xref: /qemu/hw/sparc64/sun4u.c (revision 87a45cfe)
1 /*
2  * QEMU Sun4u/Sun4v System Emulator
3  *
4  * Copyright (c) 2005 Fabrice Bellard
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 #include "hw/hw.h"
25 #include "hw/pci/pci.h"
26 #include "hw/pci-host/apb.h"
27 #include "hw/i386/pc.h"
28 #include "hw/char/serial.h"
29 #include "hw/timer/m48t59.h"
30 #include "hw/block/fdc.h"
31 #include "net/net.h"
32 #include "qemu/timer.h"
33 #include "sysemu/sysemu.h"
34 #include "hw/boards.h"
35 #include "hw/nvram/openbios_firmware_abi.h"
36 #include "hw/nvram/fw_cfg.h"
37 #include "hw/sysbus.h"
38 #include "hw/ide.h"
39 #include "hw/loader.h"
40 #include "elf.h"
41 #include "sysemu/block-backend.h"
42 #include "exec/address-spaces.h"
43 
44 //#define DEBUG_IRQ
45 //#define DEBUG_EBUS
46 //#define DEBUG_TIMER
47 
48 #ifdef DEBUG_IRQ
49 #define CPUIRQ_DPRINTF(fmt, ...)                                \
50     do { printf("CPUIRQ: " fmt , ## __VA_ARGS__); } while (0)
51 #else
52 #define CPUIRQ_DPRINTF(fmt, ...)
53 #endif
54 
55 #ifdef DEBUG_EBUS
56 #define EBUS_DPRINTF(fmt, ...)                                  \
57     do { printf("EBUS: " fmt , ## __VA_ARGS__); } while (0)
58 #else
59 #define EBUS_DPRINTF(fmt, ...)
60 #endif
61 
62 #ifdef DEBUG_TIMER
63 #define TIMER_DPRINTF(fmt, ...)                                  \
64     do { printf("TIMER: " fmt , ## __VA_ARGS__); } while (0)
65 #else
66 #define TIMER_DPRINTF(fmt, ...)
67 #endif
68 
69 #define KERNEL_LOAD_ADDR     0x00404000
70 #define CMDLINE_ADDR         0x003ff000
71 #define PROM_SIZE_MAX        (4 * 1024 * 1024)
72 #define PROM_VADDR           0x000ffd00000ULL
73 #define APB_SPECIAL_BASE     0x1fe00000000ULL
74 #define APB_MEM_BASE         0x1ff00000000ULL
75 #define APB_PCI_IO_BASE      (APB_SPECIAL_BASE + 0x02000000ULL)
76 #define PROM_FILENAME        "openbios-sparc64"
77 #define NVRAM_SIZE           0x2000
78 #define MAX_IDE_BUS          2
79 #define BIOS_CFG_IOPORT      0x510
80 #define FW_CFG_SPARC64_WIDTH (FW_CFG_ARCH_LOCAL + 0x00)
81 #define FW_CFG_SPARC64_HEIGHT (FW_CFG_ARCH_LOCAL + 0x01)
82 #define FW_CFG_SPARC64_DEPTH (FW_CFG_ARCH_LOCAL + 0x02)
83 
84 #define IVEC_MAX             0x40
85 
86 #define TICK_MAX             0x7fffffffffffffffULL
87 
88 struct hwdef {
89     const char * const default_cpu_model;
90     uint16_t machine_id;
91     uint64_t prom_addr;
92     uint64_t console_serial_base;
93 };
94 
95 typedef struct EbusState {
96     PCIDevice pci_dev;
97     MemoryRegion bar0;
98     MemoryRegion bar1;
99 } EbusState;
100 
101 int DMA_get_channel_mode (int nchan)
102 {
103     return 0;
104 }
105 int DMA_read_memory (int nchan, void *buf, int pos, int size)
106 {
107     return 0;
108 }
109 int DMA_write_memory (int nchan, void *buf, int pos, int size)
110 {
111     return 0;
112 }
113 void DMA_hold_DREQ (int nchan) {}
114 void DMA_release_DREQ (int nchan) {}
115 void DMA_schedule(int nchan) {}
116 
117 void DMA_init(int high_page_enable, qemu_irq *cpu_request_exit)
118 {
119 }
120 
121 void DMA_register_channel (int nchan,
122                            DMA_transfer_handler transfer_handler,
123                            void *opaque)
124 {
125 }
126 
127 static void fw_cfg_boot_set(void *opaque, const char *boot_device,
128                             Error **errp)
129 {
130     fw_cfg_add_i16(opaque, FW_CFG_BOOT_DEVICE, boot_device[0]);
131 }
132 
133 static int sun4u_NVRAM_set_params(M48t59State *nvram, uint16_t NVRAM_size,
134                                   const char *arch, ram_addr_t RAM_size,
135                                   const char *boot_devices,
136                                   uint32_t kernel_image, uint32_t kernel_size,
137                                   const char *cmdline,
138                                   uint32_t initrd_image, uint32_t initrd_size,
139                                   uint32_t NVRAM_image,
140                                   int width, int height, int depth,
141                                   const uint8_t *macaddr)
142 {
143     unsigned int i;
144     uint32_t start, end;
145     uint8_t image[0x1ff0];
