xref: /qemu/hw/sd/sdhci.c (revision 674ed722)
1 /*
2  * SD Association Host Standard Specification v2.0 controller emulation
3  *
4  * Copyright (c) 2011 Samsung Electronics Co., Ltd.
5  * Mitsyanko Igor <i.mitsyanko@samsung.com>
6  * Peter A.G. Crosthwaite <peter.crosthwaite@petalogix.com>
7  *
8  * Based on MMC controller for Samsung S5PC1xx-based board emulation
9  * by Alexey Merkulov and Vladimir Monakhov.
10  *
11  * This program is free software; you can redistribute it and/or modify it
12  * under the terms of the GNU General Public License as published by the
13  * Free Software Foundation; either version 2 of the License, or (at your
14  * option) any later version.
15  *
16  * This program is distributed in the hope that it will be useful,
17  * but WITHOUT ANY WARRANTY; without even the implied warranty of
18  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.
19  * See the GNU General Public License for more details.
20  *
21  * You should have received a copy of the GNU General Public License along
22  * with this program; if not, see <http://www.gnu.org/licenses/>.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "qemu/units.h"
27 #include "qemu/error-report.h"
28 #include "qapi/error.h"
29 #include "hw/hw.h"
30 #include "sysemu/dma.h"
31 #include "qemu/timer.h"
32 #include "qemu/bitops.h"
33 #include "hw/sd/sdhci.h"
34 #include "sdhci-internal.h"
35 #include "qemu/log.h"
36 #include "trace.h"
37 
38 #define TYPE_SDHCI_BUS "sdhci-bus"
39 #define SDHCI_BUS(obj) OBJECT_CHECK(SDBus, (obj), TYPE_SDHCI_BUS)
40 
41 #define MASKED_WRITE(reg, mask, val)  (reg = (reg & (mask)) | (val))
42 
43 /* Default SD/MMC host controller features information, which will be
44  * presented in CAPABILITIES register of generic SD host controller at reset.
45  *
46  * support:
47  * - 3.3v and 1.8v voltages
48  * - SDMA/ADMA1/ADMA2
49  * - high-speed
50  * max host controller R/W buffers size: 512B
51  * max clock frequency for SDclock: 52 MHz
52  * timeout clock frequency: 52 MHz
53  *
54  * does not support:
55  * - 3.0v voltage
56  * - 64-bit system bus
57  * - suspend/resume
58  */
59 #define SDHC_CAPAB_REG_DEFAULT 0x057834b4
60 
61 static inline unsigned int sdhci_get_fifolen(SDHCIState *s)
62 {
63     return 1 << (9 + FIELD_EX32(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH));
64 }
65 
66 /* return true on error */
67 static bool sdhci_check_capab_freq_range(SDHCIState *s, const char *desc,
68                                          uint8_t freq, Error **errp)
69 {
70     if (s->sd_spec_version >= 3) {
71         return false;
72     }
73     switch (freq) {
74     case 0:
75     case 10 ... 63:
76         break;
77     default:
78         error_setg(errp, "SD %s clock frequency can have value"
79                    "in range 0-63 only", desc);
80         return true;
81     }
82     return false;
83 }
84 
85 static void sdhci_check_capareg(SDHCIState *s, Error **errp)
86 {
87     uint64_t msk = s->capareg;
88     uint32_t val;
89     bool y;
90 
91     switch (s->sd_spec_version) {
92     case 4:
93         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT_V4);
94         trace_sdhci_capareg("64-bit system bus (v4)", val);
95         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT_V4, 0);
96 
97         val = FIELD_EX64(s->capareg, SDHC_CAPAB, UHS_II);
98         trace_sdhci_capareg("UHS-II", val);
99         msk = FIELD_DP64(msk, SDHC_CAPAB, UHS_II, 0);
100 
101         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA3);
102         trace_sdhci_capareg("ADMA3", val);
103         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA3, 0);
104 
105     /* fallthrough */
106     case 3:
107         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ASYNC_INT);
108         trace_sdhci_capareg("async interrupt", val);
109         msk = FIELD_DP64(msk, SDHC_CAPAB, ASYNC_INT, 0);
110 
111         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SLOT_TYPE);
112         if (val) {
113             error_setg(errp, "slot-type not supported");
114             return;
115         }
116         trace_sdhci_capareg("slot type", val);
117         msk = FIELD_DP64(msk, SDHC_CAPAB, SLOT_TYPE, 0);
118 
119         if (val != 2) {
120             val = FIELD_EX64(s->capareg, SDHC_CAPAB, EMBEDDED_8BIT);
121             trace_sdhci_capareg("8-bit bus", val);
122         }
123         msk = FIELD_DP64(msk, SDHC_CAPAB, EMBEDDED_8BIT, 0);
124 
125         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS_SPEED);
126         trace_sdhci_capareg("bus speed mask", val);
127         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS_SPEED, 0);
128 
129         val = FIELD_EX64(s->capareg, SDHC_CAPAB, DRIVER_STRENGTH);
130         trace_sdhci_capareg("driver strength mask", val);
131         msk = FIELD_DP64(msk, SDHC_CAPAB, DRIVER_STRENGTH, 0);
132 
133         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TIMER_RETUNING);
134         trace_sdhci_capareg("timer re-tuning", val);
135         msk = FIELD_DP64(msk, SDHC_CAPAB, TIMER_RETUNING, 0);
136 
137         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDR50_TUNING);
138         trace_sdhci_capareg("use SDR50 tuning", val);
139         msk = FIELD_DP64(msk, SDHC_CAPAB, SDR50_TUNING, 0);
140 
141         val = FIELD_EX64(s->capareg, SDHC_CAPAB, RETUNING_MODE);
142         trace_sdhci_capareg("re-tuning mode", val);
143         msk = FIELD_DP64(msk, SDHC_CAPAB, RETUNING_MODE, 0);
144 
145         val = FIELD_EX64(s->capareg, SDHC_CAPAB, CLOCK_MULT);
146         trace_sdhci_capareg("clock multiplier", val);
147         msk = FIELD_DP64(msk, SDHC_CAPAB, CLOCK_MULT, 0);
148 
149     /* fallthrough */
150     case 2: /* default version */
151         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA2);
152         trace_sdhci_capareg("ADMA2", val);
153         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA2, 0);
154 
155         val = FIELD_EX64(s->capareg, SDHC_CAPAB, ADMA1);
156         trace_sdhci_capareg("ADMA1", val);
157         msk = FIELD_DP64(msk, SDHC_CAPAB, ADMA1, 0);
158 
159         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BUS64BIT);
160         trace_sdhci_capareg("64-bit system bus (v3)", val);
161         msk = FIELD_DP64(msk, SDHC_CAPAB, BUS64BIT, 0);
162 
163     /* fallthrough */
164     case 1:
165         y = FIELD_EX64(s->capareg, SDHC_CAPAB, TOUNIT);
166         msk = FIELD_DP64(msk, SDHC_CAPAB, TOUNIT, 0);
167 
168         val = FIELD_EX64(s->capareg, SDHC_CAPAB, TOCLKFREQ);
169         trace_sdhci_capareg(y ? "timeout (MHz)" : "Timeout (KHz)", val);
170         if (sdhci_check_capab_freq_range(s, "timeout", val, errp)) {
171             return;
172         }
173         msk = FIELD_DP64(msk, SDHC_CAPAB, TOCLKFREQ, 0);
174 
175         val = FIELD_EX64(s->capareg, SDHC_CAPAB, BASECLKFREQ);
176         trace_sdhci_capareg(y ? "base (MHz)" : "Base (KHz)", val);
177         if (sdhci_check_capab_freq_range(s, "base", val, errp)) {
178             return;
179         }
180         msk = FIELD_DP64(msk, SDHC_CAPAB, BASECLKFREQ, 0);
181 
182         val = FIELD_EX64(s->capareg, SDHC_CAPAB, MAXBLOCKLENGTH);
183         if (val >= 3) {
184             error_setg(errp, "block size can be 512, 1024 or 2048 only");
185             return;
186         }
187         trace_sdhci_capareg("max block length", sdhci_get_fifolen(s));
188         msk = FIELD_DP64(msk, SDHC_CAPAB, MAXBLOCKLENGTH, 0);
189 
190         val = FIELD_EX64(s->capareg, SDHC_CAPAB, HIGHSPEED);
191         trace_sdhci_capareg("high speed", val);
192         msk = FIELD_DP64(msk, SDHC_CAPAB, HIGHSPEED, 0);
193 
194         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SDMA);
195         trace_sdhci_capareg("SDMA", val);
196         msk = FIELD_DP64(msk, SDHC_CAPAB, SDMA, 0);
197 
198         val = FIELD_EX64(s->capareg, SDHC_CAPAB, SUSPRESUME);
199         trace_sdhci_capareg("suspend/resume", val);
200         msk = FIELD_DP64(msk, SDHC_CAPAB, SUSPRESUME, 0);
201 
202         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V33);
203         trace_sdhci_capareg("3.3v", val);
204         msk = FIELD_DP64(msk, SDHC_CAPAB, V33, 0);
205 
206         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V30);
207         trace_sdhci_capareg("3.0v", val);
208         msk = FIELD_DP64(msk, SDHC_CAPAB, V30, 0);
209 
210         val = FIELD_EX64(s->capareg, SDHC_CAPAB, V18);
211         trace_sdhci_capareg("1.8v", val);
212         msk = FIELD_DP64(msk, SDHC_CAPAB, V18, 0);
213         break;
214 
215     default:
216         error_setg(errp, "Unsupported spec version: %u", s->sd_spec_version);
217     }
218     if (msk) {
219         qemu_log_mask(LOG_UNIMP,
220                       "SDHCI: unknown CAPAB mask: 0x%016" PRIx64 "\n", msk);
221     }
222 }
223 
224 static uint8_t sdhci_slotint(SDHCIState *s)
225 {
226     return (s->norintsts & s->norintsigen) || (s->errintsts & s->errintsigen) ||
227          ((s->norintsts & SDHC_NIS_INSERT) && (s->wakcon & SDHC_WKUP_ON_INS)) ||
