xref: /qemu/hw/riscv/virt.c (revision 4211fc55)
1 /*
2  * QEMU RISC-V VirtIO Board
3  *
4  * Copyright (c) 2017 SiFive, Inc.
5  *
6  * RISC-V machine with 16550a UART and VirtIO MMIO
7  *
8  * This program is free software; you can redistribute it and/or modify it
9  * under the terms and conditions of the GNU General Public License,
10  * version 2 or later, as published by the Free Software Foundation.
11  *
12  * This program is distributed in the hope it will be useful, but WITHOUT
13  * ANY WARRANTY; without even the implied warranty of MERCHANTABILITY or
14  * FITNESS FOR A PARTICULAR PURPOSE.  See the GNU General Public License for
15  * more details.
16  *
17  * You should have received a copy of the GNU General Public License along with
18  * this program.  If not, see <http://www.gnu.org/licenses/>.
19  */
20 
21 #include "qemu/osdep.h"
22 #include "qemu/units.h"
23 #include "qemu/error-report.h"
24 #include "qapi/error.h"
25 #include "hw/boards.h"
26 #include "hw/loader.h"
27 #include "hw/sysbus.h"
28 #include "hw/qdev-properties.h"
29 #include "hw/char/serial.h"
30 #include "target/riscv/cpu.h"
31 #include "hw/riscv/riscv_hart.h"
32 #include "hw/riscv/virt.h"
33 #include "hw/riscv/boot.h"
34 #include "hw/riscv/numa.h"
35 #include "hw/intc/riscv_aclint.h"
36 #include "hw/intc/sifive_plic.h"
37 #include "hw/misc/sifive_test.h"
38 #include "chardev/char.h"
39 #include "sysemu/device_tree.h"
40 #include "sysemu/sysemu.h"
41 #include "sysemu/kvm.h"
42 #include "hw/pci/pci.h"
43 #include "hw/pci-host/gpex.h"
44 #include "hw/display/ramfb.h"
45 
46 static const MemMapEntry virt_memmap[] = {
47     [VIRT_DEBUG] =       {        0x0,         0x100 },
48     [VIRT_MROM] =        {     0x1000,        0xf000 },
49     [VIRT_TEST] =        {   0x100000,        0x1000 },
50     [VIRT_RTC] =         {   0x101000,        0x1000 },
51     [VIRT_CLINT] =       {  0x2000000,       0x10000 },
52     [VIRT_ACLINT_SSWI] = {  0x2F00000,        0x4000 },
53     [VIRT_PCIE_PIO] =    {  0x3000000,       0x10000 },
54     [VIRT_PLIC] =        {  0xc000000, VIRT_PLIC_SIZE(VIRT_CPUS_MAX * 2) },
55     [VIRT_UART0] =       { 0x10000000,         0x100 },
56     [VIRT_VIRTIO] =      { 0x10001000,        0x1000 },
57     [VIRT_FW_CFG] =      { 0x10100000,          0x18 },
58     [VIRT_FLASH] =       { 0x20000000,     0x4000000 },
59     [VIRT_PCIE_ECAM] =   { 0x30000000,    0x10000000 },
60     [VIRT_PCIE_MMIO] =   { 0x40000000,    0x40000000 },
61     [VIRT_DRAM] =        { 0x80000000,           0x0 },
62 };
63 
64 /* PCIe high mmio is fixed for RV32 */
65 #define VIRT32_HIGH_PCIE_MMIO_BASE  0x300000000ULL
66 #define VIRT32_HIGH_PCIE_MMIO_SIZE  (4 * GiB)
67 
68 /* PCIe high mmio for RV64, size is fixed but base depends on top of RAM */
69 #define VIRT64_HIGH_PCIE_MMIO_SIZE  (16 * GiB)
70 
71 static MemMapEntry virt_high_pcie_memmap;
72 
73 #define VIRT_FLASH_SECTOR_SIZE (256 * KiB)
74 
75 static PFlashCFI01 *virt_flash_create1(RISCVVirtState *s,
76                                        const char *name,
77                                        const char *alias_prop_name)
78 {
79     /*
80      * Create a single flash device.  We use the same parameters as
81      * the flash devices on the ARM virt board.
82      */
83     DeviceState *dev = qdev_new(TYPE_PFLASH_CFI01);
84 
85     qdev_prop_set_uint64(dev, "sector-length", VIRT_FLASH_SECTOR_SIZE);
86     qdev_prop_set_uint8(dev, "width", 4);
87     qdev_prop_set_uint8(dev, "device-width", 2);
88     qdev_prop_set_bit(dev, "big-endian", false);
89     qdev_prop_set_uint16(dev, "id0", 0x89);
90     qdev_prop_set_uint16(dev, "id1", 0x18);
91     qdev_prop_set_uint16(dev, "id2", 0x00);
92     qdev_prop_set_uint16(dev, "id3", 0x00);
93     qdev_prop_set_string(dev, "name", name);
94 
95     object_property_add_child(OBJECT(s), name, OBJECT(dev));
96     object_property_add_alias(OBJECT(s), alias_prop_name,
97                               OBJECT(dev), "drive");
98 
99     return PFLASH_CFI01(dev);
100 }
101 
102 static void virt_flash_create(RISCVVirtState *s)
103 {
104     s->flash[0] = virt_flash_create1(s, "virt.flash0", "pflash0");
105     s->flash[1] = virt_flash_create1(s, "virt.flash1", "pflash1");
106 }
107 
108 static void virt_flash_map1(PFlashCFI01 *flash,
109                             hwaddr base, hwaddr size,
110                             MemoryRegion *sysmem)
111 {
112     DeviceState *dev = DEVICE(flash);
113 
114     assert(QEMU_IS_ALIGNED(size, VIRT_FLASH_SECTOR_SIZE));
115     assert(size / VIRT_FLASH_SECTOR_SIZE <= UINT32_MAX);
116     qdev_prop_set_uint32(dev, "num-blocks", size / VIRT_FLASH_SECTOR_SIZE);
117     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
118 
119     memory_region_add_subregion(sysmem, base,
120                                 sysbus_mmio_get_region(SYS_BUS_DEVICE(dev),
121                                                        0));
122 }
123 
124 static void virt_flash_map(RISCVVirtState *s,
125                            MemoryRegion *sysmem)
126 {
127     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
128     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
129 
130     virt_flash_map1(s->flash[0], flashbase, flashsize,
131                     sysmem);
132     virt_flash_map1(s->flash[1], flashbase + flashsize, flashsize,
133                     sysmem);
134 }
135 
136 static void create_pcie_irq_map(void *fdt, char *nodename,
137                                 uint32_t plic_phandle)
138 {
139     int pin, dev;
140     uint32_t
141         full_irq_map[GPEX_NUM_IRQS * GPEX_NUM_IRQS * FDT_INT_MAP_WIDTH] = {};
142     uint32_t *irq_map = full_irq_map;
143 
144     /* This code creates a standard swizzle of interrupts such that
145      * each device's first interrupt is based on it's PCI_SLOT number.