146     struct OpenBIOS_nvpart_v1 *part_header;
147 
148     memset(image, '\0', sizeof(image));
149 
150     start = 0;
151 
152     // OpenBIOS nvram variables
153     // Variable partition
154     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
155     part_header->signature = OPENBIOS_PART_SYSTEM;
156     pstrcpy(part_header->name, sizeof(part_header->name), "system");
157 
158     end = start + sizeof(struct OpenBIOS_nvpart_v1);
159     for (i = 0; i < nb_prom_envs; i++)
160         end = OpenBIOS_set_var(image, end, prom_envs[i]);
161 
162     // End marker
163     image[end++] = '\0';
164 
165     end = start + ((end - start + 15) & ~15);
166     OpenBIOS_finish_partition(part_header, end - start);
167 
168     // free partition
169     start = end;
170     part_header = (struct OpenBIOS_nvpart_v1 *)&image[start];
171     part_header->signature = OPENBIOS_PART_FREE;
172     pstrcpy(part_header->name, sizeof(part_header->name), "free");
173 
174     end = 0x1fd0;
175     OpenBIOS_finish_partition(part_header, end - start);
176 
177     Sun_init_header((struct Sun_nvram *)&image[0x1fd8], macaddr, 0x80);
178 
179     for (i = 0; i < sizeof(image); i++)
180         m48t59_write(nvram, i, image[i]);
181 
182     return 0;
183 }
184 
185 static uint64_t sun4u_load_kernel(const char *kernel_filename,
186                                   const char *initrd_filename,
187                                   ram_addr_t RAM_size, uint64_t *initrd_size,
188                                   uint64_t *initrd_addr, uint64_t *kernel_addr,
189                                   uint64_t *kernel_entry)
190 {
191     int linux_boot;
192     unsigned int i;
193     long kernel_size;
194     uint8_t *ptr;
195     uint64_t kernel_top;
196 
197     linux_boot = (kernel_filename != NULL);
198 
199     kernel_size = 0;
200     if (linux_boot) {
201         int bswap_needed;
202 
203 #ifdef BSWAP_NEEDED
204         bswap_needed = 1;
205 #else
206         bswap_needed = 0;
207 #endif
208         kernel_size = load_elf(kernel_filename, NULL, NULL, kernel_entry,
209                                kernel_addr, &kernel_top, 1, ELF_MACHINE, 0);
210         if (kernel_size < 0) {
211             *kernel_addr = KERNEL_LOAD_ADDR;
212             *kernel_entry = KERNEL_LOAD_ADDR;
213             kernel_size = load_aout(kernel_filename, KERNEL_LOAD_ADDR,
214                                     RAM_size - KERNEL_LOAD_ADDR, bswap_needed,
215                                     TARGET_PAGE_SIZE);
216         }
217         if (kernel_size < 0) {
218             kernel_size = load_image_targphys(kernel_filename,
219                                               KERNEL_LOAD_ADDR,
220                                               RAM_size - KERNEL_LOAD_ADDR);
221         }
222         if (kernel_size < 0) {
223             fprintf(stderr, "qemu: could not load kernel '%s'\n",
224                     kernel_filename);
225             exit(1);
226         }
227         /* load initrd above kernel */
228         *initrd_size = 0;
229         if (initrd_filename) {
230             *initrd_addr = TARGET_PAGE_ALIGN(kernel_top);
231 
232             *initrd_size = load_image_targphys(initrd_filename,
233                                                *initrd_addr,
234                                                RAM_size - *initrd_addr);
235             if ((int)*initrd_size < 0) {
236                 fprintf(stderr, "qemu: could not load initial ram disk '%s'\n",
237                         initrd_filename);
238                 exit(1);
239             }
240         }
241         if (*initrd_size > 0) {
242             for (i = 0; i < 64 * TARGET_PAGE_SIZE; i += TARGET_PAGE_SIZE) {
243                 ptr = rom_ptr(*kernel_addr + i);
244                 if (ldl_p(ptr + 8) == 0x48647253) { /* HdrS */
245                     stl_p(ptr + 24, *initrd_addr + *kernel_addr);
246                     stl_p(ptr + 28, *initrd_size);
247                     break;
248                 }
249             }
250         }
251     }
252     return kernel_size;
253 }
254 
255 void cpu_check_irqs(CPUSPARCState *env)