228          ((s->norintsts & SDHC_NIS_REMOVE) && (s->wakcon & SDHC_WKUP_ON_RMV));
229 }
230 
231 static inline void sdhci_update_irq(SDHCIState *s)
232 {
233     qemu_set_irq(s->irq, sdhci_slotint(s));
234 }
235 
236 static void sdhci_raise_insertion_irq(void *opaque)
237 {
238     SDHCIState *s = (SDHCIState *)opaque;
239 
240     if (s->norintsts & SDHC_NIS_REMOVE) {
241         timer_mod(s->insert_timer,
242                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
243     } else {
244         s->prnsts = 0x1ff0000;
245         if (s->norintstsen & SDHC_NISEN_INSERT) {
246             s->norintsts |= SDHC_NIS_INSERT;
247         }
248         sdhci_update_irq(s);
249     }
250 }
251 
252 static void sdhci_set_inserted(DeviceState *dev, bool level)
253 {
254     SDHCIState *s = (SDHCIState *)dev;
255 
256     trace_sdhci_set_inserted(level ? "insert" : "eject");
257     if ((s->norintsts & SDHC_NIS_REMOVE) && level) {
258         /* Give target some time to notice card ejection */
259         timer_mod(s->insert_timer,
260                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_INSERTION_DELAY);
261     } else {
262         if (level) {
263             s->prnsts = 0x1ff0000;
264             if (s->norintstsen & SDHC_NISEN_INSERT) {
265                 s->norintsts |= SDHC_NIS_INSERT;
266             }
267         } else {
268             s->prnsts = 0x1fa0000;
269             s->pwrcon &= ~SDHC_POWER_ON;
270             s->clkcon &= ~SDHC_CLOCK_SDCLK_EN;
271             if (s->norintstsen & SDHC_NISEN_REMOVE) {
272                 s->norintsts |= SDHC_NIS_REMOVE;
273             }
274         }
275         sdhci_update_irq(s);
276     }
277 }
278 
279 static void sdhci_set_readonly(DeviceState *dev, bool level)
280 {
281     SDHCIState *s = (SDHCIState *)dev;
282 
283     if (level) {
284         s->prnsts &= ~SDHC_WRITE_PROTECT;
285     } else {
286         /* Write enabled */
287         s->prnsts |= SDHC_WRITE_PROTECT;
288     }
289 }
290 
291 static void sdhci_reset(SDHCIState *s)
292 {
293     DeviceState *dev = DEVICE(s);
294 
295     timer_del(s->insert_timer);
296     timer_del(s->transfer_timer);
297 
298     /* Set all registers to 0. Capabilities/Version registers are not cleared
299      * and assumed to always preserve their value, given to them during
300      * initialization */
301     memset(&s->sdmasysad, 0, (uintptr_t)&s->capareg - (uintptr_t)&s->sdmasysad);
302 
303     /* Reset other state based on current card insertion/readonly status */
304     sdhci_set_inserted(dev, sdbus_get_inserted(&s->sdbus));
305     sdhci_set_readonly(dev, sdbus_get_readonly(&s->sdbus));
306 
307     s->data_count = 0;
308     s->stopped_state = sdhc_not_stopped;
309     s->pending_insert_state = false;
310 }
311 
312 static void sdhci_poweron_reset(DeviceState *dev)
313 {
314     /* QOM (ie power-on) reset. This is identical to reset
315      * commanded via device register apart from handling of the
316      * 'pending insert on powerup' quirk.
317      */
318     SDHCIState *s = (SDHCIState *)dev;
319 
320     sdhci_reset(s);
321 
322     if (s->pending_insert_quirk) {
323         s->pending_insert_state = true;
324     }
325 }
326 
327 static void sdhci_data_transfer(void *opaque);
328 
329 static void sdhci_send_command(SDHCIState *s)
330 {
331     SDRequest request;
332     uint8_t response[16];
333     int rlen;
334 
335     s->errintsts = 0;
336     s->acmd12errsts = 0;
337     request.cmd = s->cmdreg >> 8;
338     request.arg = s->argument;
339 
340     trace_sdhci_send_command(request.cmd, request.arg);
341     rlen = sdbus_do_command(&s->sdbus, &request, response);
342 
343     if (s->cmdreg & SDHC_CMD_RESPONSE) {
344         if (rlen == 4) {
345             s->rspreg[0] = ldl_be_p(response);
346             s->rspreg[1] = s->rspreg[2] = s->rspreg[3] = 0;
347             trace_sdhci_response4(s->rspreg[0]);
348         } else if (rlen == 16) {
349             s->rspreg[0] = ldl_be_p(&response[11]);
350             s->rspreg[1] = ldl_be_p(&response[7]);
351             s->rspreg[2] = ldl_be_p(&response[3]);
352             s->rspreg[3] = (response[0] << 16) | (response[1] << 8) |
353                             response[2];
354             trace_sdhci_response16(s->rspreg[3], s->rspreg[2],
355                                    s->rspreg[1], s->rspreg[0]);
356         } else {
357             trace_sdhci_error("timeout waiting for command response");
358             if (s->errintstsen & SDHC_EISEN_CMDTIMEOUT) {
359                 s->errintsts |= SDHC_EIS_CMDTIMEOUT;
360                 s->norintsts |= SDHC_NIS_ERR;
361             }
362         }
363 
364         if (!(s->quirks & SDHCI_QUIRK_NO_BUSY_IRQ) &&
365             (s->norintstsen & SDHC_NISEN_TRSCMP) &&
366             (s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY) {
367             s->norintsts |= SDHC_NIS_TRSCMP;
368         }
369     }
370 
371     if (s->norintstsen & SDHC_NISEN_CMDCMP) {
372         s->norintsts |= SDHC_NIS_CMDCMP;
373     }
374 
375     sdhci_update_irq(s);
376 
377     if (s->blksize && (s->cmdreg & SDHC_CMD_DATA_PRESENT)) {
378         s->data_count = 0;
379         sdhci_data_transfer(s);
380     }
381 }
382 
383 static void sdhci_end_transfer(SDHCIState *s)
384 {
385     /* Automatically send CMD12 to stop transfer if AutoCMD12 enabled */
386     if ((s->trnmod & SDHC_TRNS_ACMD12) != 0) {
387         SDRequest request;
388         uint8_t response[16];
389 
390         request.cmd = 0x0C;
391         request.arg = 0;
392         trace_sdhci_end_transfer(request.cmd, request.arg);
393         sdbus_do_command(&s->sdbus, &request, response);
394         /* Auto CMD12 response goes to the upper Response register */
395         s->rspreg[3] = ldl_be_p(response);
396     }
397 
398     s->prnsts &= ~(SDHC_DOING_READ | SDHC_DOING_WRITE |
399             SDHC_DAT_LINE_ACTIVE | SDHC_DATA_INHIBIT |
400             SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE);
401 
402     if (s->norintstsen & SDHC_NISEN_TRSCMP) {
403         s->norintsts |= SDHC_NIS_TRSCMP;
404     }
405 
406     sdhci_update_irq(s);
407 }
408 
409 /*
410  * Programmed i/o data transfer
411  */
412 #define BLOCK_SIZE_MASK (4 * KiB - 1)
413 
414 /* Fill host controller's read buffer with BLKSIZE bytes of data from card */
415 static void sdhci_read_block_from_card(SDHCIState *s)
416 {
417     int index = 0;
418     uint8_t data;
419     const uint16_t blk_size = s->blksize & BLOCK_SIZE_MASK;
420 
421     if ((s->trnmod & SDHC_TRNS_MULTI) &&
422             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) {
423         return;
424     }
425 
426     for (index = 0; index < blk_size; index++) {
427         data = sdbus_read_data(&s->sdbus);
428         if (!FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
429             /* Device is not in tuning */
430             s->fifo_buffer[index] = data;
431         }
432     }
433 
434     if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, EXECUTE_TUNING)) {
435         /* Device is in tuning */
436         s->hostctl2 &= ~R_SDHC_HOSTCTL2_EXECUTE_TUNING_MASK;
437         s->hostctl2 |= R_SDHC_HOSTCTL2_SAMPLING_CLKSEL_MASK;
438         s->prnsts &= ~(SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ |
439                        SDHC_DATA_INHIBIT);
440         goto read_done;
441     }
442 
443     /* New data now available for READ through Buffer Port Register */
444     s->prnsts |= SDHC_DATA_AVAILABLE;
445     if (s->norintstsen & SDHC_NISEN_RBUFRDY) {
446         s->norintsts |= SDHC_NIS_RBUFRDY;
447     }
448 
449     /* Clear DAT line active status if that was the last block */
450     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
451             ((s->trnmod & SDHC_TRNS_MULTI) && s->blkcnt == 1)) {
452         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
453     }
454 
455     /* If stop at block gap request was set and it's not the last block of
456      * data - generate Block Event interrupt */
457     if (s->stopped_state == sdhc_gap_read && (s->trnmod & SDHC_TRNS_MULTI) &&
458             s->blkcnt != 1)    {
459         s->prnsts &= ~SDHC_DAT_LINE_ACTIVE;
460         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
461             s->norintsts |= SDHC_EIS_BLKGAP;
462         }
463     }
464 
465 read_done:
466     sdhci_update_irq(s);
467 }
468 
469 /* Read @size byte of data from host controller @s BUFFER DATA PORT register */
470 static uint32_t sdhci_read_dataport(SDHCIState *s, unsigned size)
471 {
472     uint32_t value = 0;
473     int i;
474 
475     /* first check that a valid data exists in host controller input buffer */
476     if ((s->prnsts & SDHC_DATA_AVAILABLE) == 0) {
477         trace_sdhci_error("read from empty buffer");
478         return 0;
479     }
480 
481     for (i = 0; i < size; i++) {
482         value |= s->fifo_buffer[s->data_count] << i * 8;
483         s->data_count++;
