xref: /qemu/hw/ssi/aspeed_smc.c (revision ab9056ff)
1 /*
2  * ASPEED AST2400 SMC Controller (SPI Flash Only)
3  *
4  * Copyright (C) 2016 IBM Corp.
5  *
6  * Permission is hereby granted, free of charge, to any person obtaining a copy
7  * of this software and associated documentation files (the "Software"), to deal
8  * in the Software without restriction, including without limitation the rights
9  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
10  * copies of the Software, and to permit persons to whom the Software is
11  * furnished to do so, subject to the following conditions:
12  *
13  * The above copyright notice and this permission notice shall be included in
14  * all copies or substantial portions of the Software.
15  *
16  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
17  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
18  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
19  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
20  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
21  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
22  * THE SOFTWARE.
23  */
24 
25 #include "qemu/osdep.h"
26 #include "hw/sysbus.h"
27 #include "migration/vmstate.h"
28 #include "qemu/log.h"
29 #include "qemu/module.h"
30 #include "qemu/error-report.h"
31 #include "qapi/error.h"
32 #include "exec/address-spaces.h"
33 #include "qemu/units.h"
34 
35 #include "hw/irq.h"
36 #include "hw/qdev-properties.h"
37 #include "hw/ssi/aspeed_smc.h"
38 
39 /* CE Type Setting Register */
40 #define R_CONF            (0x00 / 4)
41 #define   CONF_LEGACY_DISABLE  (1 << 31)
42 #define   CONF_ENABLE_W4       20
43 #define   CONF_ENABLE_W3       19
44 #define   CONF_ENABLE_W2       18
45 #define   CONF_ENABLE_W1       17
46 #define   CONF_ENABLE_W0       16
47 #define   CONF_FLASH_TYPE4     8
48 #define   CONF_FLASH_TYPE3     6
49 #define   CONF_FLASH_TYPE2     4
50 #define   CONF_FLASH_TYPE1     2
51 #define   CONF_FLASH_TYPE0     0
52 #define      CONF_FLASH_TYPE_NOR   0x0
53 #define      CONF_FLASH_TYPE_NAND  0x1
54 #define      CONF_FLASH_TYPE_SPI   0x2 /* AST2600 is SPI only */
55 
56 /* CE Control Register */
57 #define R_CE_CTRL            (0x04 / 4)
58 #define   CTRL_EXTENDED4       4  /* 32 bit addressing for SPI */
59 #define   CTRL_EXTENDED3       3  /* 32 bit addressing for SPI */
60 #define   CTRL_EXTENDED2       2  /* 32 bit addressing for SPI */
61 #define   CTRL_EXTENDED1       1  /* 32 bit addressing for SPI */
62 #define   CTRL_EXTENDED0       0  /* 32 bit addressing for SPI */
63 
64 /* Interrupt Control and Status Register */
65 #define R_INTR_CTRL       (0x08 / 4)
66 #define   INTR_CTRL_DMA_STATUS            (1 << 11)
67 #define   INTR_CTRL_CMD_ABORT_STATUS      (1 << 10)
68 #define   INTR_CTRL_WRITE_PROTECT_STATUS  (1 << 9)
69 #define   INTR_CTRL_DMA_EN                (1 << 3)
70 #define   INTR_CTRL_CMD_ABORT_EN          (1 << 2)
71 #define   INTR_CTRL_WRITE_PROTECT_EN      (1 << 1)
72 
73 /* CEx Control Register */
74 #define R_CTRL0           (0x10 / 4)
75 #define   CTRL_IO_QPI              (1 << 31)
76 #define   CTRL_IO_QUAD_DATA        (1 << 30)
77 #define   CTRL_IO_DUAL_DATA        (1 << 29)
78 #define   CTRL_IO_DUAL_ADDR_DATA   (1 << 28) /* Includes dummies */
79 #define   CTRL_IO_QUAD_ADDR_DATA   (1 << 28) /* Includes dummies */
80 #define   CTRL_CMD_SHIFT           16
81 #define   CTRL_CMD_MASK            0xff
82 #define   CTRL_DUMMY_HIGH_SHIFT    14
83 #define   CTRL_AST2400_SPI_4BYTE   (1 << 13)
84 #define CE_CTRL_CLOCK_FREQ_SHIFT   8
85 #define CE_CTRL_CLOCK_FREQ_MASK    0xf
86 #define CE_CTRL_CLOCK_FREQ(div)                                         \
87     (((div) & CE_CTRL_CLOCK_FREQ_MASK) << CE_CTRL_CLOCK_FREQ_SHIFT)
88 #define   CTRL_DUMMY_LOW_SHIFT     6 /* 2 bits [7:6] */
89 #define   CTRL_CE_STOP_ACTIVE      (1 << 2)
90 #define   CTRL_CMD_MODE_MASK       0x3
91 #define     CTRL_READMODE          0x0
92 #define     CTRL_FREADMODE         0x1
93 #define     CTRL_WRITEMODE         0x2
94 #define     CTRL_USERMODE          0x3
95 #define R_CTRL1           (0x14 / 4)
96 #define R_CTRL2           (0x18 / 4)
97 #define R_CTRL3           (0x1C / 4)
98 #define R_CTRL4           (0x20 / 4)
99 
100 /* CEx Segment Address Register */
101 #define R_SEG_ADDR0       (0x30 / 4)
102 #define   SEG_END_SHIFT        24   /* 8MB units */
103 #define   SEG_END_MASK         0xff
104 #define   SEG_START_SHIFT      16   /* address bit [A29-A23] */
105 #define   SEG_START_MASK       0xff
106 #define R_SEG_ADDR1       (0x34 / 4)
107 #define R_SEG_ADDR2       (0x38 / 4)
108 #define R_SEG_ADDR3       (0x3C / 4)
109 #define R_SEG_ADDR4       (0x40 / 4)
110 
111 /* Misc Control Register #1 */
112 #define R_MISC_CTRL1      (0x50 / 4)
113 
114 /* SPI dummy cycle data */
115 #define R_DUMMY_DATA      (0x54 / 4)
116 
117 /* DMA Control/Status Register */
118 #define R_DMA_CTRL        (0x80 / 4)
119 #define   DMA_CTRL_DELAY_MASK   0xf
120 #define   DMA_CTRL_DELAY_SHIFT  8
121 #define   DMA_CTRL_FREQ_MASK    0xf
122 #define   DMA_CTRL_FREQ_SHIFT   4
123 #define   DMA_CTRL_CALIB        (1 << 3)
124 #define   DMA_CTRL_CKSUM        (1 << 2)