256 {
257     CPUState *cs;
258     uint32_t pil = env->pil_in |
259                   (env->softint & ~(SOFTINT_TIMER | SOFTINT_STIMER));
260 
261     /* TT_IVEC has a higher priority (16) than TT_EXTINT (31..17) */
262     if (env->ivec_status & 0x20) {
263         return;
264     }
265     cs = CPU(sparc_env_get_cpu(env));
266     /* check if TM or SM in SOFTINT are set
267        setting these also causes interrupt 14 */
268     if (env->softint & (SOFTINT_TIMER | SOFTINT_STIMER)) {
269         pil |= 1 << 14;
270     }
271 
272     /* The bit corresponding to psrpil is (1<< psrpil), the next bit
273        is (2 << psrpil). */
274     if (pil < (2 << env->psrpil)){
275         if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
276             CPUIRQ_DPRINTF("Reset CPU IRQ (current interrupt %x)\n",
277                            env->interrupt_index);
278             env->interrupt_index = 0;
279             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
280         }
281         return;
282     }
283 
284     if (cpu_interrupts_enabled(env)) {
285 
286         unsigned int i;
287 
288         for (i = 15; i > env->psrpil; i--) {
289             if (pil & (1 << i)) {
290                 int old_interrupt = env->interrupt_index;
291                 int new_interrupt = TT_EXTINT | i;
292 
293                 if (unlikely(env->tl > 0 && cpu_tsptr(env)->tt > new_interrupt
294                   && ((cpu_tsptr(env)->tt & 0x1f0) == TT_EXTINT))) {
295                     CPUIRQ_DPRINTF("Not setting CPU IRQ: TL=%d "
296                                    "current %x >= pending %x\n",
297                                    env->tl, cpu_tsptr(env)->tt, new_interrupt);
298                 } else if (old_interrupt != new_interrupt) {
299                     env->interrupt_index = new_interrupt;
300                     CPUIRQ_DPRINTF("Set CPU IRQ %d old=%x new=%x\n", i,
301                                    old_interrupt, new_interrupt);
302                     cpu_interrupt(cs, CPU_INTERRUPT_HARD);
303                 }
304                 break;
305             }
306         }
307     } else if (cs->interrupt_request & CPU_INTERRUPT_HARD) {
308         CPUIRQ_DPRINTF("Interrupts disabled, pil=%08x pil_in=%08x softint=%08x "
309                        "current interrupt %x\n",
310                        pil, env->pil_in, env->softint, env->interrupt_index);
311         env->interrupt_index = 0;
312         cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
313     }
314 }
315 
316 static void cpu_kick_irq(SPARCCPU *cpu)
317 {
318     CPUState *cs = CPU(cpu);
319     CPUSPARCState *env = &cpu->env;
320 
321     cs->halted = 0;
322     cpu_check_irqs(env);
323     qemu_cpu_kick(cs);
324 }
325 
326 static void cpu_set_ivec_irq(void *opaque, int irq, int level)
327 {
328     SPARCCPU *cpu = opaque;
329     CPUSPARCState *env = &cpu->env;
330     CPUState *cs;
331 
332     if (level) {
333         if (!(env->ivec_status & 0x20)) {
334             CPUIRQ_DPRINTF("Raise IVEC IRQ %d\n", irq);
335             cs = CPU(cpu);
336             cs->halted = 0;
337             env->interrupt_index = TT_IVEC;
338             env->ivec_status |= 0x20;
339             env->ivec_data[0] = (0x1f << 6) | irq;
340             env->ivec_data[1] = 0;
341             env->ivec_data[2] = 0;
342             cpu_interrupt(cs, CPU_INTERRUPT_HARD);
343         }
344     } else {
345         if (env->ivec_status & 0x20) {
346             CPUIRQ_DPRINTF("Lower IVEC IRQ %d\n", irq);
347             cs = CPU(cpu);
348             env->ivec_status &= ~0x20;
349             cpu_reset_interrupt(cs, CPU_INTERRUPT_HARD);
350         }
351     }
352 }
353 
354 typedef struct ResetData {
355     SPARCCPU *cpu;
356     uint64_t prom_addr;
357 } ResetData;
358 
359 void cpu_put_timer(QEMUFile *f, CPUTimer *s)
360 {
361     qemu_put_be32s(f, &s->frequency);
362     qemu_put_be32s(f, &s->disabled);
363     qemu_put_be64s(f, &s->disabled_mask);
364     qemu_put_sbe64s(f, &s->clock_offset);
365 
366     timer_put(f, s->qtimer);
367 }
368 
369 void cpu_get_timer(QEMUFile *f, CPUTimer *s)