484         /* check if we've read all valid data (blksize bytes) from buffer */
485         if ((s->data_count) >= (s->blksize & BLOCK_SIZE_MASK)) {
486             trace_sdhci_read_dataport(s->data_count);
487             s->prnsts &= ~SDHC_DATA_AVAILABLE; /* no more data in a buffer */
488             s->data_count = 0;  /* next buff read must start at position [0] */
489 
490             if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
491                 s->blkcnt--;
492             }
493 
494             /* if that was the last block of data */
495             if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
496                 ((s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0)) ||
497                  /* stop at gap request */
498                 (s->stopped_state == sdhc_gap_read &&
499                  !(s->prnsts & SDHC_DAT_LINE_ACTIVE))) {
500                 sdhci_end_transfer(s);
501             } else { /* if there are more data, read next block from card */
502                 sdhci_read_block_from_card(s);
503             }
504             break;
505         }
506     }
507 
508     return value;
509 }
510 
511 /* Write data from host controller FIFO to card */
512 static void sdhci_write_block_to_card(SDHCIState *s)
513 {
514     int index = 0;
515 
516     if (s->prnsts & SDHC_SPACE_AVAILABLE) {
517         if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
518             s->norintsts |= SDHC_NIS_WBUFRDY;
519         }
520         sdhci_update_irq(s);
521         return;
522     }
523 
524     if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
525         if (s->blkcnt == 0) {
526             return;
527         } else {
528             s->blkcnt--;
529         }
530     }
531 
532     for (index = 0; index < (s->blksize & BLOCK_SIZE_MASK); index++) {
533         sdbus_write_data(&s->sdbus, s->fifo_buffer[index]);
534     }
535 
536     /* Next data can be written through BUFFER DATORT register */
537     s->prnsts |= SDHC_SPACE_AVAILABLE;
538 
539     /* Finish transfer if that was the last block of data */
540     if ((s->trnmod & SDHC_TRNS_MULTI) == 0 ||
541             ((s->trnmod & SDHC_TRNS_MULTI) &&
542             (s->trnmod & SDHC_TRNS_BLK_CNT_EN) && (s->blkcnt == 0))) {
543         sdhci_end_transfer(s);
544     } else if (s->norintstsen & SDHC_NISEN_WBUFRDY) {
545         s->norintsts |= SDHC_NIS_WBUFRDY;
546     }
547 
548     /* Generate Block Gap Event if requested and if not the last block */
549     if (s->stopped_state == sdhc_gap_write && (s->trnmod & SDHC_TRNS_MULTI) &&
550             s->blkcnt > 0) {
551         s->prnsts &= ~SDHC_DOING_WRITE;
552         if (s->norintstsen & SDHC_EISEN_BLKGAP) {
553             s->norintsts |= SDHC_EIS_BLKGAP;
554         }
555         sdhci_end_transfer(s);
556     }
557 
558     sdhci_update_irq(s);
559 }
560 
561 /* Write @size bytes of @value data to host controller @s Buffer Data Port
562  * register */
563 static void sdhci_write_dataport(SDHCIState *s, uint32_t value, unsigned size)
564 {
565     unsigned i;
566 
567     /* Check that there is free space left in a buffer */
568     if (!(s->prnsts & SDHC_SPACE_AVAILABLE)) {
569         trace_sdhci_error("Can't write to data buffer: buffer full");
570         return;
571     }
572 
573     for (i = 0; i < size; i++) {
574         s->fifo_buffer[s->data_count] = value & 0xFF;
575         s->data_count++;
576         value >>= 8;
577         if (s->data_count >= (s->blksize & BLOCK_SIZE_MASK)) {
578             trace_sdhci_write_dataport(s->data_count);
579             s->data_count = 0;
580             s->prnsts &= ~SDHC_SPACE_AVAILABLE;
581             if (s->prnsts & SDHC_DOING_WRITE) {
582                 sdhci_write_block_to_card(s);
583             }
584         }
585     }
586 }
587 
588 /*
589  * Single DMA data transfer
590  */
591 
592 /* Multi block SDMA transfer */
593 static void sdhci_sdma_transfer_multi_blocks(SDHCIState *s)
594 {
595     bool page_aligned = false;
596     unsigned int n, begin;
597     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
598     uint32_t boundary_chk = 1 << (((s->blksize & ~BLOCK_SIZE_MASK) >> 12) + 12);
599     uint32_t boundary_count = boundary_chk - (s->sdmasysad % boundary_chk);
600 
601     if (!(s->trnmod & SDHC_TRNS_BLK_CNT_EN) || !s->blkcnt) {
602         qemu_log_mask(LOG_UNIMP, "infinite transfer is not supported\n");
603         return;
604     }
605 
606     /* XXX: Some sd/mmc drivers (for example, u-boot-slp) do not account for
607      * possible stop at page boundary if initial address is not page aligned,
608      * allow them to work properly */
609     if ((s->sdmasysad % boundary_chk) == 0) {
610         page_aligned = true;
611     }
612 
613     if (s->trnmod & SDHC_TRNS_READ) {
614         s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
615                 SDHC_DAT_LINE_ACTIVE;
616         while (s->blkcnt) {
617             if (s->data_count == 0) {
618                 for (n = 0; n < block_size; n++) {
619                     s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
620                 }
621             }
622             begin = s->data_count;
623             if (((boundary_count + begin) < block_size) && page_aligned) {
624                 s->data_count = boundary_count + begin;
625                 boundary_count = 0;
626              } else {
627                 s->data_count = block_size;
628                 boundary_count -= block_size - begin;
629                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
630                     s->blkcnt--;
631                 }
632             }
633             dma_memory_write(s->dma_as, s->sdmasysad,
634                              &s->fifo_buffer[begin], s->data_count - begin);
635             s->sdmasysad += s->data_count - begin;
636             if (s->data_count == block_size) {
637                 s->data_count = 0;
638             }
639             if (page_aligned && boundary_count == 0) {
640                 break;
641             }
642         }
643     } else {
644         s->prnsts |= SDHC_DOING_WRITE | SDHC_DATA_INHIBIT |
645                 SDHC_DAT_LINE_ACTIVE;
646         while (s->blkcnt) {
647             begin = s->data_count;
648             if (((boundary_count + begin) < block_size) && page_aligned) {
649                 s->data_count = boundary_count + begin;
650                 boundary_count = 0;
651              } else {
652                 s->data_count = block_size;
653                 boundary_count -= block_size - begin;
654             }
655             dma_memory_read(s->dma_as, s->sdmasysad,
656                             &s->fifo_buffer[begin], s->data_count - begin);
657             s->sdmasysad += s->data_count - begin;
658             if (s->data_count == block_size) {
659                 for (n = 0; n < block_size; n++) {
660                     sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
661                 }
662                 s->data_count = 0;
663                 if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
664                     s->blkcnt--;
665                 }
666             }
667             if (page_aligned && boundary_count == 0) {
668                 break;
669             }
670         }
671     }
672 
673     if (s->blkcnt == 0) {
674         sdhci_end_transfer(s);
675     } else {
676         if (s->norintstsen & SDHC_NISEN_DMA) {
677             s->norintsts |= SDHC_NIS_DMA;
678         }
679         sdhci_update_irq(s);
680     }
681 }
682 
683 /* single block SDMA transfer */
684 static void sdhci_sdma_transfer_single_block(SDHCIState *s)
685 {
686     int n;
687     uint32_t datacnt = s->blksize & BLOCK_SIZE_MASK;
688 
689     if (s->trnmod & SDHC_TRNS_READ) {
690         for (n = 0; n < datacnt; n++) {
691             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
692         }
693         dma_memory_write(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
694     } else {
695         dma_memory_read(s->dma_as, s->sdmasysad, s->fifo_buffer, datacnt);
696         for (n = 0; n < datacnt; n++) {
697             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
698         }
699     }
700     s->blkcnt--;
701 
702     sdhci_end_transfer(s);
703 }
704 
705 typedef struct ADMADescr {
706     hwaddr addr;
707     uint16_t length;
708     uint8_t attr;
709     uint8_t incr;
710 } ADMADescr;
711 
712 static void get_adma_description(SDHCIState *s, ADMADescr *dscr)
713 {
714     uint32_t adma1 = 0;
715     uint64_t adma2 = 0;
716     hwaddr entry_addr = (hwaddr)s->admasysaddr;
717     switch (SDHC_DMA_TYPE(s->hostctl1)) {
718     case SDHC_CTRL_ADMA2_32:
719         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma2,
720                         sizeof(adma2));
721         adma2 = le64_to_cpu(adma2);
722         /* The spec does not specify endianness of descriptor table.
723          * We currently assume that it is LE.