146      * (See pci_swizzle_map_irq_fn())
147      *
148      * We only need one entry per interrupt in the table (not one per
149      * possible slot) seeing the interrupt-map-mask will allow the table
150      * to wrap to any number of devices.
151      */
152     for (dev = 0; dev < GPEX_NUM_IRQS; dev++) {
153         int devfn = dev * 0x8;
154 
155         for (pin = 0; pin < GPEX_NUM_IRQS; pin++) {
156             int irq_nr = PCIE_IRQ + ((pin + PCI_SLOT(devfn)) % GPEX_NUM_IRQS);
157             int i = 0;
158 
159             irq_map[i] = cpu_to_be32(devfn << 8);
160 
161             i += FDT_PCI_ADDR_CELLS;
162             irq_map[i] = cpu_to_be32(pin + 1);
163 
164             i += FDT_PCI_INT_CELLS;
165             irq_map[i++] = cpu_to_be32(plic_phandle);
166 
167             i += FDT_PLIC_ADDR_CELLS;
168             irq_map[i] = cpu_to_be32(irq_nr);
169 
170             irq_map += FDT_INT_MAP_WIDTH;
171         }
172     }
173 
174     qemu_fdt_setprop(fdt, nodename, "interrupt-map",
175                      full_irq_map, sizeof(full_irq_map));
176 
177     qemu_fdt_setprop_cells(fdt, nodename, "interrupt-map-mask",
178                            0x1800, 0, 0, 0x7);
179 }
180 
181 static void create_fdt_socket_cpus(RISCVVirtState *s, int socket,
182                                    char *clust_name, uint32_t *phandle,
183                                    bool is_32_bit, uint32_t *intc_phandles)
184 {
185     int cpu;
186     uint32_t cpu_phandle;
187     MachineState *mc = MACHINE(s);
188     char *name, *cpu_name, *core_name, *intc_name;
189 
190     for (cpu = s->soc[socket].num_harts - 1; cpu >= 0; cpu--) {
191         cpu_phandle = (*phandle)++;
192 
193         cpu_name = g_strdup_printf("/cpus/cpu@%d",
194             s->soc[socket].hartid_base + cpu);
195         qemu_fdt_add_subnode(mc->fdt, cpu_name);
196         qemu_fdt_setprop_string(mc->fdt, cpu_name, "mmu-type",
197             (is_32_bit) ? "riscv,sv32" : "riscv,sv48");
198         name = riscv_isa_string(&s->soc[socket].harts[cpu]);
199         qemu_fdt_setprop_string(mc->fdt, cpu_name, "riscv,isa", name);
200         g_free(name);
201         qemu_fdt_setprop_string(mc->fdt, cpu_name, "compatible", "riscv");
202         qemu_fdt_setprop_string(mc->fdt, cpu_name, "status", "okay");
203         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "reg",
204             s->soc[socket].hartid_base + cpu);
205         qemu_fdt_setprop_string(mc->fdt, cpu_name, "device_type", "cpu");
206         riscv_socket_fdt_write_id(mc, mc->fdt, cpu_name, socket);
207         qemu_fdt_setprop_cell(mc->fdt, cpu_name, "phandle", cpu_phandle);
208 
209         intc_phandles[cpu] = (*phandle)++;
210 
211         intc_name = g_strdup_printf("%s/interrupt-controller", cpu_name);
212         qemu_fdt_add_subnode(mc->fdt, intc_name);
213         qemu_fdt_setprop_cell(mc->fdt, intc_name, "phandle",
214             intc_phandles[cpu]);
215         qemu_fdt_setprop_string(mc->fdt, intc_name, "compatible",
216             "riscv,cpu-intc");
217         qemu_fdt_setprop(mc->fdt, intc_name, "interrupt-controller", NULL, 0);
218         qemu_fdt_setprop_cell(mc->fdt, intc_name, "#interrupt-cells", 1);
219 
220         core_name = g_strdup_printf("%s/core%d", clust_name, cpu);
221         qemu_fdt_add_subnode(mc->fdt, core_name);
222         qemu_fdt_setprop_cell(mc->fdt, core_name, "cpu", cpu_phandle);
223 
224         g_free(core_name);
225         g_free(intc_name);
226         g_free(cpu_name);
227     }
228 }
229 
230 static void create_fdt_socket_memory(RISCVVirtState *s,
231                                      const MemMapEntry *memmap, int socket)
232 {
233     char *mem_name;
234     uint64_t addr, size;
235     MachineState *mc = MACHINE(s);
236 
237     addr = memmap[VIRT_DRAM].base + riscv_socket_mem_offset(mc, socket);
238     size = riscv_socket_mem_size(mc, socket);
239     mem_name = g_strdup_printf("/memory@%lx", (long)addr);
240     qemu_fdt_add_subnode(mc->fdt, mem_name);
241     qemu_fdt_setprop_cells(mc->fdt, mem_name, "reg",
242         addr >> 32, addr, size >> 32, size);
243     qemu_fdt_setprop_string(mc->fdt, mem_name, "device_type", "memory");
244     riscv_socket_fdt_write_id(mc, mc->fdt, mem_name, socket);
245     g_free(mem_name);
246 }
247 
248 static void create_fdt_socket_clint(RISCVVirtState *s,
249                                     const MemMapEntry *memmap, int socket,
250                                     uint32_t *intc_phandles)
251 {
252     int cpu;
253     char *clint_name;
254     uint32_t *clint_cells;
255     unsigned long clint_addr;
256     MachineState *mc = MACHINE(s);
257     static const char * const clint_compat[2] = {
258         "sifive,clint0", "riscv,clint0"
259     };
260 
261     clint_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
262 
263     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
264         clint_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
265         clint_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_SOFT);
266         clint_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
267         clint_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_M_TIMER);
268     }
269 
270     clint_addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
271     clint_name = g_strdup_printf("/soc/clint@%lx", clint_addr);
272     qemu_fdt_add_subnode(mc->fdt, clint_name);
273     qemu_fdt_setprop_string_array(mc->fdt, clint_name, "compatible",
274                                   (char **)&clint_compat,
275                                   ARRAY_SIZE(clint_compat));
276     qemu_fdt_setprop_cells(mc->fdt, clint_name, "reg",
277         0x0, clint_addr, 0x0, memmap[VIRT_CLINT].size);
278     qemu_fdt_setprop(mc->fdt, clint_name, "interrupts-extended",