370 {
371     qemu_get_be32s(f, &s->frequency);
372     qemu_get_be32s(f, &s->disabled);
373     qemu_get_be64s(f, &s->disabled_mask);
374     qemu_get_sbe64s(f, &s->clock_offset);
375 
376     timer_get(f, s->qtimer);
377 }
378 
379 static CPUTimer *cpu_timer_create(const char *name, SPARCCPU *cpu,
380                                   QEMUBHFunc *cb, uint32_t frequency,
381                                   uint64_t disabled_mask)
382 {
383     CPUTimer *timer = g_malloc0(sizeof (CPUTimer));
384 
385     timer->name = name;
386     timer->frequency = frequency;
387     timer->disabled_mask = disabled_mask;
388 
389     timer->disabled = 1;
390     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
391 
392     timer->qtimer = timer_new_ns(QEMU_CLOCK_VIRTUAL, cb, cpu);
393 
394     return timer;
395 }
396 
397 static void cpu_timer_reset(CPUTimer *timer)
398 {
399     timer->disabled = 1;
400     timer->clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
401 
402     timer_del(timer->qtimer);
403 }
404 
405 static void main_cpu_reset(void *opaque)
406 {
407     ResetData *s = (ResetData *)opaque;
408     CPUSPARCState *env = &s->cpu->env;
409     static unsigned int nr_resets;
410 
411     cpu_reset(CPU(s->cpu));
412 
413     cpu_timer_reset(env->tick);
414     cpu_timer_reset(env->stick);
415     cpu_timer_reset(env->hstick);
416 
417     env->gregs[1] = 0; // Memory start
418     env->gregs[2] = ram_size; // Memory size
419     env->gregs[3] = 0; // Machine description XXX
420     if (nr_resets++ == 0) {
421         /* Power on reset */
422         env->pc = s->prom_addr + 0x20ULL;
423     } else {
424         env->pc = s->prom_addr + 0x40ULL;
425     }
426     env->npc = env->pc + 4;
427 }
428 
429 static void tick_irq(void *opaque)
430 {
431     SPARCCPU *cpu = opaque;
432     CPUSPARCState *env = &cpu->env;
433 
434     CPUTimer* timer = env->tick;
435 
436     if (timer->disabled) {
437         CPUIRQ_DPRINTF("tick_irq: softint disabled\n");
438         return;
439     } else {
440         CPUIRQ_DPRINTF("tick: fire\n");
441     }
442 
443     env->softint |= SOFTINT_TIMER;
444     cpu_kick_irq(cpu);
445 }
446 
447 static void stick_irq(void *opaque)
448 {
449     SPARCCPU *cpu = opaque;
450     CPUSPARCState *env = &cpu->env;
451 
452     CPUTimer* timer = env->stick;
453 
454     if (timer->disabled) {
455         CPUIRQ_DPRINTF("stick_irq: softint disabled\n");
456         return;
457     } else {
458         CPUIRQ_DPRINTF("stick: fire\n");
459     }
460 
461     env->softint |= SOFTINT_STIMER;
462     cpu_kick_irq(cpu);
463 }
464 
465 static void hstick_irq(void *opaque)
466 {
467     SPARCCPU *cpu = opaque;
468     CPUSPARCState *env = &cpu->env;
469 
470     CPUTimer* timer = env->hstick;
471 
472     if (timer->disabled) {
473         CPUIRQ_DPRINTF("hstick_irq: softint disabled\n");
474         return;
475     } else {
476         CPUIRQ_DPRINTF("hstick: fire\n");
477     }
478 
479     env->softint |= SOFTINT_STIMER;
480     cpu_kick_irq(cpu);
481 }
482 
483 static int64_t cpu_to_timer_ticks(int64_t cpu_ticks, uint32_t frequency)
484 {
485     return muldiv64(cpu_ticks, get_ticks_per_sec(), frequency);
486 }
487 
488 static uint64_t timer_to_cpu_ticks(int64_t timer_ticks, uint32_t frequency)
489 {
490     return muldiv64(timer_ticks, frequency, get_ticks_per_sec());
491 }
492 
493 void cpu_tick_set_count(CPUTimer *timer, uint64_t count)
494 {
495     uint64_t real_count = count & ~timer->disabled_mask;
496     uint64_t disabled_bit = count & timer->disabled_mask;
497 
498     int64_t vm_clock_offset = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) -
499                     cpu_to_timer_ticks(real_count, timer->frequency);
500 
501     TIMER_DPRINTF("%s set_count count=0x%016lx (%s) p=%p\n",
502                   timer->name, real_count,
503                   timer->disabled?"disabled":"enabled", timer);
504 
505     timer->disabled = disabled_bit ? 1 : 0;
506     timer->clock_offset = vm_clock_offset;
507 }
508 
509 uint64_t cpu_tick_get_count(CPUTimer *timer)
510 {
511     uint64_t real_count = timer_to_cpu_ticks(