724          */
725         dscr->addr = (hwaddr)extract64(adma2, 32, 32) & ~0x3ull;
726         dscr->length = (uint16_t)extract64(adma2, 16, 16);
727         dscr->attr = (uint8_t)extract64(adma2, 0, 7);
728         dscr->incr = 8;
729         break;
730     case SDHC_CTRL_ADMA1_32:
731         dma_memory_read(s->dma_as, entry_addr, (uint8_t *)&adma1,
732                         sizeof(adma1));
733         adma1 = le32_to_cpu(adma1);
734         dscr->addr = (hwaddr)(adma1 & 0xFFFFF000);
735         dscr->attr = (uint8_t)extract32(adma1, 0, 7);
736         dscr->incr = 4;
737         if ((dscr->attr & SDHC_ADMA_ATTR_ACT_MASK) == SDHC_ADMA_ATTR_SET_LEN) {
738             dscr->length = (uint16_t)extract32(adma1, 12, 16);
739         } else {
740             dscr->length = 4 * KiB;
741         }
742         break;
743     case SDHC_CTRL_ADMA2_64:
744         dma_memory_read(s->dma_as, entry_addr,
745                         (uint8_t *)(&dscr->attr), 1);
746         dma_memory_read(s->dma_as, entry_addr + 2,
747                         (uint8_t *)(&dscr->length), 2);
748         dscr->length = le16_to_cpu(dscr->length);
749         dma_memory_read(s->dma_as, entry_addr + 4,
750                         (uint8_t *)(&dscr->addr), 8);
751         dscr->addr = le64_to_cpu(dscr->addr);
752         dscr->attr &= (uint8_t) ~0xC0;
753         dscr->incr = 12;
754         break;
755     }
756 }
757 
758 /* Advanced DMA data transfer */
759 
760 static void sdhci_do_adma(SDHCIState *s)
761 {
762     unsigned int n, begin, length;
763     const uint16_t block_size = s->blksize & BLOCK_SIZE_MASK;
764     ADMADescr dscr = {};
765     int i;
766 
767     for (i = 0; i < SDHC_ADMA_DESCS_PER_DELAY; ++i) {
768         s->admaerr &= ~SDHC_ADMAERR_LENGTH_MISMATCH;
769 
770         get_adma_description(s, &dscr);
771         trace_sdhci_adma_loop(dscr.addr, dscr.length, dscr.attr);
772 
773         if ((dscr.attr & SDHC_ADMA_ATTR_VALID) == 0) {
774             /* Indicate that error occurred in ST_FDS state */
775             s->admaerr &= ~SDHC_ADMAERR_STATE_MASK;
776             s->admaerr |= SDHC_ADMAERR_STATE_ST_FDS;
777 
778             /* Generate ADMA error interrupt */
779             if (s->errintstsen & SDHC_EISEN_ADMAERR) {
780                 s->errintsts |= SDHC_EIS_ADMAERR;
781                 s->norintsts |= SDHC_NIS_ERR;
782             }
783 
784             sdhci_update_irq(s);
785             return;
786         }
787 
788         length = dscr.length ? dscr.length : 64 * KiB;
789 
790         switch (dscr.attr & SDHC_ADMA_ATTR_ACT_MASK) {
791         case SDHC_ADMA_ATTR_ACT_TRAN:  /* data transfer */
792 
793             if (s->trnmod & SDHC_TRNS_READ) {
794                 while (length) {
795                     if (s->data_count == 0) {
796                         for (n = 0; n < block_size; n++) {
797                             s->fifo_buffer[n] = sdbus_read_data(&s->sdbus);
798                         }
799                     }
800                     begin = s->data_count;
801                     if ((length + begin) < block_size) {
802                         s->data_count = length + begin;
803                         length = 0;
804                      } else {
805                         s->data_count = block_size;
806                         length -= block_size - begin;
807                     }
808                     dma_memory_write(s->dma_as, dscr.addr,
809                                      &s->fifo_buffer[begin],
810                                      s->data_count - begin);
811                     dscr.addr += s->data_count - begin;
812                     if (s->data_count == block_size) {
813                         s->data_count = 0;
814                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
815                             s->blkcnt--;
816                             if (s->blkcnt == 0) {
817                                 break;
818                             }
819                         }
820                     }
821                 }
822             } else {
823                 while (length) {
824                     begin = s->data_count;
825                     if ((length + begin) < block_size) {
826                         s->data_count = length + begin;
827                         length = 0;
828                      } else {
829                         s->data_count = block_size;
830                         length -= block_size - begin;
831                     }
832                     dma_memory_read(s->dma_as, dscr.addr,
833                                     &s->fifo_buffer[begin],
834                                     s->data_count - begin);
835                     dscr.addr += s->data_count - begin;
836                     if (s->data_count == block_size) {
837                         for (n = 0; n < block_size; n++) {
838                             sdbus_write_data(&s->sdbus, s->fifo_buffer[n]);
839                         }
840                         s->data_count = 0;
841                         if (s->trnmod & SDHC_TRNS_BLK_CNT_EN) {
842                             s->blkcnt--;
843                             if (s->blkcnt == 0) {
844                                 break;
845                             }
846                         }
847                     }
848                 }
849             }
850             s->admasysaddr += dscr.incr;
851             break;
852         case SDHC_ADMA_ATTR_ACT_LINK:   /* link to next descriptor table */
853             s->admasysaddr = dscr.addr;
854             trace_sdhci_adma("link", s->admasysaddr);
855             break;
856         default:
857             s->admasysaddr += dscr.incr;
858             break;
859         }
860 
861         if (dscr.attr & SDHC_ADMA_ATTR_INT) {
862             trace_sdhci_adma("interrupt", s->admasysaddr);
863             if (s->norintstsen & SDHC_NISEN_DMA) {
864                 s->norintsts |= SDHC_NIS_DMA;
865             }
866 
867             sdhci_update_irq(s);
868         }
869 
870         /* ADMA transfer terminates if blkcnt == 0 or by END attribute */
871         if (((s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
872                     (s->blkcnt == 0)) || (dscr.attr & SDHC_ADMA_ATTR_END)) {
873             trace_sdhci_adma_transfer_completed();
874             if (length || ((dscr.attr & SDHC_ADMA_ATTR_END) &&
875                 (s->trnmod & SDHC_TRNS_BLK_CNT_EN) &&
876                 s->blkcnt != 0)) {
877                 trace_sdhci_error("SD/MMC host ADMA length mismatch");
878                 s->admaerr |= SDHC_ADMAERR_LENGTH_MISMATCH |
879                         SDHC_ADMAERR_STATE_ST_TFR;
880                 if (s->errintstsen & SDHC_EISEN_ADMAERR) {
881                     trace_sdhci_error("Set ADMA error flag");
882                     s->errintsts |= SDHC_EIS_ADMAERR;
883                     s->norintsts |= SDHC_NIS_ERR;
884                 }
885 
886                 sdhci_update_irq(s);
887             }
888             sdhci_end_transfer(s);
889             return;
890         }
891 
892     }
893 
894     /* we have unfinished business - reschedule to continue ADMA */
895     timer_mod(s->transfer_timer,
896                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + SDHC_TRANSFER_DELAY);
897 }
898 
899 /* Perform data transfer according to controller configuration */
900 
901 static void sdhci_data_transfer(void *opaque)
902 {
903     SDHCIState *s = (SDHCIState *)opaque;
904 
905     if (s->trnmod & SDHC_TRNS_DMA) {
906         switch (SDHC_DMA_TYPE(s->hostctl1)) {
907         case SDHC_CTRL_SDMA:
908             if ((s->blkcnt == 1) || !(s->trnmod & SDHC_TRNS_MULTI)) {
909                 sdhci_sdma_transfer_single_block(s);
910             } else {
911                 sdhci_sdma_transfer_multi_blocks(s);
912             }
913 
914             break;
915         case SDHC_CTRL_ADMA1_32:
916             if (!(s->capareg & R_SDHC_CAPAB_ADMA1_MASK)) {
917                 trace_sdhci_error("ADMA1 not supported");
918                 break;
919             }
920 
921             sdhci_do_adma(s);
922             break;
923         case SDHC_CTRL_ADMA2_32:
924             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK)) {
925                 trace_sdhci_error("ADMA2 not supported");
926                 break;
927             }
928 
929             sdhci_do_adma(s);
930             break;
931         case SDHC_CTRL_ADMA2_64:
932             if (!(s->capareg & R_SDHC_CAPAB_ADMA2_MASK) ||
933                     !(s->capareg & R_SDHC_CAPAB_BUS64BIT_MASK)) {
934                 trace_sdhci_error("64 bit ADMA not supported");
935                 break;
936             }
937 
938             sdhci_do_adma(s);
939             break;
940         default:
941             trace_sdhci_error("Unsupported DMA type");
942             break;
943         }
944     } else {
945         if ((s->trnmod & SDHC_TRNS_READ) && sdbus_data_ready(&s->sdbus)) {
946             s->prnsts |= SDHC_DOING_READ | SDHC_DATA_INHIBIT |
947                     SDHC_DAT_LINE_ACTIVE;
948             sdhci_read_block_from_card(s);
949         } else {
950             s->prnsts |= SDHC_DOING_WRITE | SDHC_DAT_LINE_ACTIVE |
951                     SDHC_SPACE_AVAILABLE | SDHC_DATA_INHIBIT;
952             sdhci_write_block_to_card(s);
953         }
954     }
955 }
956 
957 static bool sdhci_can_issue_command(SDHCIState *s)
958 {
959     if (!SDHC_CLOCK_IS_ON(s->clkcon) ||
960         (((s->prnsts & SDHC_DATA_INHIBIT) || s->stopped_state) &&
961         ((s->cmdreg & SDHC_CMD_DATA_PRESENT) ||
962         ((s->cmdreg & SDHC_CMD_RESPONSE) == SDHC_CMD_RSP_WITH_BUSY &&
963         !(SDHC_COMMAND_TYPE(s->cmdreg) == SDHC_CMD_ABORT))))) {
964         return false;
965     }
966 
967     return true;
968 }
969 
970 /* The Buffer Data Port register must be accessed in sequential and
971  * continuous manner */
972 static inline bool
973 sdhci_buff_access_is_sequential(SDHCIState *s, unsigned byte_num)
974 {
975     if ((s->data_count & 0x3) != byte_num) {
976         trace_sdhci_error("Non-sequential access to Buffer Data Port register"
977                           "is prohibited\n");
978         return false;
979     }
980     return true;
981 }
982 
983 static uint64_t sdhci_read(void *opaque, hwaddr offset, unsigned size)
984 {
985     SDHCIState *s = (SDHCIState *)opaque;
986     uint32_t ret = 0;
987 
988     switch (offset & ~0x3) {
989     case SDHC_SYSAD:
990         ret = s->sdmasysad;
991         break;
992     case SDHC_BLKSIZE:
993         ret = s->blksize | (s->blkcnt << 16);
994         break;
995     case SDHC_ARGUMENT:
996         ret = s->argument;
997         break;
998     case SDHC_TRNMOD:
999         ret = s->trnmod | (s->cmdreg << 16);
1000         break;
1001     case SDHC_RSPREG0 ... SDHC_RSPREG3:
1002         ret = s->rspreg[((offset & ~0x3) - SDHC_RSPREG0) >> 2];
1003         break;
1004     case  SDHC_BDATA:
1005         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1006             ret = sdhci_read_dataport(s, size);
1007             trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1008             return ret;
1009         }
1010         break;
1011     case SDHC_PRNSTS:
1012         ret = s->prnsts;
1013         ret = FIELD_DP32(ret, SDHC_PRNSTS, DAT_LVL,
1014                          sdbus_get_dat_lines(&s->sdbus));
1015         ret = FIELD_DP32(ret, SDHC_PRNSTS, CMD_LVL,
1016                          sdbus_get_cmd_line(&s->sdbus));
1017         break;
1018     case SDHC_HOSTCTL:
1019         ret = s->hostctl1 | (s->pwrcon << 8) | (s->blkgap << 16) |
1020               (s->wakcon << 24);
1021         break;
1022     case SDHC_CLKCON:
1023         ret = s->clkcon | (s->timeoutcon << 16);
1024         break;
1025     case SDHC_NORINTSTS:
1026         ret = s->norintsts | (s->errintsts << 16);
1027         break;
1028     case SDHC_NORINTSTSEN:
1029         ret = s->norintstsen | (s->errintstsen << 16);
1030         break;
1031     case SDHC_NORINTSIGEN:
1032         ret = s->norintsigen | (s->errintsigen << 16);
1033         break;
1034     case SDHC_ACMD12ERRSTS:
1035         ret = s->acmd12errsts | (s->hostctl2 << 16);
1036         break;
1037     case SDHC_CAPAB:
1038         ret = (uint32_t)s->capareg;
1039         break;
1040     case SDHC_CAPAB + 4:
1041         ret = (uint32_t)(s->capareg >> 32);
1042         break;
1043     case SDHC_MAXCURR:
1044         ret = (uint32_t)s->maxcurr;
1045         break;
1046     case SDHC_MAXCURR + 4:
1047         ret = (uint32_t)(s->maxcurr >> 32);
1048         break;
1049     case SDHC_ADMAERR:
1050         ret =  s->admaerr;
1051         break;
1052     case SDHC_ADMASYSADDR:
1053         ret = (uint32_t)s->admasysaddr;
1054         break;
1055     case SDHC_ADMASYSADDR + 4:
1056         ret = (uint32_t)(s->admasysaddr >> 32);
1057         break;
1058     case SDHC_SLOT_INT_STATUS:
1059         ret = (s->version << 16) | sdhci_slotint(s);
1060         break;
1061     default:
1062         qemu_log_mask(LOG_UNIMP, "SDHC rd_%ub @0x%02" HWADDR_PRIx " "
1063                       "not implemented\n", size, offset);
1064         break;
1065     }
1066 
1067     ret >>= (offset & 0x3) * 8;
1068     ret &= (1ULL << (size * 8)) - 1;
1069     trace_sdhci_access("rd", size << 3, offset, "->", ret, ret);
1070     return ret;
1071 }
1072 
1073 static inline void sdhci_blkgap_write(SDHCIState *s, uint8_t value)
1074 {
1075     if ((value & SDHC_STOP_AT_GAP_REQ) && (s->blkgap & SDHC_STOP_AT_GAP_REQ)) {
1076         return;
1077     }
1078     s->blkgap = value & SDHC_STOP_AT_GAP_REQ;
1079 
1080     if ((value & SDHC_CONTINUE_REQ) && s->stopped_state &&
1081             (s->blkgap & SDHC_STOP_AT_GAP_REQ) == 0) {
1082         if (s->stopped_state == sdhc_gap_read) {
1083             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_READ;
1084             sdhci_read_block_from_card(s);
1085         } else {
1086             s->prnsts |= SDHC_DAT_LINE_ACTIVE | SDHC_DOING_WRITE;
1087             sdhci_write_block_to_card(s);
1088         }
1089         s->stopped_state = sdhc_not_stopped;
1090     } else if (!s->stopped_state && (value & SDHC_STOP_AT_GAP_REQ)) {
1091         if (s->prnsts & SDHC_DOING_READ) {
1092             s->stopped_state = sdhc_gap_read;
1093         } else if (s->prnsts & SDHC_DOING_WRITE) {
1094             s->stopped_state = sdhc_gap_write;
1095         }
1096     }
1097 }
1098 
1099 static inline void sdhci_reset_write(SDHCIState *s, uint8_t value)
1100 {
1101     switch (value) {
1102     case SDHC_RESET_ALL:
1103         sdhci_reset(s);
1104         break;
1105     case SDHC_RESET_CMD:
1106         s->prnsts &= ~SDHC_CMD_INHIBIT;
1107         s->norintsts &= ~SDHC_NIS_CMDCMP;
1108         break;
1109     case SDHC_RESET_DATA:
1110         s->data_count = 0;
1111         s->prnsts &= ~(SDHC_SPACE_AVAILABLE | SDHC_DATA_AVAILABLE |
1112                 SDHC_DOING_READ | SDHC_DOING_WRITE |
1113                 SDHC_DATA_INHIBIT | SDHC_DAT_LINE_ACTIVE);
1114         s->blkgap &= ~(SDHC_STOP_AT_GAP_REQ | SDHC_CONTINUE_REQ);
1115         s->stopped_state = sdhc_not_stopped;
1116         s->norintsts &= ~(SDHC_NIS_WBUFRDY | SDHC_NIS_RBUFRDY |
1117                 SDHC_NIS_DMA | SDHC_NIS_TRSCMP | SDHC_NIS_BLKGAP);
1118         break;
1119     }
1120 }
1121 
1122 static void
1123 sdhci_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1124 {
1125     SDHCIState *s = (SDHCIState *)opaque;
1126     unsigned shift =  8 * (offset & 0x3);
1127     uint32_t mask = ~(((1ULL << (size * 8)) - 1) << shift);
1128     uint32_t value = val;
1129     value <<= shift;
1130 
1131     switch (offset & ~0x3) {
1132     case SDHC_SYSAD:
1133         s->sdmasysad = (s->sdmasysad & mask) | value;
1134         MASKED_WRITE(s->sdmasysad, mask, value);
1135         /* Writing to last byte of sdmasysad might trigger transfer */
1136         if (!(mask & 0xFF000000) && TRANSFERRING_DATA(s->prnsts) && s->blkcnt &&
1137                 s->blksize && SDHC_DMA_TYPE(s->hostctl1) == SDHC_CTRL_SDMA) {
1138             if (s->trnmod & SDHC_TRNS_MULTI) {
1139                 sdhci_sdma_transfer_multi_blocks(s);
1140             } else {
1141                 sdhci_sdma_transfer_single_block(s);
1142             }
1143         }
1144         break;
1145     case SDHC_BLKSIZE:
1146         if (!TRANSFERRING_DATA(s->prnsts)) {
1147             MASKED_WRITE(s->blksize, mask, value);
1148             MASKED_WRITE(s->blkcnt, mask >> 16, value >> 16);
1149         }
1150 
1151         /* Limit block size to the maximum buffer size */
1152         if (extract32(s->blksize, 0, 12) > s->buf_maxsz) {
1153             qemu_log_mask(LOG_GUEST_ERROR, "%s: Size 0x%x is larger than " \
1154                           "the maximum buffer 0x%x", __func__, s->blksize,
1155                           s->buf_maxsz);
1156 
1157             s->blksize = deposit32(s->blksize, 0, 12, s->buf_maxsz);
1158         }