125 #define   DMA_CTRL_WRITE        (1 << 1)
126 #define   DMA_CTRL_ENABLE       (1 << 0)
127 
128 /* DMA Flash Side Address */
129 #define R_DMA_FLASH_ADDR  (0x84 / 4)
130 
131 /* DMA DRAM Side Address */
132 #define R_DMA_DRAM_ADDR   (0x88 / 4)
133 
134 /* DMA Length Register */
135 #define R_DMA_LEN         (0x8C / 4)
136 
137 /* Checksum Calculation Result */
138 #define R_DMA_CHECKSUM    (0x90 / 4)
139 
140 /* Misc Control Register #2 */
141 #define R_TIMINGS         (0x94 / 4)
142 
143 /* SPI controller registers and bits (AST2400) */
144 #define R_SPI_CONF        (0x00 / 4)
145 #define   SPI_CONF_ENABLE_W0   0
146 #define R_SPI_CTRL0       (0x4 / 4)
147 #define R_SPI_MISC_CTRL   (0x10 / 4)
148 #define R_SPI_TIMINGS     (0x14 / 4)
149 
150 #define ASPEED_SMC_R_SPI_MAX (0x20 / 4)
151 #define ASPEED_SMC_R_SMC_MAX (0x20 / 4)
152 
153 #define ASPEED_SOC_SMC_FLASH_BASE   0x10000000
154 #define ASPEED_SOC_FMC_FLASH_BASE   0x20000000
155 #define ASPEED_SOC_SPI_FLASH_BASE   0x30000000
156 #define ASPEED_SOC_SPI2_FLASH_BASE  0x38000000
157 
158 /*
159  * DMA DRAM addresses should be 4 bytes aligned and the valid address
160  * range is 0x40000000 - 0x5FFFFFFF (AST2400)
161  *          0x80000000 - 0xBFFFFFFF (AST2500)
162  *
163  * DMA flash addresses should be 4 bytes aligned and the valid address
164  * range is 0x20000000 - 0x2FFFFFFF.
165  *
166  * DMA length is from 4 bytes to 32MB
167  *   0: 4 bytes
168  *   0x7FFFFF: 32M bytes
169  */
170 #define DMA_DRAM_ADDR(s, val)   ((s)->sdram_base | \
171                                  ((val) & (s)->ctrl->dma_dram_mask))
172 #define DMA_FLASH_ADDR(s, val)  ((s)->ctrl->flash_window_base | \
173                                 ((val) & (s)->ctrl->dma_flash_mask))
174 #define DMA_LENGTH(val)         ((val) & 0x01FFFFFC)
175 
176 /* Flash opcodes. */
177 #define SPI_OP_READ       0x03    /* Read data bytes (low frequency) */
178 
179 #define SNOOP_OFF         0xFF
180 #define SNOOP_START       0x0
181 
182 /*
183  * Default segments mapping addresses and size for each slave per
184  * controller. These can be changed when board is initialized with the
185  * Segment Address Registers.
186  */
187 static const AspeedSegments aspeed_segments_legacy[] = {
188     { 0x10000000, 32 * 1024 * 1024 },
189 };
190 
191 static const AspeedSegments aspeed_segments_fmc[] = {
192     { 0x20000000, 64 * 1024 * 1024 }, /* start address is readonly */
193     { 0x24000000, 32 * 1024 * 1024 },
194     { 0x26000000, 32 * 1024 * 1024 },
195     { 0x28000000, 32 * 1024 * 1024 },
196     { 0x2A000000, 32 * 1024 * 1024 }
197 };
198 
199 static const AspeedSegments aspeed_segments_spi[] = {
200     { 0x30000000, 64 * 1024 * 1024 },
201 };
202 
203 static const AspeedSegments aspeed_segments_ast2500_fmc[] = {
204     { 0x20000000, 128 * 1024 * 1024 }, /* start address is readonly */
205     { 0x28000000,  32 * 1024 * 1024 },
206     { 0x2A000000,  32 * 1024 * 1024 },
207 };
208 
209 static const AspeedSegments aspeed_segments_ast2500_spi1[] = {
210     { 0x30000000, 32 * 1024 * 1024 }, /* start address is readonly */
211     { 0x32000000, 96 * 1024 * 1024 }, /* end address is readonly */
212 };
213 
214 static const AspeedSegments aspeed_segments_ast2500_spi2[] = {
215     { 0x38000000, 32 * 1024 * 1024 }, /* start address is readonly */
216     { 0x3A000000, 96 * 1024 * 1024 }, /* end address is readonly */
217 };
218 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
219                                           const AspeedSegments *seg);
220 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s, uint32_t reg,
221                                       AspeedSegments *seg);
222 
223 /*
224  * AST2600 definitions
225  */
226 #define ASPEED26_SOC_FMC_FLASH_BASE   0x20000000
227 #define ASPEED26_SOC_SPI_FLASH_BASE   0x30000000
228 #define ASPEED26_SOC_SPI2_FLASH_BASE  0x50000000
229 
230 static const AspeedSegments aspeed_segments_ast2600_fmc[] = {
231     { 0x0, 128 * MiB }, /* start address is readonly */
232     { 0x0, 0 }, /* disabled */
233     { 0x0, 0 }, /* disabled */
234 };
235 
236 static const AspeedSegments aspeed_segments_ast2600_spi1[] = {
237     { 0x0, 128 * MiB }, /* start address is readonly */
238     { 0x0, 0 }, /* disabled */
239 };
240 
241 static const AspeedSegments aspeed_segments_ast2600_spi2[] = {
242     { 0x0, 128 * MiB }, /* start address is readonly */
243     { 0x0, 0 }, /* disabled */
244     { 0x0, 0 }, /* disabled */
245 };
246 
247 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
248                                                const AspeedSegments *seg);
249 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
250                                            uint32_t reg, AspeedSegments *seg);
251 
252 static const AspeedSMCController controllers[] = {
253     {
254         .name              = "aspeed.smc-ast2400",
255         .r_conf            = R_CONF,
256         .r_ce_ctrl         = R_CE_CTRL,
257         .r_ctrl0           = R_CTRL0,
258         .r_timings         = R_TIMINGS,
259         .conf_enable_w0    = CONF_ENABLE_W0,
260         .max_slaves        = 5,
