_setprop_string(fdt, intc_name, "compatible",
258                 "riscv,cpu-intc");
259             qemu_fdt_setprop(fdt, intc_name, "interrupt-controller", NULL, 0);
260             qemu_fdt_setprop_cell(fdt, intc_name, "#interrupt-cells", 1);
261 
262             clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
263             clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
264             clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
265             clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
266 
267             plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandle);
268             plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
269             plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandle);
270             plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
271 
272             core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
273             qemu_fdt_add_subnode(fdt, core_name);
274             qemu_fdt_setprop_cell(fdt, core_name, "cpu", cpu_phandle);
275 
276             g_free(core_name);
277             g_free(intc_name);
278             g_free(cpu_name);
279         }
280 
281         addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
282         size = riscv_socket_mem_size(mc, socket);
283         mem_name = g_strdup_printf("/memory@%lx", (long)addr);
284         qemu_fdt_add_subnode(fdt, mem_name);
285         qemu_fdt_setprop_cells(fdt, mem_name, "reg",
286             addr >> 32, addr, size >> 32, size);
287         qemu_fdt_setprop_string(fdt, mem_name, "device_type", "memory");
288         riscv_socket_fdt_write_id(mc, fdt, mem_name, socket);
289         g_free(mem_name);
290 
291         clint_addr = memmap[VIRT_CLINT].base +
292             (memmap[VIRT_CLINT].size * socket);
293         clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
294         qemu_fdt_add_subnode(fdt, clint_name);
295         qemu_fdt_setprop_string(fdt, clint_name, "compatible", "riscv,clint0");
296         qemu_fdt_setprop_cells(fdt, clint_name, "reg",
297             0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
298         qemu_fdt_setprop(fdt, clint_name, "interrupts-extended",
299             clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
300         riscv_socket_fdt_write_id(mc, fdt, clint_name, socket);
301         g_free(clint_name);
302 
303         plic_phandle[socket] = phandle++;
304         plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
305         plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
306         qemu_fdt_add_subnode(fdt, plic_name);
307         qemu_fdt_setprop_cell(fdt, plic_name,
308             "#address-cells", FDT_PLIC_ADDR_CELLS);
309         qemu_fdt_setprop_cell(fdt, plic_name,
310             "#interrupt-cells", FDT_PLIC_INT_CELLS);
311         qemu_fdt_setprop_string(fdt, plic_name, "compatible", "riscv,plic0");
312         qemu_fdt_setprop(fdt, plic_name, "interrupt-controller", NULL, 0);
313         qemu_fdt_setprop(fdt, plic_name, "interrupts-extended",
314             plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
315         qemu_fdt_setprop_cells(fdt, plic_name, "reg",
316             0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
317         qemu_fdt_setprop_cell(fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
318         riscv_socket_fdt_write_id(mc, fdt, plic_name, socket);
319         qemu_fdt_setprop_cell(fdt, plic_name, "phandle", plic_phandle[socket]);
320         g_free(plic_name);
321 
322         g_free(clint_cells);
323         g_free(plic_cells);
324         g_free(clust_name);
325     }
326 
327     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
328         if (socket == 0) {
329             plic_mmio_phandle = plic_phandle[socket];
330             plic_virtio_phandle = plic_phandle[socket];
331             plic_pcie_phandle = plic_phandle[socket];
332         }
333         if (socket == 1) {
334             plic_virtio_phandle = plic_phandle[socket];
335             plic_pcie_phandle = plic_phandle[socket];
336         }
337         if (socket == 2) {
338             plic_pcie_phandle = plic_phandle[socket];
339         }
340     }
341 
342     riscv_socket_fdt_write_distance_matrix(mc, fdt);
343 
344     for (i = 0; i < VIRTIO_COUNT; i++) {
345         name = g_strdup_printf("/soc/virtio_mmio@%lx",
