xref: /qemu/hw/sparc64/sun4u.c (revision 6f061ea1)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "qemu/osdep.h"
25 #include "qapi/error.h"
26 #include "hw/hw.h"
27 #include "hw/pci/pci.h"
28 #include "hw/pci-host/apb.h"
29 #include "hw/i386/pc.h"
30 #include "hw/char/serial.h"
31 #include "hw/timer/m48t59.h"
32 #include "hw/block/fdc.h"
33 #include "net/net.h"
34 #include "qemu/timer.h"
35 #include "sysemu/sysemu.h"
36 #include "hw/boards.h"
37 #include "hw/nvram/openbios_firmware_abi.h"
38 #include "hw/nvram/fw_cfg.h"
39 #include "hw/sysbus.h"
40 #include "hw/ide.h"
41 #include "hw/loader.h"
42 #include "elf.h"
43 #include "sysemu/block-backend.h"
44 #include "exec/address-spaces.h"
45 
46 //#define DEBUG_IRQ
47 //#define DEBUG_EBUS
48 //#define DEBUG_TIMER
49 
50 #ifdef DEBUG_IRQ
51 #define CPUIRQ_DPRINTF(fmt, ...)                                \
52     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
53 #else
54 #define CPUIRQ_DPRINTF(fmt, ...)
55 #endif
56 
57 #ifdef DEBUG_EBUS
58 #define EBUS_DPRINTF(fmt, ...)                                  \
59     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
60 #else
61 #define EBUS_DPRINTF(fmt, ...)
62 #endif
63 
64 #ifdef DEBUG_TIMER
65 #define TIMER_DPRINTF(fmt, ...)                                  \
66     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
67 #else
68 #define TIMER_DPRINTF(fmt, ...)
69 #endif
70 
71 #define KERNEL_LOAD_ADDR     0x00404000
72 #define CMDLINE_ADDR         0x003ff000
73 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
74 #define PROM_VADDR           0x000ffd00000ULL
75 #define APB_SPECIAL_BASE     0x1fe00000000ULL
76 #define APB_MEM_BASE         0x1ff00000000ULL
77 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
78 #define PROM_FILENAME        "openbios-sparc64"
79 #define NVRAM_SIZE           0x2000
80 #define MAX_IDE_BUS          2
81 #define BIOS_CFG_IOPORT      0x510
82 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
83 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
84 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
85 
86 #define IVEC_MAX             0x40
87 
88 #define TICK_MAX             0x7fffffffffffffffULL
89 
90 struct hwdef {
91     const char * const default_cpu_model;
92     uint16_t machine_id;
93     uint64_t prom_addr;
94     uint64_t console_serial_base;
95 };
96 
97 typedef struct EbusState {
98     PCIDevice pci_dev;
99     MemoryRegion bar0;
100     MemoryRegion bar1;
101 } EbusState;
102 
103 void DMA_init(ISABus *bus, int high_page_enable)
104 {
105 }
106 
107 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
108                             Error **errp)
109 {
110     fw_cfg_modify_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
111 }
112 
113 static int sun4u_NVRAM_set_params(Nvram *nvram, uint16_t NVRAM_size,
114                                   const char *arch, ram_addr_t RAM_size,
115                                   const char *boot_devices,
116                                   uint32_t kernel_image, uint32_t kernel_size,
117                                   const char *cmdline,
118                                   uint32_t initrd_image, uint32_t initrd_size,
119                                   uint32_t NVRAM_image,
120                                   int width, int height, int depth,
121                                   const uint8_t *macaddr)
122 {
123     unsigned int i;
124     uint32_t start, end;
125     uint8_t image[0x1ff0];
126     struct OpenBIOS_nvpart_v1 *part_header;
127     NvramClass *k = NVRAM_GET_CLASS(nvram);
128 
129     memset(image, '\0', sizeof(image));
130 
131     start = 0;
132 
133     // OpenBIOS nvram variables
134     // Variable partition
135     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
136     part_header->signature = OPENBIOS_PART_SYSTEM;
137     pstrcpy(part_header->name, sizeof(part_header->name), "system");
138 
139     end = start + sizeof(struct OpenBIOS_nvpart_v1);
140     for (i = 0; i < nb_prom_envs; i++)
141         end = OpenBIOS_set_var(image, end, prom_envs[i]);
142 
143     // End marker
144     image[end++] = '\0';
145 
146     end = start + ((end - start + 15) & ~15);
147     OpenBIOS_finish_partition(part_header, end - start);
148 
149     // free partition
150     start = end;
151     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
152     part_header->signature = OPENBIOS_PART_FREE;
153     pstrcpy(part_header->name, sizeof(part_header->name), "free");
154 
155     end = 0x1fd0;
156     OpenBIOS_finish_partition(part_header, end - start);
157 
158     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
159 
160     for (i = 0; i < sizeof(image); i++) {