261         .segments          = aspeed_segments_legacy,
262         .flash_window_base = ASPEED_SOC_SMC_FLASH_BASE,
263         .flash_window_size = 0x6000000,
264         .has_dma           = false,
265         .nregs             = ASPEED_SMC_R_SMC_MAX,
266         .segment_to_reg    = aspeed_smc_segment_to_reg,
267         .reg_to_segment    = aspeed_smc_reg_to_segment,
268     }, {
269         .name              = "aspeed.fmc-ast2400",
270         .r_conf            = R_CONF,
271         .r_ce_ctrl         = R_CE_CTRL,
272         .r_ctrl0           = R_CTRL0,
273         .r_timings         = R_TIMINGS,
274         .conf_enable_w0    = CONF_ENABLE_W0,
275         .max_slaves        = 5,
276         .segments          = aspeed_segments_fmc,
277         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
278         .flash_window_size = 0x10000000,
279         .has_dma           = true,
280         .dma_flash_mask    = 0x0FFFFFFC,
281         .dma_dram_mask     = 0x1FFFFFFC,
282         .nregs             = ASPEED_SMC_R_MAX,
283         .segment_to_reg    = aspeed_smc_segment_to_reg,
284         .reg_to_segment    = aspeed_smc_reg_to_segment,
285     }, {
286         .name              = "aspeed.spi1-ast2400",
287         .r_conf            = R_SPI_CONF,
288         .r_ce_ctrl         = 0xff,
289         .r_ctrl0           = R_SPI_CTRL0,
290         .r_timings         = R_SPI_TIMINGS,
291         .conf_enable_w0    = SPI_CONF_ENABLE_W0,
292         .max_slaves        = 1,
293         .segments          = aspeed_segments_spi,
294         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
295         .flash_window_size = 0x10000000,
296         .has_dma           = false,
297         .nregs             = ASPEED_SMC_R_SPI_MAX,
298         .segment_to_reg    = aspeed_smc_segment_to_reg,
299         .reg_to_segment    = aspeed_smc_reg_to_segment,
300     }, {
301         .name              = "aspeed.fmc-ast2500",
302         .r_conf            = R_CONF,
303         .r_ce_ctrl         = R_CE_CTRL,
304         .r_ctrl0           = R_CTRL0,
305         .r_timings         = R_TIMINGS,
306         .conf_enable_w0    = CONF_ENABLE_W0,
307         .max_slaves        = 3,
308         .segments          = aspeed_segments_ast2500_fmc,
309         .flash_window_base = ASPEED_SOC_FMC_FLASH_BASE,
310         .flash_window_size = 0x10000000,
311         .has_dma           = true,
312         .dma_flash_mask    = 0x0FFFFFFC,
313         .dma_dram_mask     = 0x3FFFFFFC,
314         .nregs             = ASPEED_SMC_R_MAX,
315         .segment_to_reg    = aspeed_smc_segment_to_reg,
316         .reg_to_segment    = aspeed_smc_reg_to_segment,
317     }, {
318         .name              = "aspeed.spi1-ast2500",
319         .r_conf            = R_CONF,
320         .r_ce_ctrl         = R_CE_CTRL,
321         .r_ctrl0           = R_CTRL0,
322         .r_timings         = R_TIMINGS,
323         .conf_enable_w0    = CONF_ENABLE_W0,
324         .max_slaves        = 2,
325         .segments          = aspeed_segments_ast2500_spi1,
326         .flash_window_base = ASPEED_SOC_SPI_FLASH_BASE,
327         .flash_window_size = 0x8000000,
328         .has_dma           = false,
329         .nregs             = ASPEED_SMC_R_MAX,
330         .segment_to_reg    = aspeed_smc_segment_to_reg,
331         .reg_to_segment    = aspeed_smc_reg_to_segment,
332     }, {
333         .name              = "aspeed.spi2-ast2500",
334         .r_conf            = R_CONF,
335         .r_ce_ctrl         = R_CE_CTRL,
336         .r_ctrl0           = R_CTRL0,
337         .r_timings         = R_TIMINGS,
338         .conf_enable_w0    = CONF_ENABLE_W0,
339         .max_slaves        = 2,
340         .segments          = aspeed_segments_ast2500_spi2,
341         .flash_window_base = ASPEED_SOC_SPI2_FLASH_BASE,
342         .flash_window_size = 0x8000000,
343         .has_dma           = false,
344         .nregs             = ASPEED_SMC_R_MAX,
345         .segment_to_reg    = aspeed_smc_segment_to_reg,
346         .reg_to_segment    = aspeed_smc_reg_to_segment,
347     }, {
348         .name              = "aspeed.fmc-ast2600",
349         .r_conf            = R_CONF,
350         .r_ce_ctrl         = R_CE_CTRL,
351         .r_ctrl0           = R_CTRL0,
352         .r_timings         = R_TIMINGS,
353         .conf_enable_w0    = CONF_ENABLE_W0,
354         .max_slaves        = 3,
355         .segments          = aspeed_segments_ast2600_fmc,
356         .flash_window_base = ASPEED26_SOC_FMC_FLASH_BASE,
357         .flash_window_size = 0x10000000,
358         .has_dma           = true,
359         .nregs             = ASPEED_SMC_R_MAX,
360         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
361         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
362     }, {
363         .name              = "aspeed.spi1-ast2600",
364         .r_conf            = R_CONF,
365         .r_ce_ctrl         = R_CE_CTRL,
366         .r_ctrl0           = R_CTRL0,
367         .r_timings         = R_TIMINGS,
368         .conf_enable_w0    = CONF_ENABLE_W0,
369         .max_slaves        = 2,
370         .segments          = aspeed_segments_ast2600_spi1,