346             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
347         qemu_fdt_add_subnode(fdt, name);
348         qemu_fdt_setprop_string(fdt, name, "compatible", "virtio,mmio");
349         qemu_fdt_setprop_cells(fdt, name, "reg",
350             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
351             0x0, memmap[VIRT_VIRTIO].size);
352         qemu_fdt_setprop_cell(fdt, name, "interrupt-parent",
353             plic_virtio_phandle);
354         qemu_fdt_setprop_cell(fdt, name, "interrupts", VIRTIO_IRQ + i);
355         g_free(name);
356     }
357 
358     name = g_strdup_printf("/soc/pci@%lx",
359         (long) memmap[VIRT_PCIE_ECAM].base);
360     qemu_fdt_add_subnode(fdt, name);
361     qemu_fdt_setprop_cell(fdt, name, "#address-cells", FDT_PCI_ADDR_CELLS);
362     qemu_fdt_setprop_cell(fdt, name, "#interrupt-cells", FDT_PCI_INT_CELLS);
363     qemu_fdt_setprop_cell(fdt, name, "#size-cells", 0x2);
364     qemu_fdt_setprop_string(fdt, name, "compatible", "pci-host-ecam-generic");
365     qemu_fdt_setprop_string(fdt, name, "device_type", "pci");
366     qemu_fdt_setprop_cell(fdt, name, "linux,pci-domain", 0);
367     qemu_fdt_setprop_cells(fdt, name, "bus-range", 0,
368         memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
369     qemu_fdt_setprop(fdt, name, "dma-coherent", NULL, 0);
370     qemu_fdt_setprop_cells(fdt, name, "reg", 0,
371         memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
372     qemu_fdt_setprop_sized_cells(fdt, name, "ranges",
373         1, FDT_PCI_RANGE_IOPORT, 2, 0,
374         2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
375         1, FDT_PCI_RANGE_MMIO,
376         2, memmap[VIRT_PCIE_MMIO].base,
377         2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size);
378     create_pcie_irq_map(fdt, name, plic_pcie_phandle);
379     g_free(name);
380 
381     test_phandle = phandle++;
382     name = g_strdup_printf("/soc/test@%lx",
383         (long)memmap[VIRT_TEST].base);
384     qemu_fdt_add_subnode(fdt, name);
385     {
386         const char compat[] = "sifive,test1\0sifive,test0\0syscon";
387         qemu_fdt_setprop(fdt, name, "compatible", compat, sizeof(compat));
388     }
389     qemu_fdt_setprop_cells(fdt, name, "reg",
390         0x0, memmap[VIRT_TEST].base,
391         0x0, memmap[VIRT_TEST].size);
392     qemu_fdt_setprop_cell(fdt, name, "phandle", test_phandle);
393     test_phandle = qemu_fdt_get_phandle(fdt, name);
394     g_free(name);
395 
396     name = g_strdup_printf("/soc/reboot");
397     qemu_fdt_add_subnode(fdt, name);
398     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-reboot");
399     qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle);
400     qemu_fdt_setprop_cell(fdt, name, "offset", 0x0);
401     qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_RESET);
402     g_free(name);
403 
404     name = g_strdup_printf("/soc/poweroff");
405     qemu_fdt_add_subnode(fdt, name);
406     qemu_fdt_setprop_string(fdt, name, "compatible", "syscon-poweroff");
407     qemu_fdt_setprop_cell(fdt, name, "regmap", test_phandle);
408     qemu_fdt_setprop_cell(fdt, name, "offset", 0x0);
409     qemu_fdt_setprop_cell(fdt, name, "value", FINISHER_PASS);
410     g_free(name);
411 
412     name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
413     qemu_fdt_add_subnode(fdt, name);
414     qemu_fdt_setprop_string(fdt, name, "compatible", "ns16550a");
415     qemu_fdt_setprop_cells(fdt, name, "reg",
416         0x0, memmap[VIRT_UART0].base,
417         0x0, memmap[VIRT_UART0].size);
418     qemu_fdt_setprop_cell(fdt, name, "clock-frequency", 3686400);
419     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle);
420     qemu_fdt_setprop_cell(fdt, name, "interrupts", UART0_IRQ);
421 
422     qemu_fdt_add_subnode(fdt, "/chosen");
423     qemu_fdt_setprop_string(fdt, "/chosen", "stdout-path", name);
424     g_free(name);
425 
426     name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
427     qemu_fdt_add_subnode(fdt, name);
428     qemu_fdt_setprop_string(fdt, name, "compatible", "google,goldfish-rtc");
429     qemu_fdt_setprop_cells(fdt, name, "reg",
430         0x0, memmap[VIRT_RTC].base,
431         0x0, memmap[VIRT_RTC].size);
432     qemu_fdt_setprop_cell(fdt, name, "interrupt-parent", plic_mmio_phandle);
433     qemu_fdt_setprop_cell(fdt, name, "interrupts", RTC_IRQ);
434     g_free(name);
435 