279         clint_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
280     riscv_socket_fdt_write_id(mc, mc->fdt, clint_name, socket);
281     g_free(clint_name);
282 
283     g_free(clint_cells);
284 }
285 
286 static void create_fdt_socket_aclint(RISCVVirtState *s,
287                                      const MemMapEntry *memmap, int socket,
288                                      uint32_t *intc_phandles)
289 {
290     int cpu;
291     char *name;
292     unsigned long addr;
293     uint32_t aclint_cells_size;
294     uint32_t *aclint_mswi_cells;
295     uint32_t *aclint_sswi_cells;
296     uint32_t *aclint_mtimer_cells;
297     MachineState *mc = MACHINE(s);
298 
299     aclint_mswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
300     aclint_mtimer_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
301     aclint_sswi_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
302 
303     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
304         aclint_mswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
305         aclint_mswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_SOFT);
306         aclint_mtimer_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
307         aclint_mtimer_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_M_TIMER);
308         aclint_sswi_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
309         aclint_sswi_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_SOFT);
310     }
311     aclint_cells_size = s->soc[socket].num_harts * sizeof(uint32_t) * 2;
312 
313     addr = memmap[VIRT_CLINT].base + (memmap[VIRT_CLINT].size * socket);
314     name = g_strdup_printf("/soc/mswi@%lx", addr);
315     qemu_fdt_add_subnode(mc->fdt, name);
316     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-mswi");
317     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
318         0x0, addr, 0x0, RISCV_ACLINT_SWI_SIZE);
319     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
320         aclint_mswi_cells, aclint_cells_size);
321     qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
322     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
323     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
324     g_free(name);
325 
326     addr = memmap[VIRT_CLINT].base + RISCV_ACLINT_SWI_SIZE +
327         (memmap[VIRT_CLINT].size * socket);
328     name = g_strdup_printf("/soc/mtimer@%lx", addr);
329     qemu_fdt_add_subnode(mc->fdt, name);
330     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
331         "riscv,aclint-mtimer");
332     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
333         0x0, addr + RISCV_ACLINT_DEFAULT_MTIME,
334         0x0, memmap[VIRT_CLINT].size - RISCV_ACLINT_SWI_SIZE -
335              RISCV_ACLINT_DEFAULT_MTIME,
336         0x0, addr + RISCV_ACLINT_DEFAULT_MTIMECMP,
337         0x0, RISCV_ACLINT_DEFAULT_MTIME);
338     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
339         aclint_mtimer_cells, aclint_cells_size);
340     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
341     g_free(name);
342 
343     addr = memmap[VIRT_ACLINT_SSWI].base +
344         (memmap[VIRT_ACLINT_SSWI].size * socket);
345     name = g_strdup_printf("/soc/sswi@%lx", addr);
346     qemu_fdt_add_subnode(mc->fdt, name);
347     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "riscv,aclint-sswi");
348     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
349         0x0, addr, 0x0, memmap[VIRT_ACLINT_SSWI].size);
350     qemu_fdt_setprop(mc->fdt, name, "interrupts-extended",
351         aclint_sswi_cells, aclint_cells_size);
352     qemu_fdt_setprop(mc->fdt, name, "interrupt-controller", NULL, 0);
353     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells", 0);
354     riscv_socket_fdt_write_id(mc, mc->fdt, name, socket);
355     g_free(name);
356 
357     g_free(aclint_mswi_cells);
358     g_free(aclint_mtimer_cells);
359     g_free(aclint_sswi_cells);
360 }
361 
362 static void create_fdt_socket_plic(RISCVVirtState *s,
363                                    const MemMapEntry *memmap, int socket,
364                                    uint32_t *phandle, uint32_t *intc_phandles,
365                                    uint32_t *plic_phandles)
366 {
367     int cpu;
368     char *plic_name;
369     uint32_t *plic_cells;
370     unsigned long plic_addr;
371     MachineState *mc = MACHINE(s);
372     static const char * const plic_compat[2] = {
373         "sifive,plic-1.0.0", "riscv,plic0"
374     };
375 
376     if (kvm_enabled()) {
377         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 2);
378     } else {
379         plic_cells = g_new0(uint32_t, s->soc[socket].num_harts * 4);
380     }
381 
382     for (cpu = 0; cpu < s->soc[socket].num_harts; cpu++) {
383         if (kvm_enabled()) {
384             plic_cells[cpu * 2 + 0] = cpu_to_be32(intc_phandles[cpu]);
385             plic_cells[cpu * 2 + 1] = cpu_to_be32(IRQ_S_EXT);
386         } else {
387             plic_cells[cpu * 4 + 0] = cpu_to_be32(intc_phandles[cpu]);
388             plic_cells[cpu * 4 + 1] = cpu_to_be32(IRQ_M_EXT);
389             plic_cells[cpu * 4 + 2] = cpu_to_be32(intc_phandles[cpu]);
390             plic_cells[cpu * 4 + 3] = cpu_to_be32(IRQ_S_EXT);
391         }
392     }
393 
394     plic_phandles[socket] = (*phandle)++;
395     plic_addr = memmap[VIRT_PLIC].base + (memmap[VIRT_PLIC].size * socket);
396     plic_name = g_strdup_printf("/soc/plic@%lx", plic_addr);
397     qemu_fdt_add_subnode(mc->fdt, plic_name);
398     qemu_fdt_setprop_cell(mc->fdt, plic_name,
399         "#address-cells", FDT_PLIC_ADDR_CELLS);
400     qemu_fdt_setprop_cell(mc->fdt, plic_name,
401         "#interrupt-cells", FDT_PLIC_INT_CELLS);