371         .flash_window_base = ASPEED26_SOC_SPI_FLASH_BASE,
372         .flash_window_size = 0x10000000,
373         .has_dma           = false,
374         .nregs             = ASPEED_SMC_R_MAX,
375         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
376         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
377     }, {
378         .name              = "aspeed.spi2-ast2600",
379         .r_conf            = R_CONF,
380         .r_ce_ctrl         = R_CE_CTRL,
381         .r_ctrl0           = R_CTRL0,
382         .r_timings         = R_TIMINGS,
383         .conf_enable_w0    = CONF_ENABLE_W0,
384         .max_slaves        = 3,
385         .segments          = aspeed_segments_ast2600_spi2,
386         .flash_window_base = ASPEED26_SOC_SPI2_FLASH_BASE,
387         .flash_window_size = 0x10000000,
388         .has_dma           = false,
389         .nregs             = ASPEED_SMC_R_MAX,
390         .segment_to_reg    = aspeed_2600_smc_segment_to_reg,
391         .reg_to_segment    = aspeed_2600_smc_reg_to_segment,
392     },
393 };
394 
395 /*
396  * The Segment Registers of the AST2400 and AST2500 have a 8MB
397  * unit. The address range of a flash SPI slave is encoded with
398  * absolute addresses which should be part of the overall controller
399  * window.
400  */
401 static uint32_t aspeed_smc_segment_to_reg(const AspeedSMCState *s,
402                                           const AspeedSegments *seg)
403 {
404     uint32_t reg = 0;
405     reg |= ((seg->addr >> 23) & SEG_START_MASK) << SEG_START_SHIFT;
406     reg |= (((seg->addr + seg->size) >> 23) & SEG_END_MASK) << SEG_END_SHIFT;
407     return reg;
408 }
409 
410 static void aspeed_smc_reg_to_segment(const AspeedSMCState *s,
411                                       uint32_t reg, AspeedSegments *seg)
412 {
413     seg->addr = ((reg >> SEG_START_SHIFT) & SEG_START_MASK) << 23;
414     seg->size = (((reg >> SEG_END_SHIFT) & SEG_END_MASK) << 23) - seg->addr;
415 }
416 
417 /*
418  * The Segment Registers of the AST2600 have a 1MB unit. The address
419  * range of a flash SPI slave is encoded with offsets in the overall
420  * controller window. The previous SoC AST2400 and AST2500 used
421  * absolute addresses. Only bits [27:20] are relevant and the end
422  * address is an upper bound limit.
423  */
424 #define AST2600_SEG_ADDR_MASK 0x0ff00000
425 
426 static uint32_t aspeed_2600_smc_segment_to_reg(const AspeedSMCState *s,
427                                                const AspeedSegments *seg)
428 {
429     uint32_t reg = 0;
430 
431     /* Disabled segments have a nil register */
432     if (!seg->size) {
433         return 0;
434     }
435 
436     reg |= (seg->addr & AST2600_SEG_ADDR_MASK) >> 16; /* start offset */
437     reg |= (seg->addr + seg->size - 1) & AST2600_SEG_ADDR_MASK; /* end offset */
438     return reg;
439 }
440 
441 static void aspeed_2600_smc_reg_to_segment(const AspeedSMCState *s,
442                                            uint32_t reg, AspeedSegments *seg)
443 {
444     uint32_t start_offset = (reg << 16) & AST2600_SEG_ADDR_MASK;
445     uint32_t end_offset = reg & AST2600_SEG_ADDR_MASK;
446 
447     seg->addr = s->ctrl->flash_window_base + start_offset;
448     seg->size = end_offset + MiB - start_offset;
449 }
450 
451 static bool aspeed_smc_flash_overlap(const AspeedSMCState *s,
452                                      const AspeedSegments *new,
453                                      int cs)
454 {
455     AspeedSegments seg;
456     int i;
457 
458     for (i = 0; i < s->ctrl->max_slaves; i++) {
459         if (i == cs) {
460             continue;
461         }
462 
463         s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + i], &seg);
464 
465         if (new->addr + new->size > seg.addr &&
466             new->addr < seg.addr + seg.size) {
467             qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment CS%d [ 0x%"
468                           HWADDR_PRIx" - 0x%"HWADDR_PRIx" ] overlaps with "
469                           "CS%d [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
470                           s->ctrl->name, cs, new->addr, new->addr + new->size,
471                           i, seg.addr, seg.addr + seg.size);
472             return true;
473         }
474     }
475     return false;
476 }
477 
478 static void aspeed_smc_flash_set_segment(AspeedSMCState *s, int cs,
479                                          uint64_t new)
480 {
481     AspeedSMCFlash *fl = &s->flashes[cs];
482     AspeedSegments seg;
483 
484     s->ctrl->reg_to_segment(s, new, &seg);
485 
486     /* The start address of CS0 is read-only */
487     if (cs == 0 && seg.addr != s->ctrl->flash_window_base) {
488         qemu_log_mask(LOG_GUEST_ERROR,
489                       "%s: Tried to change CS0 start address to 0x%"
490                       HWADDR_PRIx "\n", s->ctrl->name, seg.addr);
491         seg.addr = s->ctrl->flash_window_base;
492         new = s->ctrl->segment_to_reg(s, &seg);
493     }
494 
495     /*
496      * The end address of the AST2500 spi controllers is also
497      * read-only.