436     name = g_strdup_printf("/soc/flash@%" PRIx64, flashbase);
437     qemu_fdt_add_subnode(s->fdt, name);
438     qemu_fdt_setprop_string(s->fdt, name, "compatible", "cfi-flash");
439     qemu_fdt_setprop_sized_cells(s->fdt, name, "reg",
440                                  2, flashbase, 2, flashsize,
441                                  2, flashbase + flashsize, 2, flashsize);
442     qemu_fdt_setprop_cell(s->fdt, name, "bank-width", 4);
443     g_free(name);
444 
445 update_bootargs:
446     if (cmdline) {
447         qemu_fdt_setprop_string(fdt, "/chosen", "bootargs", cmdline);
448     }
449 }
450 
451 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
452                                           hwaddr ecam_base, hwaddr ecam_size,
453                                           hwaddr mmio_base, hwaddr mmio_size,
454                                           hwaddr pio_base,
455                                           DeviceState *plic, bool link_up)
456 {
457     DeviceState *dev;
458     MemoryRegion *ecam_alias, *ecam_reg;
459     MemoryRegion *mmio_alias, *mmio_reg;
460     qemu_irq irq;
461     int i;
462 
463     dev = qdev_new(TYPE_GPEX_HOST);
464 
465     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
466 
467     ecam_alias = g_new0(MemoryRegion, 1);
468     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
469     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
470                              ecam_reg, 0, ecam_size);
471     memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
472 
473     mmio_alias = g_new0(MemoryRegion, 1);
474     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
475     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
476                              mmio_reg, mmio_base, mmio_size);
477     memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
478 
479     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
480 
481     for (i = 0; i < GPEX_NUM_IRQS; i++) {
482         irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
483 
484         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
485         gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
486     }
487 
488     return dev;
489 }
490 
491 static void virt_machine_init(MachineState *machine)
492 {
493     const struct MemmapEntry *memmap = virt_memmap;
494     RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
495     MemoryRegion *system_memory = get_system_memory();
496     MemoryRegion *main_mem = g_new(MemoryRegion, 1);
497     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
498     char *plic_hart_config, *soc_name;
499     size_t plic_hart_config_len;
500     target_ulong start_addr = memmap[VIRT_DRAM].base;
501     target_ulong firmware_end_addr, kernel_start_addr;
502     uint32_t fdt_load_addr;
503     uint64_t kernel_entry;
504     DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
505     int i, j, base_hartid, hart_count;
506 
507     /* Check socket count limit */
508     if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
509         error_report("number of sockets/nodes should be less than %d",
510             VIRT_SOCKETS_MAX);
511         exit(1);
512     }
513 
514     /* Initialize sockets */
515     mmio_plic = virtio_plic = pcie_plic = NULL;
516     for (i = 0; i < riscv_socket_count(machine); i++) {
517         if (!riscv_socket_check_hartids(machine, i)) {
518             error_report("discontinuous hartids in socket%d", i);
519             exit(1);
520         }
521 
522         base_hartid = riscv_socket_first_hartid(machine, i);
523         if (base_hartid < 0) {
524             error_report("can't find hartid base for socket%d", i);
525             exit(1);
526         }
527 
528         hart_count = riscv_socket_hart_count(machine, i);
529         if (hart_count < 0) {
530             error_report("can't find hart count for socket%d", i);
531             exit(1);
532         }
533 
534         soc_name = g_strdup_printf("soc%d", i);
535         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
536                                 TYPE_RISCV_HART_ARRAY);
537         g_free(soc_name);
538         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
539                                 machine->cpu_type, &error_abort);
540         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
541                                 base_hartid, &error_abort);