161         (k->write)(nvram, i, image[i]);
162     }
163 
164     return 0;
165 }
166 
167 static uint64_t sun4u_load_kernel(const char *kernel_filename,
168                                   const char *initrd_filename,
169                                   ram_addr_t RAM_size, uint64_t *initrd_size,
170                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
171                                   uint64_t *kernel_entry)
172 {
173     int linux_boot;
174     unsigned int i;
175     long kernel_size;
176     uint8_t *ptr;
177     uint64_t kernel_top;
178 
179     linux_boot = (kernel_filename != NULL);
180 
181     kernel_size = 0;
182     if (linux_boot) {
183         int bswap_needed;
184 
185 #ifdef BSWAP_NEEDED
186         bswap_needed = 1;
187 #else
188         bswap_needed = 0;
189 #endif
190         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
191                                kernel_addr, &kernel_top, 1, EM_SPARCV9, 0, 0);
192         if (kernel_size < 0) {
193             *kernel_addr = KERNEL_LOAD_ADDR;
194             *kernel_entry = KERNEL_LOAD_ADDR;
195             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
196                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
197                                     TARGET_PAGE_SIZE);
198         }
199         if (kernel_size < 0) {
200             kernel_size = load_image_targphys(kernel_filename,
201                                               KERNEL_LOAD_ADDR,
202                                               RAM_size - KERNEL_LOAD_ADDR);
203         }
204         if (kernel_size < 0) {
205             fprintf(stderr, "qemu: could not load kernel '%s'\n",
206                     kernel_filename);
207             exit(1);
208         }
209         /* load initrd above kernel */
210         *initrd_size = 0;
211         if (initrd_filename) {
212             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
213 
214             *initrd_size = load_image_targphys(initrd_filename,
215                                                *initrd_addr,
216                                                RAM_size - *initrd_addr);
217             if ((int)*initrd_size < 0) {
218                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
219                         initrd_filename);
220                 exit(1);
221             }
222         }
223         if (*initrd_size > 0) {
224             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
225                 ptr = rom_ptr(*kernel_addr + i);
226                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
227                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
228                     stl_p(ptr + 28, *initrd_size);
229                     break;
230                 }
231             }
232         }
233     }
234     return kernel_size;
235 }
236 
237 void cpu_check_irqs(CPUSPARCState *env)
238 {
239     CPUState *cs;
240     uint32_t pil = env->pil_in |
241                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
242 
243     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
244     if (env->ivec_status & 0x20) {
245         return;
246     }
247     cs = CPU(sparc_env_get_cpu(env));
248     /* check if TM or SM in SOFTINT are set
249        setting these also causes interrupt 14 */
250     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
251         pil |= 1 << 14;
252     }
253 
254     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
255        is (2 << psrpil). */
256     if (pil < (2 << env->psrpil)){
257         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
258             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
259                            env->interrupt_index);
260             env->interrupt_index = 0;
261             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
262         }
263         return;
264     }
265 
266     if (cpu_interrupts_enabled(env)) {
267 
268         unsigned int i;
269 
270         for (i = 15; i > env->psrpil; i--) {
271             if (pil & (1 << i)) {
272                 int old_interrupt = env->interrupt_index;
273                 int new_interrupt = TT_EXTINT | i;
274 
275                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
276                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
277                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
278                                    "current %x >= pending %x\n",
279                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
280                 } else if (old_interrupt != new_interrupt) {