512                     qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) - timer->clock_offset,
513                     timer->frequency);
514 
515     TIMER_DPRINTF("%s get_count count=0x%016lx (%s) p=%p\n",
516            timer->name, real_count,
517            timer->disabled?"disabled":"enabled", timer);
518 
519     if (timer->disabled)
520         real_count |= timer->disabled_mask;
521 
522     return real_count;
523 }
524 
525 void cpu_tick_set_limit(CPUTimer *timer, uint64_t limit)
526 {
527     int64_t now = qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
528 
529     uint64_t real_limit = limit & ~timer->disabled_mask;
530     timer->disabled = (limit & timer->disabled_mask) ? 1 : 0;
531 
532     int64_t expires = cpu_to_timer_ticks(real_limit, timer->frequency) +
533                     timer->clock_offset;
534 
535     if (expires < now) {
536         expires = now + 1;
537     }
538 
539     TIMER_DPRINTF("%s set_limit limit=0x%016lx (%s) p=%p "
540                   "called with limit=0x%016lx at 0x%016lx (delta=0x%016lx)\n",
541                   timer->name, real_limit,
542                   timer->disabled?"disabled":"enabled",
543                   timer, limit,
544                   timer_to_cpu_ticks(now - timer->clock_offset,
545                                      timer->frequency),
546                   timer_to_cpu_ticks(expires - now, timer->frequency));
547 
548     if (!real_limit) {
549         TIMER_DPRINTF("%s set_limit limit=ZERO - not starting timer\n",
550                 timer->name);
551         timer_del(timer->qtimer);
552     } else if (timer->disabled) {
553         timer_del(timer->qtimer);
554     } else {
555         timer_mod(timer->qtimer, expires);
556     }
557 }
558 
559 static void isa_irq_handler(void *opaque, int n, int level)
560 {
561     static const int isa_irq_to_ivec[16] = {
562         [1] = 0x29, /* keyboard */
563         [4] = 0x2b, /* serial */
564         [6] = 0x27, /* floppy */
565         [7] = 0x22, /* parallel */
566         [12] = 0x2a, /* mouse */
567     };
568     qemu_irq *irqs = opaque;
569     int ivec;
570 
571     assert(n < 16);
572     ivec = isa_irq_to_ivec[n];
573     EBUS_DPRINTF("Set ISA IRQ %d level %d -> ivec 0x%x\n", n, level, ivec);
574     if (ivec) {
575         qemu_set_irq(irqs[ivec], level);
576     }
577 }
578 
579 /* EBUS (Eight bit bus) bridge */
580 static ISABus *
581 pci_ebus_init(PCIBus *bus, int devfn, qemu_irq *irqs)
582 {
583     qemu_irq *isa_irq;
584     PCIDevice *pci_dev;
585     ISABus *isa_bus;
586 
587     pci_dev = pci_create_simple(bus, devfn, "ebus");
588     isa_bus = ISA_BUS(qdev_get_child_bus(DEVICE(pci_dev), "isa.0"));
589     isa_irq = qemu_allocate_irqs(isa_irq_handler, irqs, 16);
590     isa_bus_irqs(isa_bus, isa_irq);
591     return isa_bus;
592 }
593 
594 static int
595 pci_ebus_init1(PCIDevice *pci_dev)
596 {
597     EbusState *s = DO_UPCAST(EbusState, pci_dev, pci_dev);
598 
599     isa_bus_new(DEVICE(pci_dev), get_system_memory(),
600                 pci_address_space_io(pci_dev));
601 
602     pci_dev->config[0x04] = 0x06; // command = bus master, pci mem
603     pci_dev->config[0x05] = 0x00;
604     pci_dev->config[0x06] = 0xa0; // status = fast back-to-back, 66MHz, no error
605     pci_dev->config[0x07] = 0x03; // status = medium devsel
606     pci_dev->config[0x09] = 0x00; // programming i/f
607     pci_dev->config[0x0D] = 0x0a; // latency_timer
608 
609     memory_region_init_alias(&s->bar0, OBJECT(s), "bar0", get_system_io(),
610                              0, 0x1000000);
611     pci_register_bar(pci_dev, 0, PCI_BASE_ADDRESS_SPACE_MEMORY, &s->bar0);
612     memory_region_init_alias(&s->bar1, OBJECT(s), "bar1", get_system_io(),
613                              0, 0x1000);
614     pci_register_bar(pci_dev, 1, PCI_BASE_ADDRESS_SPACE_IO, &s->bar1);
615     return 0;
616 }
617 
618 static void ebus_class_init(ObjectClass *klass, void *data)
619 {
620     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
621 
622     k->init = pci_ebus_init1;
623     k->vendor_id = PCI_VENDOR_ID_SUN;