402     qemu_fdt_setprop_string_array(mc->fdt, plic_name, "compatible",
403                                   (char **)&plic_compat,
404                                   ARRAY_SIZE(plic_compat));
405     qemu_fdt_setprop(mc->fdt, plic_name, "interrupt-controller", NULL, 0);
406     qemu_fdt_setprop(mc->fdt, plic_name, "interrupts-extended",
407         plic_cells, s->soc[socket].num_harts * sizeof(uint32_t) * 4);
408     qemu_fdt_setprop_cells(mc->fdt, plic_name, "reg",
409         0x0, plic_addr, 0x0, memmap[VIRT_PLIC].size);
410     qemu_fdt_setprop_cell(mc->fdt, plic_name, "riscv,ndev", VIRTIO_NDEV);
411     riscv_socket_fdt_write_id(mc, mc->fdt, plic_name, socket);
412     qemu_fdt_setprop_cell(mc->fdt, plic_name, "phandle",
413         plic_phandles[socket]);
414     g_free(plic_name);
415 
416     g_free(plic_cells);
417 }
418 
419 static void create_fdt_sockets(RISCVVirtState *s, const MemMapEntry *memmap,
420                                bool is_32_bit, uint32_t *phandle,
421                                uint32_t *irq_mmio_phandle,
422                                uint32_t *irq_pcie_phandle,
423                                uint32_t *irq_virtio_phandle)
424 {
425     int socket;
426     char *clust_name;
427     uint32_t *intc_phandles;
428     MachineState *mc = MACHINE(s);
429     uint32_t xplic_phandles[MAX_NODES];
430 
431     qemu_fdt_add_subnode(mc->fdt, "/cpus");
432     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "timebase-frequency",
433                           RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ);
434     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#size-cells", 0x0);
435     qemu_fdt_setprop_cell(mc->fdt, "/cpus", "#address-cells", 0x1);
436     qemu_fdt_add_subnode(mc->fdt, "/cpus/cpu-map");
437 
438     for (socket = (riscv_socket_count(mc) - 1); socket >= 0; socket--) {
439         clust_name = g_strdup_printf("/cpus/cpu-map/cluster%d", socket);
440         qemu_fdt_add_subnode(mc->fdt, clust_name);
441 
442         intc_phandles = g_new0(uint32_t, s->soc[socket].num_harts);
443 
444         create_fdt_socket_cpus(s, socket, clust_name, phandle,
445             is_32_bit, intc_phandles);
446 
447         create_fdt_socket_memory(s, memmap, socket);
448 
449         if (!kvm_enabled()) {
450             if (s->have_aclint) {
451                 create_fdt_socket_aclint(s, memmap, socket, intc_phandles);
452             } else {
453                 create_fdt_socket_clint(s, memmap, socket, intc_phandles);
454             }
455         }
456 
457         create_fdt_socket_plic(s, memmap, socket, phandle,
458             intc_phandles, xplic_phandles);
459 
460         g_free(intc_phandles);
461         g_free(clust_name);
462     }
463 
464     for (socket = 0; socket < riscv_socket_count(mc); socket++) {
465         if (socket == 0) {
466             *irq_mmio_phandle = xplic_phandles[socket];
467             *irq_virtio_phandle = xplic_phandles[socket];
468             *irq_pcie_phandle = xplic_phandles[socket];
469         }
470         if (socket == 1) {
471             *irq_virtio_phandle = xplic_phandles[socket];
472             *irq_pcie_phandle = xplic_phandles[socket];
473         }
474         if (socket == 2) {
475             *irq_pcie_phandle = xplic_phandles[socket];
476         }
477     }
478 
479     riscv_socket_fdt_write_distance_matrix(mc, mc->fdt);
480 }
481 
482 static void create_fdt_virtio(RISCVVirtState *s, const MemMapEntry *memmap,
483                               uint32_t irq_virtio_phandle)
484 {
485     int i;
486     char *name;
487     MachineState *mc = MACHINE(s);
488 
489     for (i = 0; i < VIRTIO_COUNT; i++) {
490         name = g_strdup_printf("/soc/virtio_mmio@%lx",
491             (long)(memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size));
492         qemu_fdt_add_subnode(mc->fdt, name);
493         qemu_fdt_setprop_string(mc->fdt, name, "compatible", "virtio,mmio");
494         qemu_fdt_setprop_cells(mc->fdt, name, "reg",
495             0x0, memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
496             0x0, memmap[VIRT_VIRTIO].size);
497         qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
498             irq_virtio_phandle);
499         qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", VIRTIO_IRQ + i);
500         g_free(name);
501     }
502 }
503 
504 static void create_fdt_pcie(RISCVVirtState *s, const MemMapEntry *memmap,
505                             uint32_t irq_pcie_phandle)
506 {
507     char *name;
508     MachineState *mc = MACHINE(s);
509 
510     name = g_strdup_printf("/soc/pci@%lx",
511         (long) memmap[VIRT_PCIE_ECAM].base);
512     qemu_fdt_add_subnode(mc->fdt, name);
513     qemu_fdt_setprop_cell(mc->fdt, name, "#address-cells",
514         FDT_PCI_ADDR_CELLS);
515     qemu_fdt_setprop_cell(mc->fdt, name, "#interrupt-cells",
516         FDT_PCI_INT_CELLS);
517     qemu_fdt_setprop_cell(mc->fdt, name, "#size-cells", 0x2);
518     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
519         "pci-host-ecam-generic");
520     qemu_fdt_setprop_string(mc->fdt, name, "device_type", "pci");
521     qemu_fdt_setprop_cell(mc->fdt, name, "linux,pci-domain", 0);
522     qemu_fdt_setprop_cells(mc->fdt, name, "bus-range", 0,
523         memmap[VIRT_PCIE_ECAM].size / PCIE_MMCFG_SIZE_MIN - 1);
524     qemu_fdt_setprop(mc->fdt, name, "dma-coherent", NULL, 0);
525     qemu_fdt_setprop_cells(mc->fdt, name, "reg", 0,
526         memmap[VIRT_PCIE_ECAM].base, 0, memmap[VIRT_PCIE_ECAM].size);
527     qemu_fdt_setprop_sized_cells(mc->fdt, name, "ranges",
528         1, FDT_PCI_RANGE_IOPORT, 2, 0,
529         2, memmap[VIRT_PCIE_PIO].base, 2, memmap[VIRT_PCIE_PIO].size,
530         1, FDT_PCI_RANGE_MMIO,
531         2, memmap[VIRT_PCIE_MMIO].base,