281                     env->interrupt_index = new_interrupt;
282                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
283                                    old_interrupt, new_interrupt);
284                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
285                 }
286                 break;
287             }
288         }
289     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
290         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
291                        "current interrupt %x\n",
292                        pil, env->pil_in, env->softint, env->interrupt_index);
293         env->interrupt_index = 0;
294         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
295     }
296 }
297 
298 static void cpu_kick_irq(SPARCCPU *cpu)
299 {
300     CPUState *cs = CPU(cpu);
301     CPUSPARCState *env = &cpu->env;
302 
303     cs->halted = 0;
304     cpu_check_irqs(env);
305     qemu_cpu_kick(cs);
306 }
307 
308 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
309 {
310     SPARCCPU *cpu = opaque;
311     CPUSPARCState *env = &cpu->env;
312     CPUState *cs;
313 
314     if (level) {
315         if (!(env->ivec_status & 0x20)) {
316             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
317             cs = CPU(cpu);
318             cs->halted = 0;
319             env->interrupt_index = TT_IVEC;
320             env->ivec_status |= 0x20;
321             env->ivec_data[0] = (0x1f << 6) | irq;
322             env->ivec_data[1] = 0;
323             env->ivec_data[2] = 0;
324             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
325         }
326     } else {
327         if (env->ivec_status & 0x20) {
328             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
329             cs = CPU(cpu);
330             env->ivec_status &= ~0x20;
331             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
332         }
333     }
334 }
335 
336 typedef struct ResetData {
337     SPARCCPU *cpu;
338     uint64_t prom_addr;
339 } ResetData;
340 
341 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
342                                   QEMUBHFunc *cb, uint32_t frequency,
343                                   uint64_t disabled_mask, uint64_t npt_mask)
344 {
345     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
346 
347     timer->name = name;
348     timer->frequency = frequency;
349     timer->disabled_mask = disabled_mask;
350     timer->npt_mask = npt_mask;
351 
352     timer->disabled = 1;
353     timer->npt = 1;
354     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
355 
356     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
357 
358     return timer;
359 }
360 
361 static void cpu_timer_reset(CPUTimer *timer)
362 {
363     timer->disabled = 1;
364     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
365 
366     timer_del(timer->qtimer);
367 }
368 
369 static void main_cpu_reset(void *opaque)
370 {
371     ResetData *s = (ResetData *)opaque;
372     CPUSPARCState *env = &s->cpu->env;
373     static unsigned int nr_resets;
374 
375     cpu_reset(CPU(s->cpu));
376 
377     cpu_timer_reset(env->tick);
378     cpu_timer_reset(env->stick);
379     cpu_timer_reset(env->hstick);
380 
381     env->gregs[1] = 0; // Memory start
382     env->gregs[2] = ram_size; // Memory size
383     env->gregs[3] = 0; // Machine description XXX
384     if (nr_resets++ == 0) {
385         /* Power on reset */
386         env->pc = s->prom_addr + 0x20ULL;
387     } else {
388         env->pc = s->prom_addr + 0x40ULL;
389     }
390     env->npc = env->pc + 4;
391 }
392 
393 static void tick_irq(void *opaque)
394 {
395     SPARCCPU *cpu = opaque;
396     CPUSPARCState *env = &cpu->env;
397 
398     CPUTimer* timer = env->tick;
399 
400     if (timer->disabled) {
401         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
402         return;
403     } else {
404         CPUIRQ_DPRINTF("tick: fire\n");
405     }
406 
407     env->softint |= SOFTINT_TIMER;
408     cpu_kick_irq(cpu);
409 }
410 
411 static void stick_irq(void *opaque)
412 {
413     SPARCCPU *cpu = opaque;
414     CPUSPARCState *env = &cpu->env;
415 
416     CPUTimer* timer = env->stick;
417 
418     if (timer->disabled) {
419         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
420         return;
421     } else {
422         CPUIRQ_DPRINTF("stick: fire\n");
423     }
424 
425     env->softint |= SOFTINT_STIMER;
426     cpu_kick_irq(cpu);
427 }
428 
429 static void hstick_irq(void *opaque)
430 {
431     SPARCCPU *cpu = opaque;
432     CPUSPARCState *env = &cpu->env;
433 
434     CPUTimer* timer = env->hstick;
435 
436     if (timer->disabled) {