624     k->device_id = PCI_DEVICE_ID_SUN_EBUS;
625     k->revision = 0x01;
626     k->class_id = PCI_CLASS_BRIDGE_OTHER;
627 }
628 
629 static const TypeInfo ebus_info = {
630     .name          = "ebus",
631     .parent        = TYPE_PCI_DEVICE,
632     .instance_size = sizeof(EbusState),
633     .class_init    = ebus_class_init,
634 };
635 
636 #define TYPE_OPENPROM "openprom"
637 #define OPENPROM(obj) OBJECT_CHECK(PROMState, (obj), TYPE_OPENPROM)
638 
639 typedef struct PROMState {
640     SysBusDevice parent_obj;
641 
642     MemoryRegion prom;
643 } PROMState;
644 
645 static uint64_t translate_prom_address(void *opaque, uint64_t addr)
646 {
647     hwaddr *base_addr = (hwaddr *)opaque;
648     return addr + *base_addr - PROM_VADDR;
649 }
650 
651 /* Boot PROM (OpenBIOS) */
652 static void prom_init(hwaddr addr, const char *bios_name)
653 {
654     DeviceState *dev;
655     SysBusDevice *s;
656     char *filename;
657     int ret;
658 
659     dev = qdev_create(NULL, TYPE_OPENPROM);
660     qdev_init_nofail(dev);
661     s = SYS_BUS_DEVICE(dev);
662 
663     sysbus_mmio_map(s, 0, addr);
664 
665     /* load boot prom */
666     if (bios_name == NULL) {
667         bios_name = PROM_FILENAME;
668     }
669     filename = qemu_find_file(QEMU_FILE_TYPE_BIOS, bios_name);
670     if (filename) {
671         ret = load_elf(filename, translate_prom_address, &addr,
672                        NULL, NULL, NULL, 1, ELF_MACHINE, 0);
673         if (ret < 0 || ret > PROM_SIZE_MAX) {
674             ret = load_image_targphys(filename, addr, PROM_SIZE_MAX);
675         }
676         g_free(filename);
677     } else {
678         ret = -1;
679     }
680     if (ret < 0 || ret > PROM_SIZE_MAX) {
681         fprintf(stderr, "qemu: could not load prom '%s'\n", bios_name);
682         exit(1);
683     }
684 }
685 
686 static int prom_init1(SysBusDevice *dev)
687 {
688     PROMState *s = OPENPROM(dev);
689 
690     memory_region_init_ram(&s->prom, OBJECT(s), "sun4u.prom", PROM_SIZE_MAX,
691                            &error_abort);
692     vmstate_register_ram_global(&s->prom);
693     memory_region_set_readonly(&s->prom, true);
694     sysbus_init_mmio(dev, &s->prom);
695     return 0;
696 }
697 
698 static Property prom_properties[] = {
699     {/* end of property list */},
700 };
701 
702 static void prom_class_init(ObjectClass *klass, void *data)
703 {
704     DeviceClass *dc = DEVICE_CLASS(klass);
705     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
706 
707     k->init = prom_init1;
708     dc->props = prom_properties;
709 }
710 
711 static const TypeInfo prom_info = {
712     .name          = TYPE_OPENPROM,
713     .parent        = TYPE_SYS_BUS_DEVICE,
714     .instance_size = sizeof(PROMState),
715     .class_init    = prom_class_init,
716 };
717 
718 
719 #define TYPE_SUN4U_MEMORY "memory"
720 #define SUN4U_RAM(obj) OBJECT_CHECK(RamDevice, (obj), TYPE_SUN4U_MEMORY)
721 
722 typedef struct RamDevice {
723     SysBusDevice parent_obj;
724 
725     MemoryRegion ram;
726     uint64_t size;
727 } RamDevice;
728 
729 /* System RAM */
730 static int ram_init1(SysBusDevice *dev)
731 {
732     RamDevice *d = SUN4U_RAM(dev);
733 
734     memory_region_init_ram(&d->ram, OBJECT(d), "sun4u.ram", d->size,
735                            &error_abort);
736     vmstate_register_ram_global(&d->ram);
737     sysbus_init_mmio(dev, &d->ram);
738     return 0;
739 }
740 
741 static void ram_init(hwaddr addr, ram_addr_t RAM_size)
742 {
743     DeviceState *dev;
744     SysBusDevice *s;
745     RamDevice *d;
746 
747     /* allocate RAM */
748     dev = qdev_create(NULL, TYPE_SUN4U_MEMORY);
749     s = SYS_BUS_DEVICE(dev);
750 
751     d = SUN4U_RAM(dev);
752     d->size = RAM_size;
753     qdev_init_nofail(dev);
754 
755     sysbus_mmio_map(s, 0, addr);
756 }
757 
758 static Property ram_properties[] = {
759     DEFINE_PROP_UINT64("size", RamDevice, size, 0),
760     DEFINE_PROP_END_OF_LIST(),
761 };
762 
763 static void ram_class_init(ObjectClass *klass, void *data)
764 {
765     DeviceClass *dc = DEVICE_CLASS(klass);
766     SysBusDeviceClass *k = SYS_BUS_DEVICE_CLASS(klass);
767 