498      */
499     if ((s->ctrl->segments == aspeed_segments_ast2500_spi1 ||
500          s->ctrl->segments == aspeed_segments_ast2500_spi2) &&
501         cs == s->ctrl->max_slaves &&
502         seg.addr + seg.size != s->ctrl->segments[cs].addr +
503         s->ctrl->segments[cs].size) {
504         qemu_log_mask(LOG_GUEST_ERROR,
505                       "%s: Tried to change CS%d end address to 0x%"
506                       HWADDR_PRIx "\n", s->ctrl->name, cs, seg.addr + seg.size);
507         seg.size = s->ctrl->segments[cs].addr + s->ctrl->segments[cs].size -
508             seg.addr;
509         new = s->ctrl->segment_to_reg(s, &seg);
510     }
511 
512     /* Keep the segment in the overall flash window */
513     if (seg.addr + seg.size <= s->ctrl->flash_window_base ||
514         seg.addr > s->ctrl->flash_window_base + s->ctrl->flash_window_size) {
515         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is invalid : "
516                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
517                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
518         return;
519     }
520 
521     /* Check start address vs. alignment */
522     if (seg.size && !QEMU_IS_ALIGNED(seg.addr, seg.size)) {
523         qemu_log_mask(LOG_GUEST_ERROR, "%s: new segment for CS%d is not "
524                       "aligned : [ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
525                       s->ctrl->name, cs, seg.addr, seg.addr + seg.size);
526     }
527 
528     /* And segments should not overlap (in the specs) */
529     aspeed_smc_flash_overlap(s, &seg, cs);
530 
531     /* All should be fine now to move the region */
532     memory_region_transaction_begin();
533     memory_region_set_size(&fl->mmio, seg.size);
534     memory_region_set_address(&fl->mmio, seg.addr - s->ctrl->flash_window_base);
535     memory_region_set_enabled(&fl->mmio, true);
536     memory_region_transaction_commit();
537 
538     s->regs[R_SEG_ADDR0 + cs] = new;
539 }
540 
541 static uint64_t aspeed_smc_flash_default_read(void *opaque, hwaddr addr,
542                                               unsigned size)
543 {
544     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u"
545                   PRIx64 "\n", __func__, addr, size);
546     return 0;
547 }
548 
549 static void aspeed_smc_flash_default_write(void *opaque, hwaddr addr,
550                                            uint64_t data, unsigned size)
551 {
552     qemu_log_mask(LOG_GUEST_ERROR, "%s: To 0x%" HWADDR_PRIx " of size %u: 0x%"
553                   PRIx64 "\n", __func__, addr, size, data);
554 }
555 
556 static const MemoryRegionOps aspeed_smc_flash_default_ops = {
557     .read = aspeed_smc_flash_default_read,
558     .write = aspeed_smc_flash_default_write,
559     .endianness = DEVICE_LITTLE_ENDIAN,
560     .valid = {
561         .min_access_size = 1,
562         .max_access_size = 4,
563     },
564 };
565 
566 static inline int aspeed_smc_flash_mode(const AspeedSMCFlash *fl)
567 {
568     const AspeedSMCState *s = fl->controller;
569 
570     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CMD_MODE_MASK;
571 }
572 
573 static inline bool aspeed_smc_is_writable(const AspeedSMCFlash *fl)
574 {
575     const AspeedSMCState *s = fl->controller;
576 
577     return s->regs[s->r_conf] & (1 << (s->conf_enable_w0 + fl->id));
578 }
579 
580 static inline int aspeed_smc_flash_cmd(const AspeedSMCFlash *fl)
581 {
582     const AspeedSMCState *s = fl->controller;
583     int cmd = (s->regs[s->r_ctrl0 + fl->id] >> CTRL_CMD_SHIFT) & CTRL_CMD_MASK;
584 
585     /*
586      * In read mode, the default SPI command is READ (0x3). In other
587      * modes, the command should necessarily be defined
588      *
589      * TODO: add support for READ4 (0x13) on AST2600
590      */
591     if (aspeed_smc_flash_mode(fl) == CTRL_READMODE) {
592         cmd = SPI_OP_READ;
593     }
594 
595     if (!cmd) {
596         qemu_log_mask(LOG_GUEST_ERROR, "%s: no command defined for mode %d\n",
597                       __func__, aspeed_smc_flash_mode(fl));
598     }
599 
600     return cmd;
601 }
602 
603 static inline int aspeed_smc_flash_is_4byte(const AspeedSMCFlash *fl)
604 {
605     const AspeedSMCState *s = fl->controller;
606 
607     if (s->ctrl->segments == aspeed_segments_spi) {