532         2, memmap[VIRT_PCIE_MMIO].base, 2, memmap[VIRT_PCIE_MMIO].size,
533         1, FDT_PCI_RANGE_MMIO_64BIT,
534         2, virt_high_pcie_memmap.base,
535         2, virt_high_pcie_memmap.base, 2, virt_high_pcie_memmap.size);
536 
537     create_pcie_irq_map(mc->fdt, name, irq_pcie_phandle);
538     g_free(name);
539 }
540 
541 static void create_fdt_reset(RISCVVirtState *s, const MemMapEntry *memmap,
542                              uint32_t *phandle)
543 {
544     char *name;
545     uint32_t test_phandle;
546     MachineState *mc = MACHINE(s);
547 
548     test_phandle = (*phandle)++;
549     name = g_strdup_printf("/soc/test@%lx",
550         (long)memmap[VIRT_TEST].base);
551     qemu_fdt_add_subnode(mc->fdt, name);
552     {
553         static const char * const compat[3] = {
554             "sifive,test1", "sifive,test0", "syscon"
555         };
556         qemu_fdt_setprop_string_array(mc->fdt, name, "compatible",
557                                       (char **)&compat, ARRAY_SIZE(compat));
558     }
559     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
560         0x0, memmap[VIRT_TEST].base, 0x0, memmap[VIRT_TEST].size);
561     qemu_fdt_setprop_cell(mc->fdt, name, "phandle", test_phandle);
562     test_phandle = qemu_fdt_get_phandle(mc->fdt, name);
563     g_free(name);
564 
565     name = g_strdup_printf("/soc/reboot");
566     qemu_fdt_add_subnode(mc->fdt, name);
567     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-reboot");
568     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
569     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
570     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_RESET);
571     g_free(name);
572 
573     name = g_strdup_printf("/soc/poweroff");
574     qemu_fdt_add_subnode(mc->fdt, name);
575     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "syscon-poweroff");
576     qemu_fdt_setprop_cell(mc->fdt, name, "regmap", test_phandle);
577     qemu_fdt_setprop_cell(mc->fdt, name, "offset", 0x0);
578     qemu_fdt_setprop_cell(mc->fdt, name, "value", FINISHER_PASS);
579     g_free(name);
580 }
581 
582 static void create_fdt_uart(RISCVVirtState *s, const MemMapEntry *memmap,
583                             uint32_t irq_mmio_phandle)
584 {
585     char *name;
586     MachineState *mc = MACHINE(s);
587 
588     name = g_strdup_printf("/soc/uart@%lx", (long)memmap[VIRT_UART0].base);
589     qemu_fdt_add_subnode(mc->fdt, name);
590     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "ns16550a");
591     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
592         0x0, memmap[VIRT_UART0].base,
593         0x0, memmap[VIRT_UART0].size);
594     qemu_fdt_setprop_cell(mc->fdt, name, "clock-frequency", 3686400);
595     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent", irq_mmio_phandle);
596     qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", UART0_IRQ);
597 
598     qemu_fdt_add_subnode(mc->fdt, "/chosen");
599     qemu_fdt_setprop_string(mc->fdt, "/chosen", "stdout-path", name);
600     g_free(name);
601 }
602 
603 static void create_fdt_rtc(RISCVVirtState *s, const MemMapEntry *memmap,
604                            uint32_t irq_mmio_phandle)
605 {
606     char *name;
607     MachineState *mc = MACHINE(s);
608 
609     name = g_strdup_printf("/soc/rtc@%lx", (long)memmap[VIRT_RTC].base);
610     qemu_fdt_add_subnode(mc->fdt, name);
611     qemu_fdt_setprop_string(mc->fdt, name, "compatible",
612         "google,goldfish-rtc");
613     qemu_fdt_setprop_cells(mc->fdt, name, "reg",
614         0x0, memmap[VIRT_RTC].base, 0x0, memmap[VIRT_RTC].size);
615     qemu_fdt_setprop_cell(mc->fdt, name, "interrupt-parent",
616         irq_mmio_phandle);
617     qemu_fdt_setprop_cell(mc->fdt, name, "interrupts", RTC_IRQ);
618     g_free(name);
619 }
620 
621 static void create_fdt_flash(RISCVVirtState *s, const MemMapEntry *memmap)
622 {
623     char *name;
624     MachineState *mc = MACHINE(s);
625     hwaddr flashsize = virt_memmap[VIRT_FLASH].size / 2;
626     hwaddr flashbase = virt_memmap[VIRT_FLASH].base;
627 
628     name = g_strdup_printf("/flash@%" PRIx64, flashbase);
629     qemu_fdt_add_subnode(mc->fdt, name);
630     qemu_fdt_setprop_string(mc->fdt, name, "compatible", "cfi-flash");
631     qemu_fdt_setprop_sized_cells(mc->fdt, name, "reg",
632                                  2, flashbase, 2, flashsize,
633                                  2, flashbase + flashsize, 2, flashsize);
634     qemu_fdt_setprop_cell(mc->fdt, name, "bank-width", 4);
635     g_free(name);
636 }
637 
638 static void create_fdt(RISCVVirtState *s, const MemMapEntry *memmap,
639                        uint64_t mem_size, const char *cmdline, bool is_32_bit)
640 {
641     MachineState *mc = MACHINE(s);
642     uint32_t phandle = 1, irq_mmio_phandle = 1;
643     uint32_t irq_pcie_phandle = 1, irq_virtio_phandle = 1;
644 
645     if (mc->dtb) {
646         mc->fdt = load_device_tree(mc->dtb, &s->fdt_size);
647         if (!mc->fdt) {
648             error_report("load_device_tree() failed");
649             exit(1);
650         }
651         goto update_bootargs;
652     } else {
653         mc->fdt = create_device_tree(&s->fdt_size);
654         if (!mc->fdt) {
655             error_report("create_device_tree() failed");
656             exit(1);
657         }
658     }
659 
660     qemu_fdt_setprop_string(mc->fdt, "/", "model", "riscv-virtio,qemu");
661     qemu_fdt_setprop_string(mc->fdt, "/", "compatible", "riscv-virtio");
662     qemu_fdt_setprop_cell(mc->fdt, "/", "#size-cells", 0x2);
663     qemu_fdt_setprop_cell(mc->fdt, "/", "#address-cells", 0x2);
664 
665     qemu_fdt_add_subnode(mc->fdt, "/soc");
666     qemu_fdt_setprop(mc->fdt, "/soc", "ranges", NULL, 0);