768     k->init = ram_init1;
769     dc->props = ram_properties;
770 }
771 
772 static const TypeInfo ram_info = {
773     .name          = TYPE_SUN4U_MEMORY,
774     .parent        = TYPE_SYS_BUS_DEVICE,
775     .instance_size = sizeof(RamDevice),
776     .class_init    = ram_class_init,
777 };
778 
779 static SPARCCPU *cpu_devinit(const char *cpu_model, const struct hwdef *hwdef)
780 {
781     SPARCCPU *cpu;
782     CPUSPARCState *env;
783     ResetData *reset_info;
784 
785     uint32_t   tick_frequency = 100*1000000;
786     uint32_t  stick_frequency = 100*1000000;
787     uint32_t hstick_frequency = 100*1000000;
788 
789     if (cpu_model == NULL) {
790         cpu_model = hwdef->default_cpu_model;
791     }
792     cpu = cpu_sparc_init(cpu_model);
793     if (cpu == NULL) {
794         fprintf(stderr, "Unable to find Sparc CPU definition\n");
795         exit(1);
796     }
797     env = &cpu->env;
798 
799     env->tick = cpu_timer_create("tick", cpu, tick_irq,
800                                   tick_frequency, TICK_NPT_MASK);
801 
802     env->stick = cpu_timer_create("stick", cpu, stick_irq,
803                                    stick_frequency, TICK_INT_DIS);
804 
805     env->hstick = cpu_timer_create("hstick", cpu, hstick_irq,
806                                     hstick_frequency, TICK_INT_DIS);
807 
808     reset_info = g_malloc0(sizeof(ResetData));
809     reset_info->cpu = cpu;
810     reset_info->prom_addr = hwdef->prom_addr;
811     qemu_register_reset(main_cpu_reset, reset_info);
812 
813     return cpu;
814 }
815 
816 static void sun4uv_init(MemoryRegion *address_space_mem,
817                         MachineState *machine,
818                         const struct hwdef *hwdef)
819 {
820     SPARCCPU *cpu;
821     M48t59State *nvram;
822     unsigned int i;
823     uint64_t initrd_addr, initrd_size, kernel_addr, kernel_size, kernel_entry;
824     PCIBus *pci_bus, *pci_bus2, *pci_bus3;
825     ISABus *isa_bus;
826     qemu_irq *ivec_irqs, *pbm_irqs;
827     DriveInfo *hd[MAX_IDE_BUS * MAX_IDE_DEVS];
828     DriveInfo *fd[MAX_FD];
829     FWCfgState *fw_cfg;
830 
831     /* init CPUs */
832     cpu = cpu_devinit(machine->cpu_model, hwdef);
833 
834     /* set up devices */
835     ram_init(0, machine->ram_size);
836 
837     prom_init(hwdef->prom_addr, bios_name);
838 
839     ivec_irqs = qemu_allocate_irqs(cpu_set_ivec_irq, cpu, IVEC_MAX);
840     pci_bus = pci_apb_init(APB_SPECIAL_BASE, APB_MEM_BASE, ivec_irqs, &pci_bus2,
841                            &pci_bus3, &pbm_irqs);
842     pci_vga_init(pci_bus);
843 
844     // XXX Should be pci_bus3
845     isa_bus = pci_ebus_init(pci_bus, -1, pbm_irqs);
846 
847     i = 0;
848     if (hwdef->console_serial_base) {
849         serial_mm_init(address_space_mem, hwdef->console_serial_base, 0,
850                        NULL, 115200, serial_hds[i], DEVICE_BIG_ENDIAN);
851         i++;
852     }
853 
854     serial_hds_isa_init(isa_bus, MAX_SERIAL_PORTS);
855     parallel_hds_isa_init(isa_bus, MAX_PARALLEL_PORTS);
856 
857     for(i = 0; i < nb_nics; i++)
858         pci_nic_init_nofail(&nd_table[i], pci_bus, "ne2k_pci", NULL);
859 
860     ide_drive_get(hd, ARRAY_SIZE(hd));
861 
862     pci_cmd646_ide_init(pci_bus, hd, 1);
863 
864     isa_create_simple(isa_bus, "i8042");
865     for(i = 0; i < MAX_FD; i++) {
866         fd[i] = drive_get(IF_FLOPPY, 0, i);
867     }
868     fdctrl_init_isa(isa_bus, fd);
869     nvram = m48t59_init_isa(isa_bus, 0x0074, NVRAM_SIZE, 59);
870 
871     initrd_size = 0;
872     initrd_addr = 0;
873     kernel_size = sun4u_load_kernel(machine->kernel_filename,
874                                     machine->initrd_filename,
875                                     ram_size, &initrd_size, &initrd_addr,
876                                     &kernel_addr, &kernel_entry);
877 
878     sun4u_NVRAM_set_params(nvram, NVRAM_SIZE, "Sun4u", machine->ram_size,
879                            machine->boot_order,
880                            kernel_addr, kernel_size,
881                            machine->kernel_cmdline,
882                            initrd_addr, initrd_size,