608         return s->regs[s->r_ctrl0] & CTRL_AST2400_SPI_4BYTE;
609     } else {
610         return s->regs[s->r_ce_ctrl] & (1 << (CTRL_EXTENDED0 + fl->id));
611     }
612 }
613 
614 static inline bool aspeed_smc_is_ce_stop_active(const AspeedSMCFlash *fl)
615 {
616     const AspeedSMCState *s = fl->controller;
617 
618     return s->regs[s->r_ctrl0 + fl->id] & CTRL_CE_STOP_ACTIVE;
619 }
620 
621 static void aspeed_smc_flash_select(AspeedSMCFlash *fl)
622 {
623     AspeedSMCState *s = fl->controller;
624 
625     s->regs[s->r_ctrl0 + fl->id] &= ~CTRL_CE_STOP_ACTIVE;
626     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
627 }
628 
629 static void aspeed_smc_flash_unselect(AspeedSMCFlash *fl)
630 {
631     AspeedSMCState *s = fl->controller;
632 
633     s->regs[s->r_ctrl0 + fl->id] |= CTRL_CE_STOP_ACTIVE;
634     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
635 }
636 
637 static uint32_t aspeed_smc_check_segment_addr(const AspeedSMCFlash *fl,
638                                               uint32_t addr)
639 {
640     const AspeedSMCState *s = fl->controller;
641     AspeedSegments seg;
642 
643     s->ctrl->reg_to_segment(s, s->regs[R_SEG_ADDR0 + fl->id], &seg);
644     if ((addr % seg.size) != addr) {
645         qemu_log_mask(LOG_GUEST_ERROR,
646                       "%s: invalid address 0x%08x for CS%d segment : "
647                       "[ 0x%"HWADDR_PRIx" - 0x%"HWADDR_PRIx" ]\n",
648                       s->ctrl->name, addr, fl->id, seg.addr,
649                       seg.addr + seg.size);
650         addr %= seg.size;
651     }
652 
653     return addr;
654 }
655 
656 static int aspeed_smc_flash_dummies(const AspeedSMCFlash *fl)
657 {
658     const AspeedSMCState *s = fl->controller;
659     uint32_t r_ctrl0 = s->regs[s->r_ctrl0 + fl->id];
660     uint32_t dummy_high = (r_ctrl0 >> CTRL_DUMMY_HIGH_SHIFT) & 0x1;
661     uint32_t dummy_low = (r_ctrl0 >> CTRL_DUMMY_LOW_SHIFT) & 0x3;
662     uint32_t dummies = ((dummy_high << 2) | dummy_low) * 8;
663 
664     if (r_ctrl0 & CTRL_IO_DUAL_ADDR_DATA) {
665         dummies /= 2;
666     }
667 
668     return dummies;
669 }
670 
671 static void aspeed_smc_flash_setup(AspeedSMCFlash *fl, uint32_t addr)
672 {
673     const AspeedSMCState *s = fl->controller;
674     uint8_t cmd = aspeed_smc_flash_cmd(fl);
675     int i;
676 
677     /* Flash access can not exceed CS segment */
678     addr = aspeed_smc_check_segment_addr(fl, addr);
679 
680     ssi_transfer(s->spi, cmd);
681 
682     if (aspeed_smc_flash_is_4byte(fl)) {
683         ssi_transfer(s->spi, (addr >> 24) & 0xff);
684     }
685     ssi_transfer(s->spi, (addr >> 16) & 0xff);
686     ssi_transfer(s->spi, (addr >> 8) & 0xff);
687     ssi_transfer(s->spi, (addr & 0xff));
688 
689     /*
690      * Use fake transfers to model dummy bytes. The value should
691      * be configured to some non-zero value in fast read mode and
692      * zero in read mode. But, as the HW allows inconsistent
693      * settings, let's check for fast read mode.
694      */
695     if (aspeed_smc_flash_mode(fl) == CTRL_FREADMODE) {
696         for (i = 0; i < aspeed_smc_flash_dummies(fl); i++) {
697             ssi_transfer(fl->controller->spi, s->regs[R_DUMMY_DATA] & 0xff);
698         }
699     }
700 }
701 
702 static uint64_t aspeed_smc_flash_read(void *opaque, hwaddr addr, unsigned size)
703 {
704     AspeedSMCFlash *fl = opaque;
705     AspeedSMCState *s = fl->controller;
706     uint64_t ret = 0;
707     int i;
708 
709     switch (aspeed_smc_flash_mode(fl)) {
710     case CTRL_USERMODE:
711         for (i = 0; i < size; i++) {
712             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
713         }
714         break;
715     case CTRL_READMODE:
716     case CTRL_FREADMODE:
717         aspeed_smc_flash_select(fl);
718         aspeed_smc_flash_setup(fl, addr);
719 
720         for (i = 0; i < size; i++) {
721             ret |= ssi_transfer(s->spi, 0x0) << (8 * i);
722         }
723 
724         aspeed_smc_flash_unselect(fl);
725         break;
726     default:
727         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
728                       __func__, aspeed_smc_flash_mode(fl));
729     }
730 
731     return ret;
732 }
733 
734 /*
735  * TODO (clg@kaod.org): stolen from xilinx_spips.c. Should move to a
736  * common include header.