667     qemu_fdt_setprop_string(mc->fdt, "/soc", "compatible", "simple-bus");
668     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#size-cells", 0x2);
669     qemu_fdt_setprop_cell(mc->fdt, "/soc", "#address-cells", 0x2);
670 
671     create_fdt_sockets(s, memmap, is_32_bit, &phandle,
672         &irq_mmio_phandle, &irq_pcie_phandle, &irq_virtio_phandle);
673 
674     create_fdt_virtio(s, memmap, irq_virtio_phandle);
675 
676     create_fdt_pcie(s, memmap, irq_pcie_phandle);
677 
678     create_fdt_reset(s, memmap, &phandle);
679 
680     create_fdt_uart(s, memmap, irq_mmio_phandle);
681 
682     create_fdt_rtc(s, memmap, irq_mmio_phandle);
683 
684     create_fdt_flash(s, memmap);
685 
686 update_bootargs:
687     if (cmdline) {
688         qemu_fdt_setprop_string(mc->fdt, "/chosen", "bootargs", cmdline);
689     }
690 }
691 
692 static inline DeviceState *gpex_pcie_init(MemoryRegion *sys_mem,
693                                           hwaddr ecam_base, hwaddr ecam_size,
694                                           hwaddr mmio_base, hwaddr mmio_size,
695                                           hwaddr high_mmio_base,
696                                           hwaddr high_mmio_size,
697                                           hwaddr pio_base,
698                                           DeviceState *plic)
699 {
700     DeviceState *dev;
701     MemoryRegion *ecam_alias, *ecam_reg;
702     MemoryRegion *mmio_alias, *high_mmio_alias, *mmio_reg;
703     qemu_irq irq;
704     int i;
705 
706     dev = qdev_new(TYPE_GPEX_HOST);
707 
708     sysbus_realize_and_unref(SYS_BUS_DEVICE(dev), &error_fatal);
709 
710     ecam_alias = g_new0(MemoryRegion, 1);
711     ecam_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 0);
712     memory_region_init_alias(ecam_alias, OBJECT(dev), "pcie-ecam",
713                              ecam_reg, 0, ecam_size);
714     memory_region_add_subregion(get_system_memory(), ecam_base, ecam_alias);
715 
716     mmio_alias = g_new0(MemoryRegion, 1);
717     mmio_reg = sysbus_mmio_get_region(SYS_BUS_DEVICE(dev), 1);
718     memory_region_init_alias(mmio_alias, OBJECT(dev), "pcie-mmio",
719                              mmio_reg, mmio_base, mmio_size);
720     memory_region_add_subregion(get_system_memory(), mmio_base, mmio_alias);
721 
722     /* Map high MMIO space */
723     high_mmio_alias = g_new0(MemoryRegion, 1);
724     memory_region_init_alias(high_mmio_alias, OBJECT(dev), "pcie-mmio-high",
725                              mmio_reg, high_mmio_base, high_mmio_size);
726     memory_region_add_subregion(get_system_memory(), high_mmio_base,
727                                 high_mmio_alias);
728 
729     sysbus_mmio_map(SYS_BUS_DEVICE(dev), 2, pio_base);
730 
731     for (i = 0; i < GPEX_NUM_IRQS; i++) {
732         irq = qdev_get_gpio_in(plic, PCIE_IRQ + i);
733 
734         sysbus_connect_irq(SYS_BUS_DEVICE(dev), i, irq);
735         gpex_set_irq_num(GPEX_HOST(dev), i, PCIE_IRQ + i);
736     }
737 
738     return dev;
739 }
740 
741 static FWCfgState *create_fw_cfg(const MachineState *mc)
742 {
743     hwaddr base = virt_memmap[VIRT_FW_CFG].base;
744     hwaddr size = virt_memmap[VIRT_FW_CFG].size;
745     FWCfgState *fw_cfg;
746     char *nodename;
747 
748     fw_cfg = fw_cfg_init_mem_wide(base + 8, base, 8, base + 16,
749                                   &address_space_memory);
750     fw_cfg_add_i16(fw_cfg, FW_CFG_NB_CPUS, (uint16_t)mc->smp.cpus);
751 
752     nodename = g_strdup_printf("/fw-cfg@%" PRIx64, base);
753     qemu_fdt_add_subnode(mc->fdt, nodename);
754     qemu_fdt_setprop_string(mc->fdt, nodename,
755                             "compatible", "qemu,fw-cfg-mmio");
756     qemu_fdt_setprop_sized_cells(mc->fdt, nodename, "reg",
757                                  2, base, 2, size);
758     qemu_fdt_setprop(mc->fdt, nodename, "dma-coherent", NULL, 0);
759     g_free(nodename);
760     return fw_cfg;
761 }
762 
763 static void virt_machine_init(MachineState *machine)
764 {
765     const MemMapEntry *memmap = virt_memmap;
766     RISCVVirtState *s = RISCV_VIRT_MACHINE(machine);
767     MemoryRegion *system_memory = get_system_memory();
768     MemoryRegion *mask_rom = g_new(MemoryRegion, 1);
769     char *plic_hart_config, *soc_name;
770     target_ulong start_addr = memmap[VIRT_DRAM].base;
771     target_ulong firmware_end_addr, kernel_start_addr;
772     uint32_t fdt_load_addr;
773     uint64_t kernel_entry;
774     DeviceState *mmio_plic, *virtio_plic, *pcie_plic;
775     int i, base_hartid, hart_count;
776 
777     /* Check socket count limit */
778     if (VIRT_SOCKETS_MAX < riscv_socket_count(machine)) {
779         error_report("number of sockets/nodes should be less than %d",
780             VIRT_SOCKETS_MAX);
781         exit(1);
782     }
783 
784     /* Initialize sockets */
785     mmio_plic = virtio_plic = pcie_plic = NULL;
786     for (i = 0; i < riscv_socket_count(machine); i++) {
787         if (!riscv_socket_check_hartids(machine, i)) {
788             error_report("discontinuous hartids in socket%d", i);
789             exit(1);
790         }
791 
792         base_hartid = riscv_socket_first_hartid(machine, i);
793         if (base_hartid < 0) {
794             error_report("can't find hartid base for socket%d", i);
795             exit(1);
796         }
797 
798         hart_count = riscv_socket_hart_count(machine, i);
799         if (hart_count < 0) {
800             error_report("can't find hart count for socket%d", i);
801             exit(1);
802         }
803 
804         soc_name = g_strdup_printf("soc%d", i);
805         object_initialize_child(OBJECT(machine), soc_name, &s->soc[i],
806                                 TYPE_RISCV_HART_ARRAY);
807         g_free(soc_name);