1159 
1160         break;
1161     case SDHC_ARGUMENT:
1162         MASKED_WRITE(s->argument, mask, value);
1163         break;
1164     case SDHC_TRNMOD:
1165         /* DMA can be enabled only if it is supported as indicated by
1166          * capabilities register */
1167         if (!(s->capareg & R_SDHC_CAPAB_SDMA_MASK)) {
1168             value &= ~SDHC_TRNS_DMA;
1169         }
1170         MASKED_WRITE(s->trnmod, mask, value & SDHC_TRNMOD_MASK);
1171         MASKED_WRITE(s->cmdreg, mask >> 16, value >> 16);
1172 
1173         /* Writing to the upper byte of CMDREG triggers SD command generation */
1174         if ((mask & 0xFF000000) || !sdhci_can_issue_command(s)) {
1175             break;
1176         }
1177 
1178         sdhci_send_command(s);
1179         break;
1180     case  SDHC_BDATA:
1181         if (sdhci_buff_access_is_sequential(s, offset - SDHC_BDATA)) {
1182             sdhci_write_dataport(s, value >> shift, size);
1183         }
1184         break;
1185     case SDHC_HOSTCTL:
1186         if (!(mask & 0xFF0000)) {
1187             sdhci_blkgap_write(s, value >> 16);
1188         }
1189         MASKED_WRITE(s->hostctl1, mask, value);
1190         MASKED_WRITE(s->pwrcon, mask >> 8, value >> 8);
1191         MASKED_WRITE(s->wakcon, mask >> 24, value >> 24);
1192         if (!(s->prnsts & SDHC_CARD_PRESENT) || ((s->pwrcon >> 1) & 0x7) < 5 ||
1193                 !(s->capareg & (1 << (31 - ((s->pwrcon >> 1) & 0x7))))) {
1194             s->pwrcon &= ~SDHC_POWER_ON;
1195         }
1196         break;
1197     case SDHC_CLKCON:
1198         if (!(mask & 0xFF000000)) {
1199             sdhci_reset_write(s, value >> 24);
1200         }
1201         MASKED_WRITE(s->clkcon, mask, value);
1202         MASKED_WRITE(s->timeoutcon, mask >> 16, value >> 16);
1203         if (s->clkcon & SDHC_CLOCK_INT_EN) {
1204             s->clkcon |= SDHC_CLOCK_INT_STABLE;
1205         } else {
1206             s->clkcon &= ~SDHC_CLOCK_INT_STABLE;
1207         }
1208         break;
1209     case SDHC_NORINTSTS:
1210         if (s->norintstsen & SDHC_NISEN_CARDINT) {
1211             value &= ~SDHC_NIS_CARDINT;
1212         }
1213         s->norintsts &= mask | ~value;
1214         s->errintsts &= (mask >> 16) | ~(value >> 16);
1215         if (s->errintsts) {
1216             s->norintsts |= SDHC_NIS_ERR;
1217         } else {
1218             s->norintsts &= ~SDHC_NIS_ERR;
1219         }
1220         sdhci_update_irq(s);
1221         break;
1222     case SDHC_NORINTSTSEN:
1223         MASKED_WRITE(s->norintstsen, mask, value);
1224         MASKED_WRITE(s->errintstsen, mask >> 16, value >> 16);
1225         s->norintsts &= s->norintstsen;
1226         s->errintsts &= s->errintstsen;
1227         if (s->errintsts) {
1228             s->norintsts |= SDHC_NIS_ERR;
1229         } else {
1230             s->norintsts &= ~SDHC_NIS_ERR;
1231         }
1232         /* Quirk for Raspberry Pi: pending card insert interrupt
1233          * appears when first enabled after power on */
1234         if ((s->norintstsen & SDHC_NISEN_INSERT) && s->pending_insert_state) {
1235             assert(s->pending_insert_quirk);
1236             s->norintsts |= SDHC_NIS_INSERT;
1237             s->pending_insert_state = false;
1238         }
1239         sdhci_update_irq(s);
1240         break;
1241     case SDHC_NORINTSIGEN:
1242         MASKED_WRITE(s->norintsigen, mask, value);
1243         MASKED_WRITE(s->errintsigen, mask >> 16, value >> 16);
1244         sdhci_update_irq(s);
1245         break;
1246     case SDHC_ADMAERR:
1247         MASKED_WRITE(s->admaerr, mask, value);
1248         break;
1249     case SDHC_ADMASYSADDR:
1250         s->admasysaddr = (s->admasysaddr & (0xFFFFFFFF00000000ULL |
1251                 (uint64_t)mask)) | (uint64_t)value;
1252         break;
1253     case SDHC_ADMASYSADDR + 4:
1254         s->admasysaddr = (s->admasysaddr & (0x00000000FFFFFFFFULL |
1255                 ((uint64_t)mask << 32))) | ((uint64_t)value << 32);
1256         break;
1257     case SDHC_FEAER:
1258         s->acmd12errsts |= value;
1259         s->errintsts |= (value >> 16) & s->errintstsen;
1260         if (s->acmd12errsts) {
1261             s->errintsts |= SDHC_EIS_CMD12ERR;
1262         }
1263         if (s->errintsts) {
1264             s->norintsts |= SDHC_NIS_ERR;
1265         }
1266         sdhci_update_irq(s);
1267         break;
1268     case SDHC_ACMD12ERRSTS:
1269         MASKED_WRITE(s->acmd12errsts, mask, value & UINT16_MAX);
1270         if (s->uhs_mode >= UHS_I) {
1271             MASKED_WRITE(s->hostctl2, mask >> 16, value >> 16);
1272 
1273             if (FIELD_EX32(s->hostctl2, SDHC_HOSTCTL2, V18_ENA)) {
1274                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_1_8V);
1275             } else {
1276                 sdbus_set_voltage(&s->sdbus, SD_VOLTAGE_3_3V);
1277             }
1278         }
1279         break;
1280 
1281     case SDHC_CAPAB:
1282     case SDHC_CAPAB + 4:
1283     case SDHC_MAXCURR:
1284     case SDHC_MAXCURR + 4:
1285         qemu_log_mask(LOG_GUEST_ERROR, "SDHC wr_%ub @0x%02" HWADDR_PRIx
1286                       " <- 0x%08x read-only\n", size, offset, value >> shift);
1287         break;
1288 
1289     default:
1290         qemu_log_mask(LOG_UNIMP, "SDHC wr_%ub @0x%02" HWADDR_PRIx " <- 0x%08x "
1291                       "not implemented\n", size, offset, value >> shift);
1292         break;
1293     }
1294     trace_sdhci_access("wr", size << 3, offset, "<-",
1295                        value >> shift, value >> shift);
1296 }
1297 
1298 static const MemoryRegionOps sdhci_mmio_ops = {
1299     .read = sdhci_read,
1300     .write = sdhci_write,
1301     .valid = {
1302         .min_access_size = 1,
1303         .max_access_size = 4,
1304         .unaligned = false
1305     },
1306     .endianness = DEVICE_LITTLE_ENDIAN,
1307 };
1308 
1309 static void sdhci_init_readonly_registers(SDHCIState *s, Error **errp)
1310 {
1311     Error *local_err = NULL;
1312 
1313     switch (s->sd_spec_version) {
1314     case 2 ... 3:
1315         break;
1316     default:
1317         error_setg(errp, "Only Spec v2/v3 are supported");
1318         return;
1319     }
1320     s->version = (SDHC_HCVER_VENDOR << 8) | (s->sd_spec_version - 1);
1321 
1322     sdhci_check_capareg(s, &local_err);
1323     if (local_err) {
1324         error_propagate(errp, local_err);
1325         return;
1326     }
1327 }
1328 
1329 /* --- qdev common --- */
1330 
1331 #define DEFINE_SDHCI_COMMON_PROPERTIES(_state) \
1332     DEFINE_PROP_UINT8("sd-spec-version", _state, sd_spec_version, 2), \
1333     DEFINE_PROP_UINT8("uhs", _state, uhs_mode, UHS_NOT_SUPPORTED), \
1334     \
1335     /* Capabilities registers provide information on supported
1336      * features of this specific host controller implementation */ \
1337     DEFINE_PROP_UINT64("capareg", _state, capareg, SDHC_CAPAB_REG_DEFAULT), \
1338     DEFINE_PROP_UINT64("maxcurr", _state, maxcurr, 0)
1339 
1340 static void sdhci_initfn(SDHCIState *s)
1341 {
1342     qbus_create_inplace(&s->sdbus, sizeof(s->sdbus),
1343                         TYPE_SDHCI_BUS, DEVICE(s), "sd-bus");
1344 
1345     s->insert_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_raise_insertion_irq, s);
1346     s->transfer_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, sdhci_data_transfer, s);
1347 
1348     s->io_ops = &sdhci_mmio_ops;
1349 }
1350 
1351 static void sdhci_uninitfn(SDHCIState *s)
1352 {
1353     timer_del(s->insert_timer);
1354     timer_free(s->insert_timer);
1355     timer_del(s->transfer_timer);
1356     timer_free(s->transfer_timer);
1357 
1358     g_free(s->fifo_buffer);
1359     s->fifo_buffer = NULL;
1360 }
1361 
1362 static void sdhci_common_realize(SDHCIState *s, Error **errp)
1363 {
1364     Error *local_err = NULL;
1365 
1366     sdhci_init_readonly_registers(s, &local_err);
1367     if (local_err) {
1368         error_propagate(errp, local_err);
1369         return;
1370     }
1371     s->buf_maxsz = sdhci_get_fifolen(s);
1372     s->fifo_buffer = g_malloc0(s->buf_maxsz);
1373 
1374     memory_region_init_io(&s->iomem, OBJECT(s), &sdhci_mmio_ops, s, "sdhci",
1375                           SDHC_REGISTERS_MAP_SIZE);
1376 }
1377 
1378 static void sdhci_common_unrealize(SDHCIState *s, Error **errp)
1379 {
1380     /* This function is expected to be called only once for each class:
1381      * - SysBus:    via DeviceClass->unrealize(),
1382      * - PCI:       via PCIDeviceClass->exit().