883                            /* XXX: need an option to load a NVRAM image */
884                            0,
885                            graphic_width, graphic_height, graphic_depth,
886                            (uint8_t *)&nd_table[0].macaddr);
887 
888     fw_cfg = fw_cfg_init_io(BIOS_CFG_IOPORT);
889     fw_cfg_add_i16(fw_cfg, FW_CFG_MAX_CPUS, (uint16_t)max_cpus);
890     fw_cfg_add_i32(fw_cfg, FW_CFG_ID, 1);
891     fw_cfg_add_i64(fw_cfg, FW_CFG_RAM_SIZE, (uint64_t)ram_size);
892     fw_cfg_add_i16(fw_cfg, FW_CFG_MACHINE_ID, hwdef->machine_id);
893     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_ADDR, kernel_entry);
894     fw_cfg_add_i64(fw_cfg, FW_CFG_KERNEL_SIZE, kernel_size);
895     if (machine->kernel_cmdline) {
896         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE,
897                        strlen(machine->kernel_cmdline) + 1);
898         fw_cfg_add_string(fw_cfg, FW_CFG_CMDLINE_DATA, machine->kernel_cmdline);
899     } else {
900         fw_cfg_add_i32(fw_cfg, FW_CFG_CMDLINE_SIZE, 0);
901     }
902     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_ADDR, initrd_addr);
903     fw_cfg_add_i64(fw_cfg, FW_CFG_INITRD_SIZE, initrd_size);
904     fw_cfg_add_i16(fw_cfg, FW_CFG_BOOT_DEVICE, machine->boot_order[0]);
905 
906     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_WIDTH, graphic_width);
907     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_HEIGHT, graphic_height);
908     fw_cfg_add_i16(fw_cfg, FW_CFG_SPARC64_DEPTH, graphic_depth);
909 
910     qemu_register_boot_set(fw_cfg_boot_set, fw_cfg);
911 }
912 
913 enum {
914     sun4u_id = 0,
915     sun4v_id = 64,
916     niagara_id,
917 };
918 
919 static const struct hwdef hwdefs[] = {
920     /* Sun4u generic PC-like machine */
921     {
922         .default_cpu_model = "TI UltraSparc IIi",
923         .machine_id = sun4u_id,
924         .prom_addr = 0x1fff0000000ULL,
925         .console_serial_base = 0,
926     },
927     /* Sun4v generic PC-like machine */
928     {
929         .default_cpu_model = "Sun UltraSparc T1",
930         .machine_id = sun4v_id,
931         .prom_addr = 0x1fff0000000ULL,
932         .console_serial_base = 0,
933     },
934     /* Sun4v generic Niagara machine */
935     {
936         .default_cpu_model = "Sun UltraSparc T1",
937         .machine_id = niagara_id,
938         .prom_addr = 0xfff0000000ULL,
939         .console_serial_base = 0xfff0c2c000ULL,
940     },
941 };
942 
943 /* Sun4u hardware initialisation */
944 static void sun4u_init(MachineState *machine)
945 {
946     sun4uv_init(get_system_memory(), machine, &hwdefs[0]);
947 }
948 
949 /* Sun4v hardware initialisation */
950 static void sun4v_init(MachineState *machine)
951 {
952     sun4uv_init(get_system_memory(), machine, &hwdefs[1]);
953 }
954 
955 /* Niagara hardware initialisation */
956 static void niagara_init(MachineState *machine)
957 {
958     sun4uv_init(get_system_memory(), machine, &hwdefs[2]);
959 }
960 
961 static QEMUMachine sun4u_machine = {
962     .name = "sun4u",
963     .desc = "Sun4u platform",
964     .init = sun4u_init,
965     .max_cpus = 1, // XXX for now
966     .is_default = 1,
967     .default_boot_order = "c",
968 };
969 
970 static QEMUMachine sun4v_machine = {
971     .name = "sun4v",
972     .desc = "Sun4v platform",
973     .init = sun4v_init,
974     .max_cpus = 1, // XXX for now
975     .default_boot_order = "c",
976 };
977 
978 static QEMUMachine niagara_machine = {
979     .name = "Niagara",
980     .desc = "Sun4v platform, Niagara",
981     .init = niagara_init,
982     .max_cpus = 1, // XXX for now
983     .default_boot_order = "c",
984 };
985 
986 static void sun4u_register_types(void)
987 {
988     type_register_static(&ebus_info);
989     type_register_static(&prom_info);
990     type_register_static(&ram_info);
991 }
992 
993 static void sun4u_machine_init(void)
994 {
995     qemu_register_machine(&sun4u_machine);
996     qemu_register_machine(&sun4v_machine);
997     qemu_register_machine(&niagara_machine);
998 }
999 
1000 type_init(sun4u_register_types)
1001 machine_init(sun4u_machine_init);
1002