808         object_property_set_str(OBJECT(&s->soc[i]), "cpu-type",
809                                 machine->cpu_type, &error_abort);
810         object_property_set_int(OBJECT(&s->soc[i]), "hartid-base",
811                                 base_hartid, &error_abort);
812         object_property_set_int(OBJECT(&s->soc[i]), "num-harts",
813                                 hart_count, &error_abort);
814         sysbus_realize(SYS_BUS_DEVICE(&s->soc[i]), &error_abort);
815 
816         if (!kvm_enabled()) {
817             /* Per-socket CLINT */
818             riscv_aclint_swi_create(
819                 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size,
820                 base_hartid, hart_count, false);
821             riscv_aclint_mtimer_create(
822                 memmap[VIRT_CLINT].base + i * memmap[VIRT_CLINT].size +
823                     RISCV_ACLINT_SWI_SIZE,
824                 RISCV_ACLINT_DEFAULT_MTIMER_SIZE, base_hartid, hart_count,
825                 RISCV_ACLINT_DEFAULT_MTIMECMP, RISCV_ACLINT_DEFAULT_MTIME,
826                 RISCV_ACLINT_DEFAULT_TIMEBASE_FREQ, true);
827 
828             /* Per-socket ACLINT SSWI */
829             if (s->have_aclint) {
830                 riscv_aclint_swi_create(
831                     memmap[VIRT_ACLINT_SSWI].base +
832                         i * memmap[VIRT_ACLINT_SSWI].size,
833                     base_hartid, hart_count, true);
834             }
835         }
836 
837         /* Per-socket PLIC hart topology configuration string */
838         plic_hart_config = riscv_plic_hart_config_string(hart_count);
839 
840         /* Per-socket PLIC */
841         s->plic[i] = sifive_plic_create(
842             memmap[VIRT_PLIC].base + i * memmap[VIRT_PLIC].size,
843             plic_hart_config, hart_count, base_hartid,
844             VIRT_PLIC_NUM_SOURCES,
845             VIRT_PLIC_NUM_PRIORITIES,
846             VIRT_PLIC_PRIORITY_BASE,
847             VIRT_PLIC_PENDING_BASE,
848             VIRT_PLIC_ENABLE_BASE,
849             VIRT_PLIC_ENABLE_STRIDE,
850             VIRT_PLIC_CONTEXT_BASE,
851             VIRT_PLIC_CONTEXT_STRIDE,
852             memmap[VIRT_PLIC].size);
853         g_free(plic_hart_config);
854 
855         /* Try to use different PLIC instance based device type */
856         if (i == 0) {
857             mmio_plic = s->plic[i];
858             virtio_plic = s->plic[i];
859             pcie_plic = s->plic[i];
860         }
861         if (i == 1) {
862             virtio_plic = s->plic[i];
863             pcie_plic = s->plic[i];
864         }
865         if (i == 2) {
866             pcie_plic = s->plic[i];
867         }
868     }
869 
870     if (riscv_is_32bit(&s->soc[0])) {
871 #if HOST_LONG_BITS == 64
872         /* limit RAM size in a 32-bit system */
873         if (machine->ram_size > 10 * GiB) {
874             machine->ram_size = 10 * GiB;
875             error_report("Limiting RAM size to 10 GiB");
876         }
877 #endif
878         virt_high_pcie_memmap.base = VIRT32_HIGH_PCIE_MMIO_BASE;
879         virt_high_pcie_memmap.size = VIRT32_HIGH_PCIE_MMIO_SIZE;
880     } else {
881         virt_high_pcie_memmap.size = VIRT64_HIGH_PCIE_MMIO_SIZE;
882         virt_high_pcie_memmap.base = memmap[VIRT_DRAM].base + machine->ram_size;
883         virt_high_pcie_memmap.base =
884             ROUND_UP(virt_high_pcie_memmap.base, virt_high_pcie_memmap.size);
885     }
886 
887     /* register system main memory (actual RAM) */
888     memory_region_add_subregion(system_memory, memmap[VIRT_DRAM].base,
889         machine->ram);
890 
891     /* create device tree */
892     create_fdt(s, memmap, machine->ram_size, machine->kernel_cmdline,
893                riscv_is_32bit(&s->soc[0]));
894 
895     /* boot rom */
896     memory_region_init_rom(mask_rom, NULL, "riscv_virt_board.mrom",
897                            memmap[VIRT_MROM].size, &error_fatal);
898     memory_region_add_subregion(system_memory, memmap[VIRT_MROM].base,
899                                 mask_rom);
900 
901     /*
902      * Only direct boot kernel is currently supported for KVM VM,
903      * so the "-bios" parameter is ignored and treated like "-bios none"
904      * when KVM is enabled.
905      */
906     if (kvm_enabled()) {
907         g_free(machine->firmware);
908         machine->firmware = g_strdup("none");
909     }
910 
911     if (riscv_is_32bit(&s->soc[0])) {
912         firmware_end_addr = riscv_find_and_load_firmware(machine,
913                                     RISCV32_BIOS_BIN, start_addr, NULL);
914     } else {
915         firmware_end_addr = riscv_find_and_load_firmware(machine,
916                                     RISCV64_BIOS_BIN, start_addr, NULL);
917     }
918 
919     if (machine->kernel_filename) {
920         kernel_start_addr = riscv_calc_kernel_start_addr(&s->soc[0],
921                                                          firmware_end_addr);
922 
923         kernel_entry = riscv_load_kernel(machine->kernel_filename,
924                                          kernel_start_addr, NULL);
925 
926         if (machine->initrd_filename) {
927             hwaddr start;
928             hwaddr end = riscv_load_initrd(machine->initrd_filename,
929                                            machine->ram_size, kernel_entry,
930                                            &start);
931             qemu_fdt_setprop_cell(machine->fdt, "/chosen",
932                                   "linux,initrd-start", start);
933             qemu_fdt_setprop_cell(machine->fdt, "/chosen", "linux,initrd-end",
934                                   end);
935         }
936     } else {
937        /*
938         * If dynamic firmware is used, it doesn't know where is the next mode
939         * if kernel argument is not set.