737  */
738 typedef enum {
739     READ = 0x3,         READ_4 = 0x13,
740     FAST_READ = 0xb,    FAST_READ_4 = 0x0c,
741     DOR = 0x3b,         DOR_4 = 0x3c,
742     QOR = 0x6b,         QOR_4 = 0x6c,
743     DIOR = 0xbb,        DIOR_4 = 0xbc,
744     QIOR = 0xeb,        QIOR_4 = 0xec,
745 
746     PP = 0x2,           PP_4 = 0x12,
747     DPP = 0xa2,
748     QPP = 0x32,         QPP_4 = 0x34,
749 } FlashCMD;
750 
751 static int aspeed_smc_num_dummies(uint8_t command)
752 {
753     switch (command) { /* check for dummies */
754     case READ: /* no dummy bytes/cycles */
755     case PP:
756     case DPP:
757     case QPP:
758     case READ_4:
759     case PP_4:
760     case QPP_4:
761         return 0;
762     case FAST_READ:
763     case DOR:
764     case QOR:
765     case DOR_4:
766     case QOR_4:
767         return 1;
768     case DIOR:
769     case FAST_READ_4:
770     case DIOR_4:
771         return 2;
772     case QIOR:
773     case QIOR_4:
774         return 4;
775     default:
776         return -1;
777     }
778 }
779 
780 static bool aspeed_smc_do_snoop(AspeedSMCFlash *fl,  uint64_t data,
781                                 unsigned size)
782 {
783     AspeedSMCState *s = fl->controller;
784     uint8_t addr_width = aspeed_smc_flash_is_4byte(fl) ? 4 : 3;
785 
786     if (s->snoop_index == SNOOP_OFF) {
787         return false; /* Do nothing */
788 
789     } else if (s->snoop_index == SNOOP_START) {
790         uint8_t cmd = data & 0xff;
791         int ndummies = aspeed_smc_num_dummies(cmd);
792 
793         /*
794          * No dummy cycles are expected with the current command. Turn
795          * off snooping and let the transfer proceed normally.
796          */
797         if (ndummies <= 0) {
798             s->snoop_index = SNOOP_OFF;
799             return false;
800         }
801 
802         s->snoop_dummies = ndummies * 8;
803 
804     } else if (s->snoop_index >= addr_width + 1) {
805 
806         /* The SPI transfer has reached the dummy cycles sequence */
807         for (; s->snoop_dummies; s->snoop_dummies--) {
808             ssi_transfer(s->spi, s->regs[R_DUMMY_DATA] & 0xff);
809         }
810 
811         /* If no more dummy cycles are expected, turn off snooping */
812         if (!s->snoop_dummies) {
813             s->snoop_index = SNOOP_OFF;
814         } else {
815             s->snoop_index += size;
816         }
817 
818         /*
819          * Dummy cycles have been faked already. Ignore the current
820          * SPI transfer
821          */
822         return true;
823     }
824 
825     s->snoop_index += size;
826     return false;
827 }
828 
829 static void aspeed_smc_flash_write(void *opaque, hwaddr addr, uint64_t data,
830                                    unsigned size)
831 {
832     AspeedSMCFlash *fl = opaque;
833     AspeedSMCState *s = fl->controller;
834     int i;
835 
836     if (!aspeed_smc_is_writable(fl)) {
837         qemu_log_mask(LOG_GUEST_ERROR, "%s: flash is not writable at 0x%"
838                       HWADDR_PRIx "\n", __func__, addr);
839         return;
840     }
841 
842     switch (aspeed_smc_flash_mode(fl)) {
843     case CTRL_USERMODE:
844         if (aspeed_smc_do_snoop(fl, data, size)) {
845             break;
846         }
847 
848         for (i = 0; i < size; i++) {
849             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
850         }
851         break;
852     case CTRL_WRITEMODE:
853         aspeed_smc_flash_select(fl);
854         aspeed_smc_flash_setup(fl, addr);
855 
856         for (i = 0; i < size; i++) {
857             ssi_transfer(s->spi, (data >> (8 * i)) & 0xff);
858         }
859 
860         aspeed_smc_flash_unselect(fl);
861         break;
862     default:
863         qemu_log_mask(LOG_GUEST_ERROR, "%s: invalid flash mode %d\n",
864                       __func__, aspeed_smc_flash_mode(fl));
865     }
866 }
867 
868 static const MemoryRegionOps aspeed_smc_flash_ops = {
869     .read = aspeed_smc_flash_read,
870     .write = aspeed_smc_flash_write,
871     .endianness = DEVICE_LITTLE_ENDIAN,
872     .valid = {
873         .min_access_size = 1,
874         .max_access_size = 4,
875     },
876 };
877 
878 static void aspeed_smc_flash_update_cs(AspeedSMCFlash *fl)
879 {
880     AspeedSMCState *s = fl->controller;
881 
882     s->snoop_index = aspeed_smc_is_ce_stop_active(fl) ? SNOOP_OFF : SNOOP_START;
883 
884     qemu_set_irq(s->cs_lines[fl->id], aspeed_smc_is_ce_stop_active(fl));
885 }
886 
887 static void aspeed_smc_reset(DeviceState *d)
888 {
889     AspeedSMCState *s = ASPEED_SMC(d);
890     int i;
891 
892     memset(s->regs, 0, sizeof s->regs);
893 
894     /* Unselect all slaves */
895     for (i = 0; i < s->num_cs; ++i) {
896         s->regs[s->r_ctrl0 + i] |= CTRL_CE_STOP_ACTIVE;
897         qemu_set_irq(s->cs_lines[i], true);
898     }
899 
900     /* setup default segment register values for all */
901     for (i = 0; i < s->ctrl->max_slaves; ++i) {
902         s->regs[R_SEG_ADDR0 + i] =
903             s->ctrl->segment_to_reg(s, &s->ctrl->segments[i]);
904     }
905 
906     /* HW strapping flash type for the AST2600 controllers  */
907     if (s->ctrl->segments == aspeed_segments_ast2600_fmc) {
908         /* flash type is fixed to SPI for all */
909         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
910         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
911         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE2);
912     }
913 
914     /* HW strapping flash type for FMC controllers  */
915     if (s->ctrl->segments == aspeed_segments_ast2500_fmc) {
916         /* flash type is fixed to SPI for CE0 and CE1 */
917         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