437         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
438         return;
439     } else {
440         CPUIRQ_DPRINTF("hstick: fire\n");
441     }
442 
443     env->softint |= SOFTINT_STIMER;
444     cpu_kick_irq(cpu);
445 }
446 
447 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
448 {
449     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
450 }
451 
452 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
453 {
454     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
455 }
456 
457 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
458 {
459     uint64_t real_count = count & ~timer->npt_mask;
460     uint64_t npt_bit = count & timer->npt_mask;
461 
462     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
463                     cpu_to_timer_ticks(real_count, timer->frequency);
464 
465     TIMER_DPRINTF("%s set_count count=0x%016lx (npt %s) p=%p\n",
466                   timer->name, real_count,
467                   timer->npt ? "disabled" : "enabled", timer);
468 
469     timer->npt = npt_bit ? 1 : 0;
470     timer->clock_offset = vm_clock_offset;
471 }
472 
473 uint64_t cpu_tick_get_count(CPUTimer *timer)
474 {
475     uint64_t real_count = timer_to_cpu_ticks(
476                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
477                     timer->frequency);
478 
479     TIMER_DPRINTF("%s get_count count=0x%016lx (npt %s) p=%p\n",
480            timer->name, real_count,
481            timer->npt ? "disabled" : "enabled", timer);
482 
483     if (timer->npt) {
484         real_count |= timer->npt_mask;
485     }
486 
487     return real_count;
488 }
489 
490 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
491 {
492     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
493 
494     uint64_t real_limit = limit & ~timer->disabled_mask;
495     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
496 
497     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
498                     timer->clock_offset;
499 
500     if (expires < now) {
501         expires = now + 1;
502     }
503 
504     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
505                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
506                   timer->name, real_limit,
507                   timer->disabled?"disabled":"enabled",
508                   timer, limit,
509                   timer_to_cpu_ticks(now - timer->clock_offset,
510                                      timer->frequency),
511                   timer_to_cpu_ticks(expires - now, timer->frequency));
512 
513     if (!real_limit) {
514         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
515                 timer->name);
516         timer_del(timer->qtimer);
517     } else if (timer->disabled) {
518         timer_del(timer->qtimer);
519     } else {
520         timer_mod(timer->qtimer, expires);
521     }
522 }
523 
524 static void isa_irq_handler(void *opaque, int n, int level)
525 {
526     static const int isa_irq_to_ivec[16] = {
527         [1] = 0x29, /* keyboard */
528         [4] = 0x2b, /* serial */
529         [6] = 0x27, /* floppy */
530         [7] = 0x22, /* parallel */
531         [12] = 0x2a, /* mouse */
532     };
533     qemu_irq *irqs = opaque;
534     int ivec;
535 
536     assert(n < 16);
537     ivec = isa_irq_to_ivec[n];
538     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
539     if (ivec) {
540         qemu_set_irq(irqs[ivec], level);
541     }
542 }
543 
544 /* EBUS (Eight bit bus) bridge */
545 static ISABus *
546 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
547 {
548     qemu_irq *isa_irq;
549     PCIDevice *pci_dev;
550     ISABus *isa_bus;
551 
552     pci_dev = pci_create_simple(bus, devfn, "ebus");
553     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
554     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
555     isa_bus_irqs(isa_bus, isa_irq);
556     return isa_bus;
557 }
558 
559 static void pci_ebus_realize(PCIDevice *pci_dev, Error **errp)
560 {
561     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
562 
563     if (!isa_bus_new(DEVICE(pci_dev), get_system_memory(),
564                      pci_address_space_io(pci_dev), errp)) {
565         return;
566     }
567 
568     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
569     pci_dev->config[0x05] = 0x00;
570     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
571     pci_dev->config[0x07] = 0x03; // status = medium devsel
572     pci_dev->config[0x09] = 0x00; // programming i/f
573     pci_dev->config[0x0D] = 0x0a; // latency_timer
574 
575     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