940         */
941         kernel_entry = 0;
942     }
943 
944     if (drive_get(IF_PFLASH, 0, 0)) {
945         /*
946          * Pflash was supplied, let's overwrite the address we jump to after
947          * reset to the base of the flash.
948          */
949         start_addr = virt_memmap[VIRT_FLASH].base;
950     }
951 
952     /*
953      * Init fw_cfg.  Must be done before riscv_load_fdt, otherwise the device
954      * tree cannot be altered and we get FDT_ERR_NOSPACE.
955      */
956     s->fw_cfg = create_fw_cfg(machine);
957     rom_set_fw(s->fw_cfg);
958 
959     /* Compute the fdt load address in dram */
960     fdt_load_addr = riscv_load_fdt(memmap[VIRT_DRAM].base,
961                                    machine->ram_size, machine->fdt);
962     /* load the reset vector */
963     riscv_setup_rom_reset_vec(machine, &s->soc[0], start_addr,
964                               virt_memmap[VIRT_MROM].base,
965                               virt_memmap[VIRT_MROM].size, kernel_entry,
966                               fdt_load_addr, machine->fdt);
967 
968     /*
969      * Only direct boot kernel is currently supported for KVM VM,
970      * So here setup kernel start address and fdt address.
971      * TODO:Support firmware loading and integrate to TCG start
972      */
973     if (kvm_enabled()) {
974         riscv_setup_direct_kernel(kernel_entry, fdt_load_addr);
975     }
976 
977     /* SiFive Test MMIO device */
978     sifive_test_create(memmap[VIRT_TEST].base);
979 
980     /* VirtIO MMIO devices */
981     for (i = 0; i < VIRTIO_COUNT; i++) {
982         sysbus_create_simple("virtio-mmio",
983             memmap[VIRT_VIRTIO].base + i * memmap[VIRT_VIRTIO].size,
984             qdev_get_gpio_in(DEVICE(virtio_plic), VIRTIO_IRQ + i));
985     }
986 
987     gpex_pcie_init(system_memory,
988                    memmap[VIRT_PCIE_ECAM].base,
989                    memmap[VIRT_PCIE_ECAM].size,
990                    memmap[VIRT_PCIE_MMIO].base,
991                    memmap[VIRT_PCIE_MMIO].size,
992                    virt_high_pcie_memmap.base,
993                    virt_high_pcie_memmap.size,
994                    memmap[VIRT_PCIE_PIO].base,
995                    DEVICE(pcie_plic));
996 
997     serial_mm_init(system_memory, memmap[VIRT_UART0].base,
998         0, qdev_get_gpio_in(DEVICE(mmio_plic), UART0_IRQ), 399193,
999         serial_hd(0), DEVICE_LITTLE_ENDIAN);
1000 
1001     sysbus_create_simple("goldfish_rtc", memmap[VIRT_RTC].base,
1002         qdev_get_gpio_in(DEVICE(mmio_plic), RTC_IRQ));
1003 
1004     virt_flash_create(s);
1005 
1006     for (i = 0; i < ARRAY_SIZE(s->flash); i++) {
1007         /* Map legacy -drive if=pflash to machine properties */
1008         pflash_cfi01_legacy_drive(s->flash[i],
1009                                   drive_get(IF_PFLASH, 0, i));
1010     }
1011     virt_flash_map(s, system_memory);
1012 }
1013 
1014 static void virt_machine_instance_init(Object *obj)
1015 {
1016 }
1017 
1018 static bool virt_get_aclint(Object *obj, Error **errp)
1019 {
1020     MachineState *ms = MACHINE(obj);
1021     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1022 
1023     return s->have_aclint;
1024 }
1025 
1026 static void virt_set_aclint(Object *obj, bool value, Error **errp)
1027 {
1028     MachineState *ms = MACHINE(obj);
1029     RISCVVirtState *s = RISCV_VIRT_MACHINE(ms);
1030 
1031     s->have_aclint = value;
1032 }
1033 
1034 static void virt_machine_class_init(ObjectClass *oc, void *data)
1035 {
1036     MachineClass *mc = MACHINE_CLASS(oc);
1037 
1038     mc->desc = "RISC-V VirtIO board";
1039     mc->init = virt_machine_init;
1040     mc->max_cpus = VIRT_CPUS_MAX;
1041     mc->default_cpu_type = TYPE_RISCV_CPU_BASE;
1042     mc->pci_allow_0_address = true;
1043     mc->possible_cpu_arch_ids = riscv_numa_possible_cpu_arch_ids;
1044     mc->cpu_index_to_instance_props = riscv_numa_cpu_index_to_props;
1045     mc->get_default_cpu_node_id = riscv_numa_get_default_cpu_node_id;
1046     mc->numa_mem_supported = true;
1047     mc->default_ram_id = "riscv_virt_board.ram";
1048 
1049     machine_class_allow_dynamic_sysbus_dev(mc, TYPE_RAMFB_DEVICE);
1050 
1051     object_class_property_add_bool(oc, "aclint", virt_get_aclint,
1052                                    virt_set_aclint);
1053     object_class_property_set_description(oc, "aclint",
1054                                           "Set on/off to enable/disable "
1055                                           "emulating ACLINT devices");
1056 }
1057 
1058 static const TypeInfo virt_machine_typeinfo = {
1059     .name       = MACHINE_TYPE_NAME("virt"),
1060     .parent     = TYPE_MACHINE,
1061     .class_init = virt_machine_class_init,
1062     .instance_init = virt_machine_instance_init,
1063     .instance_size = sizeof(RISCVVirtState),
1064 };
1065 
1066 static void virt_machine_init_register_types(void)
1067 {
1068     type_register_static(&virt_machine_typeinfo);
1069 }
1070 
1071 type_init(virt_machine_init_register_types)
1072