1383      * However to avoid double-free and/or use-after-free we still nullify
1384      * this variable (better safe than sorry!). */
1385     g_free(s->fifo_buffer);
1386     s->fifo_buffer = NULL;
1387 }
1388 
1389 static bool sdhci_pending_insert_vmstate_needed(void *opaque)
1390 {
1391     SDHCIState *s = opaque;
1392 
1393     return s->pending_insert_state;
1394 }
1395 
1396 static const VMStateDescription sdhci_pending_insert_vmstate = {
1397     .name = "sdhci/pending-insert",
1398     .version_id = 1,
1399     .minimum_version_id = 1,
1400     .needed = sdhci_pending_insert_vmstate_needed,
1401     .fields = (VMStateField[]) {
1402         VMSTATE_BOOL(pending_insert_state, SDHCIState),
1403         VMSTATE_END_OF_LIST()
1404     },
1405 };
1406 
1407 const VMStateDescription sdhci_vmstate = {
1408     .name = "sdhci",
1409     .version_id = 1,
1410     .minimum_version_id = 1,
1411     .fields = (VMStateField[]) {
1412         VMSTATE_UINT32(sdmasysad, SDHCIState),
1413         VMSTATE_UINT16(blksize, SDHCIState),
1414         VMSTATE_UINT16(blkcnt, SDHCIState),
1415         VMSTATE_UINT32(argument, SDHCIState),
1416         VMSTATE_UINT16(trnmod, SDHCIState),
1417         VMSTATE_UINT16(cmdreg, SDHCIState),
1418         VMSTATE_UINT32_ARRAY(rspreg, SDHCIState, 4),
1419         VMSTATE_UINT32(prnsts, SDHCIState),
1420         VMSTATE_UINT8(hostctl1, SDHCIState),
1421         VMSTATE_UINT8(pwrcon, SDHCIState),
1422         VMSTATE_UINT8(blkgap, SDHCIState),
1423         VMSTATE_UINT8(wakcon, SDHCIState),
1424         VMSTATE_UINT16(clkcon, SDHCIState),
1425         VMSTATE_UINT8(timeoutcon, SDHCIState),
1426         VMSTATE_UINT8(admaerr, SDHCIState),
1427         VMSTATE_UINT16(norintsts, SDHCIState),
1428         VMSTATE_UINT16(errintsts, SDHCIState),
1429         VMSTATE_UINT16(norintstsen, SDHCIState),
1430         VMSTATE_UINT16(errintstsen, SDHCIState),
1431         VMSTATE_UINT16(norintsigen, SDHCIState),
1432         VMSTATE_UINT16(errintsigen, SDHCIState),
1433         VMSTATE_UINT16(acmd12errsts, SDHCIState),
1434         VMSTATE_UINT16(data_count, SDHCIState),
1435         VMSTATE_UINT64(admasysaddr, SDHCIState),
1436         VMSTATE_UINT8(stopped_state, SDHCIState),
1437         VMSTATE_VBUFFER_UINT32(fifo_buffer, SDHCIState, 1, NULL, buf_maxsz),
1438         VMSTATE_TIMER_PTR(insert_timer, SDHCIState),
1439         VMSTATE_TIMER_PTR(transfer_timer, SDHCIState),
1440         VMSTATE_END_OF_LIST()
1441     },
1442     .subsections = (const VMStateDescription*[]) {
1443         &sdhci_pending_insert_vmstate,
1444         NULL
1445     },
1446 };
1447 
1448 static void sdhci_common_class_init(ObjectClass *klass, void *data)
1449 {
1450     DeviceClass *dc = DEVICE_CLASS(klass);
1451 
1452     set_bit(DEVICE_CATEGORY_STORAGE, dc->categories);
1453     dc->vmsd = &sdhci_vmstate;
1454     dc->reset = sdhci_poweron_reset;
1455 }
1456 
1457 /* --- qdev PCI --- */
1458 
1459 static Property sdhci_pci_properties[] = {
1460     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1461     DEFINE_PROP_END_OF_LIST(),
1462 };
1463 
1464 static void sdhci_pci_realize(PCIDevice *dev, Error **errp)
1465 {
1466     SDHCIState *s = PCI_SDHCI(dev);
1467     Error *local_err = NULL;
1468 
1469     sdhci_initfn(s);
1470     sdhci_common_realize(s, &local_err);
1471     if (local_err) {
1472         error_propagate(errp, local_err);
1473         return;
1474     }
1475 
1476     dev->config[PCI_CLASS_PROG] = 0x01; /* Standard Host supported DMA */
1477     dev->config[PCI_INTERRUPT_PIN] = 0x01; /* interrupt pin A */
1478     s->irq = pci_allocate_irq(dev);
1479     s->dma_as = pci_get_address_space(dev);
1480     pci_register_bar(dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->iomem);
1481 }
1482 
1483 static void sdhci_pci_exit(PCIDevice *dev)
1484 {
1485     SDHCIState *s = PCI_SDHCI(dev);
1486 
1487     sdhci_common_unrealize(s, &error_abort);
1488     sdhci_uninitfn(s);
1489 }
1490 
1491 static void sdhci_pci_class_init(ObjectClass *klass, void *data)
1492 {
1493     DeviceClass *dc = DEVICE_CLASS(klass);
1494     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
1495 
1496     k->realize = sdhci_pci_realize;
1497     k->exit = sdhci_pci_exit;
1498     k->vendor_id = PCI_VENDOR_ID_REDHAT;
1499     k->device_id = PCI_DEVICE_ID_REDHAT_SDHCI;
1500     k->class_id = PCI_CLASS_SYSTEM_SDHCI;
1501     dc->props = sdhci_pci_properties;
1502 
1503     sdhci_common_class_init(klass, data);
1504 }
1505 
1506 static const TypeInfo sdhci_pci_info = {
1507     .name = TYPE_PCI_SDHCI,
1508     .parent = TYPE_PCI_DEVICE,
1509     .instance_size = sizeof(SDHCIState),
1510     .class_init = sdhci_pci_class_init,
1511     .interfaces = (InterfaceInfo[]) {
1512         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
1513         { },
1514     },
1515 };
1516 
1517 /* --- qdev SysBus --- */
1518 
1519 static Property sdhci_sysbus_properties[] = {
1520     DEFINE_SDHCI_COMMON_PROPERTIES(SDHCIState),
1521     DEFINE_PROP_BOOL("pending-insert-quirk", SDHCIState, pending_insert_quirk,
1522                      false),
1523     DEFINE_PROP_LINK("dma", SDHCIState,
1524                      dma_mr, TYPE_MEMORY_REGION, MemoryRegion *),
1525     DEFINE_PROP_END_OF_LIST(),
1526 };
1527 
1528 static void sdhci_sysbus_init(Object *obj)
1529 {
1530     SDHCIState *s = SYSBUS_SDHCI(obj);
1531 
1532     sdhci_initfn(s);
1533 }
1534 
1535 static void sdhci_sysbus_finalize(Object *obj)
1536 {
1537     SDHCIState *s = SYSBUS_SDHCI(obj);
1538 
1539     if (s->dma_mr) {
1540         object_unparent(OBJECT(s->dma_mr));
1541     }
1542 
1543     sdhci_uninitfn(s);
1544 }
1545 
1546 static void sdhci_sysbus_realize(DeviceState *dev, Error ** errp)
1547 {
1548     SDHCIState *s = SYSBUS_SDHCI(dev);
1549     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1550     Error *local_err = NULL;
1551 
1552     sdhci_common_realize(s, &local_err);
1553     if (local_err) {
1554         error_propagate(errp, local_err);
1555         return;
1556     }
1557 
1558     if (s->dma_mr) {
1559         s->dma_as = &s->sysbus_dma_as;
1560         address_space_init(s->dma_as, s->dma_mr, "sdhci-dma");
1561     } else {
1562         /* use system_memory() if property "dma" not set */
1563         s->dma_as = &address_space_memory;
1564     }
1565 
1566     sysbus_init_irq(sbd, &s->irq);
1567 
1568     memory_region_init_io(&s->iomem, OBJECT(s), s->io_ops, s, "sdhci",
1569             SDHC_REGISTERS_MAP_SIZE);
1570 
1571     sysbus_init_mmio(sbd, &s->iomem);
1572 }
1573 
1574 static void sdhci_sysbus_unrealize(DeviceState *dev, Error **errp)
1575 {
1576     SDHCIState *s = SYSBUS_SDHCI(dev);
1577 
1578     sdhci_common_unrealize(s, &error_abort);
1579 
1580      if (s->dma_mr) {
1581         address_space_destroy(s->dma_as);
1582     }
1583 }
1584 
1585 static void sdhci_sysbus_class_init(ObjectClass *klass, void *data)
1586 {
1587     DeviceClass *dc = DEVICE_CLASS(klass);
1588 
1589     dc->props = sdhci_sysbus_properties;
1590     dc->realize = sdhci_sysbus_realize;
1591     dc->unrealize = sdhci_sysbus_unrealize;
1592 
1593     sdhci_common_class_init(klass, data);
1594 }
1595 
1596 static const TypeInfo sdhci_sysbus_info = {
1597     .name = TYPE_SYSBUS_SDHCI,
1598     .parent = TYPE_SYS_BUS_DEVICE,
1599     .instance_size = sizeof(SDHCIState),
1600     .instance_init = sdhci_sysbus_init,
1601     .instance_finalize = sdhci_sysbus_finalize,
1602     .class_init = sdhci_sysbus_class_init,
1603 };
1604 
1605 /* --- qdev bus master --- */
1606 
1607 static void sdhci_bus_class_init(ObjectClass *klass, void *data)
1608 {
1609     SDBusClass *sbc = SD_BUS_CLASS(klass);
1610 
1611     sbc->set_inserted = sdhci_set_inserted;
1612     sbc->set_readonly = sdhci_set_readonly;
1613 }
1614 
1615 static const TypeInfo sdhci_bus_info = {
1616     .name = TYPE_SDHCI_BUS,
1617     .parent = TYPE_SD_BUS,
1618     .instance_size = sizeof(SDBus),
1619     .class_init = sdhci_bus_class_init,
1620 };
1621 
1622 static uint64_t usdhc_read(void *opaque, hwaddr offset, unsigned size)
1623 {
1624     SDHCIState *s = SYSBUS_SDHCI(opaque);
1625     uint32_t ret;
1626     uint16_t hostctl1;
1627 
1628     switch (offset) {
1629     default:
1630         return sdhci_read(opaque, offset, size);
1631 
1632     case SDHC_HOSTCTL:
1633         /*
1634          * For a detailed explanation on the following bit
1635          * manipulation code see comments in a similar part of
1636          * usdhc_write()
1637          */
1638         hostctl1 = SDHC_DMA_TYPE(s->hostctl1) << (8 - 3);
1639 
1640         if (s->hostctl1 & SDHC_CTRL_8BITBUS) {
1641             hostctl1 |= ESDHC_CTRL_8BITBUS;
1642         }
1643 
1644         if (s->hostctl1 & SDHC_CTRL_4BITBUS) {
1645             hostctl1 |= ESDHC_CTRL_4BITBUS;
1646         }
1647 
1648         ret  = hostctl1;
1649         ret |= (uint32_t)s->blkgap << 16;
1650         ret |= (uint32_t)s->wakcon << 24;
1651 
1652         break;
1653 
1654     case ESDHC_DLL_CTRL:
1655     case ESDHC_TUNE_CTRL_STATUS:
1656     case ESDHC_UNDOCUMENTED_REG27:
1657     case ESDHC_TUNING_CTRL:
1658     case ESDHC_VENDOR_SPEC:
1659     case ESDHC_MIX_CTRL:
1660     case ESDHC_WTMK_LVL:
1661         ret = 0;
1662         break;
1663     }
1664 
1665     return ret;
1666 }
1667 
1668 static void
1669 usdhc_write(void *opaque, hwaddr offset, uint64_t val, unsigned size)
1670 {
1671     SDHCIState *s = SYSBUS_SDHCI(opaque);
1672     uint8_t hostctl1;
1673     uint32_t value = (uint32_t)val;
1674 
1675     switch (offset) {
1676     case ESDHC_DLL_CTRL:
1677     case ESDHC_TUNE_CTRL_STATUS:
1678     case ESDHC_UNDOCUMENTED_REG27:
1679     case ESDHC_TUNING_CTRL:
1680     case ESDHC_WTMK_LVL:
1681     case ESDHC_VENDOR_SPEC:
1682         break;
1683 
1684     case SDHC_HOSTCTL:
1685         /*
1686          * Here's What ESDHCI has at offset 0x28 (SDHC_HOSTCTL)
1687          *
1688          *       7         6     5      4      3      2        1      0
1689          * |-----------+--------+--------+-----------+----------+---------|
1690          * | Card      | Card   | Endian | DATA3     | Data     | Led     |
1691          * | Detect    | Detect | Mode   | as Card   | Transfer | Control |
1692          * | Signal    | Test   |        | Detection | Width    |         |
1693          * | Selection | Level  |        | Pin       |          |         |
1694          * |-----------+--------+--------+-----------+----------+---------|
1695          *
1696          * and 0x29
1697          *
1698          *  15      10 9    8
1699          * |----------+------|
1700          * | Reserved | DMA  |
1701          * |          | Sel. |
1702          * |          |      |
1703          * |----------+------|
1704          *
1705          * and here's what SDCHI spec expects those offsets to be:
1706          *
1707          * 0x28 (Host Control Register)
1708          *
1709          *     7        6         5       4  3      2         1        0
1710          * |--------+--------+----------+------+--------+----------+---------|
1711          * | Card   | Card   | Extended | DMA  | High   | Data     | LED     |
1712          * | Detect | Detect | Data     | Sel. | Speed  | Transfer | Control |
1713          * | Signal | Test   | Transfer |      | Enable | Width    |         |
1714          * | Sel.   | Level  | Width    |      |        |          |         |
1715          * |--------+--------+----------+------+--------+----------+---------|
1716          *
1717          * and 0x29 (Power Control Register)
1718          *
1719          * |----------------------------------|
1720          * | Power Control Register           |
1721          * |                                  |
1722          * | Description omitted,             |
1723          * | since it has no analog in ESDHCI |
1724          * |                                  |
1725          * |----------------------------------|
1726          *
1727          * Since offsets 0x2A and 0x2B should be compatible between
1728          * both IP specs we only need to reconcile least 16-bit of the
1729          * word we've been given.
1730          */
1731 
1732         /*
1733          * First, save bits 7 6 and 0 since they are identical
1734          */
1735         hostctl1 = value & (SDHC_CTRL_LED |
1736                             SDHC_CTRL_CDTEST_INS |
1737                             SDHC_CTRL_CDTEST_EN);
1738         /*
1739          * Second, split "Data Transfer Width" from bits 2 and 1 in to
1740          * bits 5 and 1
1741          */
1742         if (value & ESDHC_CTRL_8BITBUS) {
1743             hostctl1 |= SDHC_CTRL_8BITBUS;
1744         }
1745 
1746         if (value & ESDHC_CTRL_4BITBUS) {
1747             hostctl1 |= ESDHC_CTRL_4BITBUS;
1748         }
1749 
1750         /*
1751          * Third, move DMA select from bits 9 and 8 to bits 4 and 3
1752          */
1753         hostctl1 |= SDHC_DMA_TYPE(value >> (8 - 3));
1754 
1755         /*
1756          * Now place the corrected value into low 16-bit of the value
1757          * we are going to give standard SDHCI write function
1758          *
1759          * NOTE: This transformation should be the inverse of what can
1760          * be found in drivers/mmc/host/sdhci-esdhc-imx.c in Linux
1761          * kernel
1762          */
1763         value &= ~UINT16_MAX;
1764         value |= hostctl1;
1765         value |= (uint16_t)s->pwrcon << 8;
1766 
1767         sdhci_write(opaque, offset, value, size);
1768         break;
1769 
1770     case ESDHC_MIX_CTRL:
1771         /*
1772          * So, when SD/MMC stack in Linux tries to write to "Transfer
1773          * Mode Register", ESDHC i.MX quirk code will translate it
1774          * into a write to ESDHC_MIX_CTRL, so we do the opposite in
1775          * order to get where we started
1776          *
1777          * Note that Auto CMD23 Enable bit is located in a wrong place
1778          * on i.MX, but since it is not used by QEMU we do not care.
1779          *
1780          * We don't want to call sdhci_write(.., SDHC_TRNMOD, ...)
1781          * here becuase it will result in a call to
1782          * sdhci_send_command(s) which we don't want.
1783          *
1784          */
1785         s->trnmod = value & UINT16_MAX;
1786         break;
1787     case SDHC_TRNMOD:
1788         /*
1789          * Similar to above, but this time a write to "Command
1790          * Register" will be translated into a 4-byte write to
1791          * "Transfer Mode register" where lower 16-bit of value would
1792          * be set to zero. So what we do is fill those bits with
1793          * cached value from s->trnmod and let the SDHCI
1794          * infrastructure handle the rest
1795          */
1796         sdhci_write(opaque, offset, val | s->trnmod, size);
1797         break;
1798     case SDHC_BLKSIZE:
1799         /*
1800          * ESDHCI does not implement "Host SDMA Buffer Boundary", and
1801          * Linux driver will try to zero this field out which will
1802          * break the rest of SDHCI emulation.
1803          *
1804          * Linux defaults to maximum possible setting (512K boundary)
1805          * and it seems to be the only option that i.MX IP implements,
1806          * so we artificially set it to that value.
1807          */
1808         val |= 0x7 << 12;
1809         /* FALLTHROUGH */
1810     default:
1811         sdhci_write(opaque, offset, val, size);
1812         break;
1813     }
1814 }
1815 
1816 
1817 static const MemoryRegionOps usdhc_mmio_ops = {
1818     .read = usdhc_read,
1819     .write = usdhc_write,
1820     .valid = {
1821         .min_access_size = 1,
1822         .max_access_size = 4,
1823         .unaligned = false
1824     },
1825     .endianness = DEVICE_LITTLE_ENDIAN,
1826 };
1827 
1828 static void imx_usdhc_init(Object *obj)
1829 {
1830     SDHCIState *s = SYSBUS_SDHCI(obj);
1831 
1832     s->io_ops = &usdhc_mmio_ops;
1833     s->quirks = SDHCI_QUIRK_NO_BUSY_IRQ;
1834 }
1835 
1836 static const TypeInfo imx_usdhc_info = {
1837     .name = TYPE_IMX_USDHC,
1838     .parent = TYPE_SYSBUS_SDHCI,
1839     .instance_init = imx_usdhc_init,
1840 };
1841 
1842 static void sdhci_register_types(void)
1843 {
1844     type_register_static(&sdhci_pci_info);
1845     type_register_static(&sdhci_sysbus_info);
1846     type_register_static(&sdhci_bus_info);
1847     type_register_static(&imx_usdhc_info);
1848 }
1849 
1850 type_init(sdhci_register_types)
1851