576                              0, 0x1000000);
577     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
578     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
579                              0, 0x4000);
580     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
581 }
582 
583 static void ebus_class_init(ObjectClass *klass, void *data)
584 {
585     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
586 
587     k->realize = pci_ebus_realize;
588     k->vendor_id = PCI_VENDOR_ID_SUN;
589     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
590     k->revision = 0x01;
591     k->class_id = PCI_CLASS_BRIDGE_OTHER;
592 }
593 
594 static const TypeInfo ebus_info = {
595     .name          = "ebus",
596     .parent        = TYPE_PCI_DEVICE,
597     .instance_size = sizeof(EbusState),
598     .class_init    = ebus_class_init,
599 };
600 
601 #define TYPE_OPENPROM "openprom"
602 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
603 
604 typedef struct PROMState {
605     SysBusDevice parent_obj;
606 
607     MemoryRegion prom;
608 } PROMState;
609 
610 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
611 {
612     hwaddr *base_addr = (hwaddr *)opaque;
613     return addr + *base_addr - PROM_VADDR;
614 }
615 
616 /* Boot PROM (OpenBIOS) */
617 static void prom_init(hwaddr addr, const char *bios_name)
618 {
619     DeviceState *dev;
620     SysBusDevice *s;
621     char *filename;
622     int ret;
623 
624     dev = qdev_create(NULL, TYPE_OPENPROM);
625     qdev_init_nofail(dev);
626     s = SYS_BUS_DEVICE(dev);
627 
628     sysbus_mmio_map(s, 0, addr);
629 
630     /* load boot prom */
631     if (bios_name == NULL) {
632         bios_name = PROM_FILENAME;
633     }
634     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
635     if (filename) {
636         ret = load_elf(filename, translate_prom_address, &addr,
637                        NULL, NULL, NULL, 1, EM_SPARCV9, 0, 0);
638         if (ret < 0 || ret > PROM_SIZE_MAX) {
639             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
640         }
641         g_free(filename);
642     } else {
643         ret = -1;
644     }
645     if (ret < 0 || ret > PROM_SIZE_MAX) {
646         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
647         exit(1);
648     }
649 }
650 
651 static int prom_init1(SysBusDevice *dev)
652 {
653     PROMState *s = OPENPROM(dev);
654 
655     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
656                            &error_fatal);
657     vmstate_register_ram_global(&s->prom);
658     memory_region_set_readonly(&s->prom, true);
659     sysbus_init_mmio(dev, &s->prom);
660     return 0;
661 }
662 
663 static Property prom_properties[] = {
664     {/* end of property list */},
665 };
666 
667 static void prom_class_init(ObjectClass *klass, void *data)
668 {
669     DeviceClass *dc = DEVICE_CLASS(klass);
670     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
671 
672     k->init = prom_init1;
673     dc->props = prom_properties;
674 }
675 
676 static const TypeInfo prom_info = {
677     .name          = TYPE_OPENPROM,
678     .parent        = TYPE_SYS_BUS_DEVICE,
679     .instance_size = sizeof(PROMState),
680     .class_init    = prom_class_init,
681 };
682 
683 
684 #define TYPE_SUN4U_MEMORY "memory"
685 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
686 
687 typedef struct RamDevice {
688     SysBusDevice parent_obj;
689 
690     MemoryRegion ram;
691     uint64_t size;
692 } RamDevice;
693 
694 /* System RAM */
695 static int ram_init1(SysBusDevice *dev)
696 {
697     RamDevice *d = SUN4U_RAM(dev);
698 
699     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
700                            &error_fatal);
701     vmstate_register_ram_global(&d->ram);
702     sysbus_init_mmio(dev, &d->ram);
703     return 0;
704 }
705 
706 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
707 {
708     DeviceState *dev;
709     SysBusDevice *s;
710     RamDevice *d;
711 
712     /* allocate RAM */
713     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
714     s = SYS_BUS_DEVICE(dev);
715 
716     d = SUN4U_RAM(dev);
717     d->size = RAM_size;
718     qdev_init_nofail(dev);
719 
720     sysbus_mmio_map(s, 0, addr);
721 }
722 
723 static Property ram_properties[] = {
724     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
725     DEFINE_PROP_END_OF_LIST(),
726 };
727 
728 static void ram_class_init(ObjectClass *klass, void *data)
729 {
730     DeviceClass *dc = DEVICE_CLASS(klass);
731     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
732 
733     k->init = ram_init1;
734     dc->props = ram_properties;
735 }
736 
737 static const TypeInfo ram_info = {