542         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
543                                 hart_count, &error_abort);
544         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
545 
546         /* Per-socket CLINT */
547         sifive_clint_create(
548             memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
549             memmap[VIRT_CLINT].size, base_hartid, hart_count,
550             SIFIVE_SIP_BASE, SIFIVE_TIMECMP_BASE, SIFIVE_TIME_BASE,
551             SIFIVE_CLINT_TIMEBASE_FREQ, true);
552 
553         /* Per-socket PLIC hart topology configuration string */
554         plic_hart_config_len =
555             (strlen(VIRT_PLIC_HART_CONFIG) + 1) * hart_count;
556         plic_hart_config = g_malloc0(plic_hart_config_len);
557         for (j = 0; j < hart_count; j++) {
558             if (j != 0) {
559                 strncat(plic_hart_config, ",", plic_hart_config_len);
560             }
561             strncat(plic_hart_config, VIRT_PLIC_HART_CONFIG,
562                 plic_hart_config_len);
563             plic_hart_config_len -= (strlen(VIRT_PLIC_HART_CONFIG) + 1);
564         }
565 
566         /* Per-socket PLIC */
567         s->plic[i] = sifive_plic_create(
568             memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
569             plic_hart_config, base_hartid,
570             VIRT_PLIC_NUM_SOURCES,
571             VIRT_PLIC_NUM_PRIORITIES,
572             VIRT_PLIC_PRIORITY_BASE,
573             VIRT_PLIC_PENDING_BASE,
574             VIRT_PLIC_ENABLE_BASE,
575             VIRT_PLIC_ENABLE_STRIDE,
576             VIRT_PLIC_CONTEXT_BASE,
577             VIRT_PLIC_CONTEXT_STRIDE,
578             memmap[VIRT_PLIC].size);
579         g_free(plic_hart_config);
580 
581         /* Try to use different PLIC instance based device type */
582         if (i == 0) {
583             mmio_plic = s->plic[i];
584             virtio_plic = s->plic[i];
585             pcie_plic = s->plic[i];
586         }
587         if (i == 1) {
588             virtio_plic = s->plic[i];
589             pcie_plic = s->plic[i];
590         }
591         if (i == 2) {
592             pcie_plic = s->plic[i];
593         }
594     }
595 
596     /* register system main memory (actual RAM) */
597     memory_region_init_ram(main_mem, NULL, "riscv_virt_board.ram",
598                            machine->ram_size, &error_fatal);
599     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
600         main_mem);
601 
602     /* create device tree */
603     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
604                riscv_is_32bit(&s->soc[0]));
605 
606     /* boot rom */
607     memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
608                            memmap[VIRT_MROM].size, &error_fatal);
609     memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
610                                 mask_rom);
611 
612     if (riscv_is_32bit(&s->soc[0])) {
613         firmware_end_addr = riscv_find_and_load_firmware(machine,
614                                     "opensbi-riscv32-generic-fw_dynamic.bin",
615                                     start_addr, NULL);
616     } else {
617         firmware_end_addr = riscv_find_and_load_firmware(machine,
618                                     "opensbi-riscv64-generic-fw_dynamic.bin",
619                                     start_addr, NULL);
620     }
621 
622     if (machine->kernel_filename) {
623         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
624                                                          firmware_end_addr);
625 
626         kernel_entry = riscv_load_kernel(machine->kernel_filename,
627                                          kernel_start_addr, NULL);
628 
629         if (machine->initrd_filename) {
630             hwaddr start;
631             hwaddr end = riscv_load_initrd(machine->initrd_filename,
632                                            machine->ram_size, kernel_entry,
633                                            &start);
634             qemu_fdt_setprop_cell(s->fdt, "/chosen",
635                                   "linux,initrd-start", start);
636             qemu_fdt_setprop_cell(s->fdt, "/chosen", "linux,initrd-end",
637                                   end);
638         }
639     } else {
640        /*
641         * If dynamic firmware is used, it doesn't know where is the next mode
642         * if kernel argument is not set.