738     .name          = TYPE_SUN4U_MEMORY,
739     .parent        = TYPE_SYS_BUS_DEVICE,
740     .instance_size = sizeof(RamDevice),
741     .class_init    = ram_class_init,
742 };
743 
744 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
745 {
746     SPARCCPU *cpu;
747     CPUSPARCState *env;
748     ResetData *reset_info;
749 
750     uint32_t   tick_frequency = 100*1000000;
751     uint32_t  stick_frequency = 100*1000000;
752     uint32_t hstick_frequency = 100*1000000;
753 
754     if (cpu_model == NULL) {
755         cpu_model = hwdef->default_cpu_model;
756     }
757     cpu = cpu_sparc_init(cpu_model);
758     if (cpu == NULL) {
759         fprintf(stderr, "Unable to find Sparc CPU definition\n");
760         exit(1);
761     }
762     env = &cpu->env;
763 
764     env->tick = cpu_timer_create("tick", cpu, tick_irq,
765                                   tick_frequency, TICK_INT_DIS,
766                                   TICK_NPT_MASK);
767 
768     env->stick = cpu_timer_create("stick", cpu, stick_irq,
769                                    stick_frequency, TICK_INT_DIS,
770                                    TICK_NPT_MASK);
771 
772     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
773                                     hstick_frequency, TICK_INT_DIS,
774                                     TICK_NPT_MASK);
775 
776     reset_info = g_malloc0(sizeof(ResetData));
777     reset_info->cpu = cpu;
778     reset_info->prom_addr = hwdef->prom_addr;
779     qemu_register_reset(main_cpu_reset, reset_info);
780 
781     return cpu;
782 }
783 
784 static void sun4uv_init(MemoryRegion *address_space_mem,
785                         MachineState *machine,
786                         const struct hwdef *hwdef)
787 {
788     SPARCCPU *cpu;
789     Nvram *nvram;
790     unsigned int i;
791     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
792     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
793     ISABus *isa_bus;
794     SysBusDevice *s;
795     qemu_irq *ivec_irqs, *pbm_irqs;
796     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
797     DriveInfo *fd[MAX_FD];
798     DeviceState *dev;
799     FWCfgState *fw_cfg;
800 
801     /* init CPUs */
802     cpu = cpu_devinit(machine->cpu_model, hwdef);
803 
804     /* set up devices */
805     ram_init(0, machine->ram_size);
806 
807     prom_init(hwdef->prom_addr, bios_name);
808 
809     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
810     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
811                            &pci_bus3, &pbm_irqs);
812     pci_vga_init(pci_bus);
813 
814     // XXX Should be pci_bus3
815     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
816 
817     i = 0;
818     if (hwdef->console_serial_base) {
819         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
820                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
821         i++;
822     }
823 
824     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
825     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
826 
827     for(i = 0; i < nb_nics; i++)
828         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
829 
830     ide_drive_get(hd, ARRAY_SIZE(hd));
831 
832     pci_cmd646_ide_init(pci_bus, hd, 1);
833 
834     isa_create_simple(isa_bus, "i8042");
835 
836     /* Floppy */
837     for(i = 0; i < MAX_FD; i++) {
838         fd[i] = drive_get(IF_FLOPPY, 0, i);
839     }
840     dev = DEVICE(isa_create(isa_bus, TYPE_ISA_FDC));
841     if (fd[0]) {
842         qdev_prop_set_drive(dev, "driveA", blk_by_legacy_dinfo(fd[0]),
843                             &error_abort);
844     }
845     if (fd[1]) {
846         qdev_prop_set_drive(dev, "driveB", blk_by_legacy_dinfo(fd[1]),
847                             &error_abort);
848     }
849     qdev_prop_set_uint32(dev, "dma", -1);
850     qdev_init_nofail(dev);
851 
852     /* Map NVRAM into I/O (ebus) space */
853     nvram = m48t59_init(NULL, 0, 0, NVRAM_SIZE, 1968, 59);
854     s = SYS_BUS_DEVICE(nvram);
855     memory_region_add_subregion(get_system_io(), 0x2000,
856                                 sysbus_mmio_get_region(s, 0));
857 
858     initrd_size = 0;
859     initrd_addr = 0;
860     kernel_size = sun4u_load_kernel(machine->kernel_filename,
861                                     machine->initrd_filename,
862                                     ram_size, &initrd_size, &initrd_addr,
863                                     &kernel_addr, &kernel_entry);
864 
865     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
866                            machine->boot_order,
867                            kernel_addr, kernel_size,