643         */
644         kernel_entry = 0;
645     }
646 
647     if (drive_get(IF_PFLASH, 0, 0)) {
648         /*
649          * Pflash was supplied, let's overwrite the address we jump to after
650          * reset to the base of the flash.
651          */
652         start_addr = virt_memmap[VIRT_FLASH].base;
653     }
654 
655     /* Compute the fdt load address in dram */
656     fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
657                                    machine->ram_size, s->fdt);
658     /* load the reset vector */
659     riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
660                               virt_memmap[VIRT_MROM].base,
661                               virt_memmap[VIRT_MROM].size, kernel_entry,
662                               fdt_load_addr, s->fdt);
663 
664     /* SiFive Test MMIO device */
665     sifive_test_create(memmap[VIRT_TEST].base);
666 
667     /* VirtIO MMIO devices */
668     for (i = 0; i < VIRTIO_COUNT; i++) {
669         sysbus_create_simple("virtio-mmio",
670             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
671             qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
672     }
673 
674     gpex_pcie_init(system_memory,
675                          memmap[VIRT_PCIE_ECAM].base,
676                          memmap[VIRT_PCIE_ECAM].size,
677                          memmap[VIRT_PCIE_MMIO].base,
678                          memmap[VIRT_PCIE_MMIO].size,
679                          memmap[VIRT_PCIE_PIO].base,
680                          DEVICE(pcie_plic), true);
681 
682     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
683         0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
684         serial_hd(0), DEVICE_LITTLE_ENDIAN);
685 
686     sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
687         qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
688 
689     virt_flash_create(s);
690 
691     for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
692         /* Map legacy -drive if=pflash to machine properties */
693         pflash_cfi01_legacy_drive(s->flash[i],
694                                   drive_get(IF_PFLASH, 0, i));
695     }
696     virt_flash_map(s, system_memory);
697 }
698 
699 static void virt_machine_instance_init(Object *obj)
700 {
701 }
702 
703 static void virt_machine_class_init(ObjectClass *oc, void *data)
704 {
705     MachineClass *mc = MACHINE_CLASS(oc);
706 
707     mc->desc = "RISC-V VirtIO board";
708     mc->init = virt_machine_init;
709     mc->max_cpus = VIRT_CPUS_MAX;
710     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
711     mc->pci_allow_0_address = true;
712     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
713     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
714     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
715     mc->numa_mem_supported = true;
716 }
717 
718 static const TypeInfo virt_machine_typeinfo = {
719     .name       = MACHINE_TYPE_NAME("virt"),
720     .parent     = TYPE_MACHINE,
721     .class_init = virt_machine_class_init,
722     .instance_init = virt_machine_instance_init,
723     .instance_size = sizeof(RISCVVirtState),
724 };
725 
726 static void virt_machine_init_register_types(void)
727 {
728     type_register_static(&virt_machine_typeinfo);
729 }
730 
731 type_init(virt_machine_init_register_types)
732