868                            machine->kernel_cmdline,
869                            initrd_addr, initrd_size,
870                            /* XXX: need an option to load a NVRAM image */
871                            0,
872                            graphic_width, graphic_height, graphic_depth,
873                            (uint8_t *)&nd_table[0].macaddr);
874 
875     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
876     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
877     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
878     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
879     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
880     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
881     if (machine->kernel_cmdline) {
882         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
883                        strlen(machine->kernel_cmdline) + 1);
884         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
885     } else {
886         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
887     }
888     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
889     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
890     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
891 
892     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
893     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
894     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
895 
896     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
897 }
898 
899 enum {
900     sun4u_id = 0,
901     sun4v_id = 64,
902     niagara_id,
903 };
904 
905 static const struct hwdef hwdefs[] = {
906     /* Sun4u generic PC-like machine */
907     {
908         .default_cpu_model = "TI UltraSparc IIi",
909         .machine_id = sun4u_id,
910         .prom_addr = 0x1fff0000000ULL,
911         .console_serial_base = 0,
912     },
913     /* Sun4v generic PC-like machine */
914     {
915         .default_cpu_model = "Sun UltraSparc T1",
916         .machine_id = sun4v_id,
917         .prom_addr = 0x1fff0000000ULL,
918         .console_serial_base = 0,
919     },
920     /* Sun4v generic Niagara machine */
921     {
922         .default_cpu_model = "Sun UltraSparc T1",
923         .machine_id = niagara_id,
924         .prom_addr = 0xfff0000000ULL,
925         .console_serial_base = 0xfff0c2c000ULL,
926     },
927 };
928 
929 /* Sun4u hardware initialisation */
930 static void sun4u_init(MachineState *machine)
931 {
932     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
933 }
934 
935 /* Sun4v hardware initialisation */
936 static void sun4v_init(MachineState *machine)
937 {
938     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
939 }
940 
941 /* Niagara hardware initialisation */
942 static void niagara_init(MachineState *machine)
943 {
944     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
945 }
946 
947 static void sun4u_class_init(ObjectClass *oc, void *data)
948 {
949     MachineClass *mc = MACHINE_CLASS(oc);
950 
951     mc->desc = "Sun4u platform";
952     mc->init = sun4u_init;
953     mc->max_cpus = 1; /* XXX for now */
954     mc->is_default = 1;
955     mc->default_boot_order = "c";
956 }
957 
958 static const TypeInfo sun4u_type = {
959     .name = MACHINE_TYPE_NAME("sun4u"),
960     .parent = TYPE_MACHINE,
961     .class_init = sun4u_class_init,
962 };
963 
964 static void sun4v_class_init(ObjectClass *oc, void *data)
965 {
966     MachineClass *mc = MACHINE_CLASS(oc);
967 
968     mc->desc = "Sun4v platform";
969     mc->init = sun4v_init;
970     mc->max_cpus = 1; /* XXX for now */
971     mc->default_boot_order = "c";
972 }
973 
974 static const TypeInfo sun4v_type = {
975     .name = MACHINE_TYPE_NAME("sun4v"),
976     .parent = TYPE_MACHINE,
977     .class_init = sun4v_class_init,
978 };
979 
980 static void niagara_class_init(ObjectClass *oc, void *data)
981 {
982     MachineClass *mc = MACHINE_CLASS(oc);
983 
984     mc->desc = "Sun4v platform, Niagara";
985     mc->init = niagara_init;
986     mc->max_cpus = 1; /* XXX for now */
987     mc->default_boot_order = "c";
988 }
989 
990 static const TypeInfo niagara_type = {
991     .name = MACHINE_TYPE_NAME("Niagara"),
992     .parent = TYPE_MACHINE,
993     .class_init = niagara_class_init,
994 };
995 
996 static void sun4u_register_types(void)
997 {
998     type_register_static(&ebus_info);
999     type_register_static(&prom_info);
1000     type_register_static(&ram_info);
1001 
1002     type_register_static(&sun4u_type);
1003     type_register_static(&sun4v_type);
1004     type_register_static(&niagara_type);
1005 }
1006 
1007 type_init(sun4u_register_types)
1008