918         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE1);
919     }
920 
921     /* HW strapping for AST2400 FMC controllers (SCU70). Let's use the
922      * configuration of the palmetto-bmc machine */
923     if (s->ctrl->segments == aspeed_segments_fmc) {
924         s->regs[s->r_conf] |= (CONF_FLASH_TYPE_SPI << CONF_FLASH_TYPE0);
925     }
926 
927     s->snoop_index = SNOOP_OFF;
928     s->snoop_dummies = 0;
929 }
930 
931 static uint64_t aspeed_smc_read(void *opaque, hwaddr addr, unsigned int size)
932 {
933     AspeedSMCState *s = ASPEED_SMC(opaque);
934 
935     addr >>= 2;
936 
937     if (addr == s->r_conf ||
938         addr == s->r_timings ||
939         addr == s->r_ce_ctrl ||
940         addr == R_INTR_CTRL ||
941         addr == R_DUMMY_DATA ||
942         (s->ctrl->has_dma && addr == R_DMA_CTRL) ||
943         (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) ||
944         (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) ||
945         (s->ctrl->has_dma && addr == R_DMA_LEN) ||
946         (s->ctrl->has_dma && addr == R_DMA_CHECKSUM) ||
947         (addr >= R_SEG_ADDR0 && addr < R_SEG_ADDR0 + s->ctrl->max_slaves) ||
948         (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->ctrl->max_slaves)) {
949         return s->regs[addr];
950     } else {
951         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
952                       __func__, addr);
953         return -1;
954     }
955 }
956 
957 static uint8_t aspeed_smc_hclk_divisor(uint8_t hclk_mask)
958 {
959     /* HCLK/1 .. HCLK/16 */
960     const uint8_t hclk_divisors[] = {
961         15, 7, 14, 6, 13, 5, 12, 4, 11, 3, 10, 2, 9, 1, 8, 0
962     };
963     int i;
964 
965     for (i = 0; i < ARRAY_SIZE(hclk_divisors); i++) {
966         if (hclk_mask == hclk_divisors[i]) {
967             return i + 1;
968         }
969     }
970 
971     qemu_log_mask(LOG_GUEST_ERROR, "invalid HCLK mask %x", hclk_mask);
972     return 0;
973 }
974 
975 /*
976  * When doing calibration, the SPI clock rate in the CE0 Control
977  * Register and the read delay cycles in the Read Timing Compensation
978  * Register are set using bit[11:4] of the DMA Control Register.
979  */
980 static void aspeed_smc_dma_calibration(AspeedSMCState *s)
981 {
982     uint8_t delay =
983         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
984     uint8_t hclk_mask =
985         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
986     uint8_t hclk_div = aspeed_smc_hclk_divisor(hclk_mask);
987     uint32_t hclk_shift = (hclk_div - 1) << 2;
988     uint8_t cs;
989 
990     /*
991      * The Read Timing Compensation Register values apply to all CS on
992      * the SPI bus and only HCLK/1 - HCLK/5 can have tunable delays
993      */
994     if (hclk_div && hclk_div < 6) {
995         s->regs[s->r_timings] &= ~(0xf << hclk_shift);
996         s->regs[s->r_timings] |= delay << hclk_shift;
997     }
998 
999     /*
1000      * TODO: compute the CS from the DMA address and the segment
1001      * registers. This is not really a problem for now because the
1002      * Timing Register values apply to all CS and software uses CS0 to
1003      * do calibration.
1004      */
1005     cs = 0;
1006     s->regs[s->r_ctrl0 + cs] &=
1007         ~(CE_CTRL_CLOCK_FREQ_MASK << CE_CTRL_CLOCK_FREQ_SHIFT);
1008     s->regs[s->r_ctrl0 + cs] |= CE_CTRL_CLOCK_FREQ(hclk_div);
1009 }
1010 
1011 /*
1012  * Emulate read errors in the DMA Checksum Register for high
1013  * frequencies and optimistic settings of the Read Timing Compensation
1014  * Register. This will help in tuning the SPI timing calibration
1015  * algorithm.
1016  */
1017 static bool aspeed_smc_inject_read_failure(AspeedSMCState *s)
1018 {
1019     uint8_t delay =
1020         (s->regs[R_DMA_CTRL] >> DMA_CTRL_DELAY_SHIFT) & DMA_CTRL_DELAY_MASK;
1021     uint8_t hclk_mask =
1022         (s->regs[R_DMA_CTRL] >> DMA_CTRL_FREQ_SHIFT) & DMA_CTRL_FREQ_MASK;
1023 
1024     /*
1025      * Typical values of a palmetto-bmc machine.
1026      */
1027     switch (aspeed_smc_hclk_divisor(hclk_mask)) {
1028     case 4 ... 16:
1029         return false;
1030     case 3: /* at least one HCLK cycle delay */
1031         return (delay & 0x7) < 1;
1032     case 2: /* at least two HCLK cycle delay */
1033         return (delay & 0x7) < 2;
1034     case 1: /* (> 100MHz) is above the max freq of the controller */
1035         return true;
1036     default:
1037         g_assert_not_reached();
1038     }
1039 }
1040 
1041 /*
1042  * Accumulate the result of the reads to provide a checksum that will
1043  * be used to validate the read timing settings.
1044  */
1045 static void aspeed_smc_dma_checksum(AspeedSMCState *s)
1046 {
1047     MemTxResult result;
1048     uint32_t data;
1049 
1050     if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1051         qemu_log_mask(LOG_GUEST_ERROR,
1052                       "%s: invalid direction for DMA checksum\n",  __func__);
1053         return;
1054     }
1055 
1056     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CALIB) {
1057         aspeed_smc_dma_calibration(s);
1058     }
1059 
1060     while (s->regs[R_DMA_LEN]) {
1061         data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1062                                     MEMTXATTRS_UNSPECIFIED, &result);
1063         if (result != MEMTX_OK) {
1064             qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1065                           __func__, s->regs[R_DMA_FLASH_ADDR]);
1066             return;
1067         }
1068 
1069         /*
1070          * When the DMA is on-going, the DMA registers are updated
1071          * with the current working addresses and length.
1072          */
1073         s->regs[R_DMA_CHECKSUM] += data;
1074         s->regs[R_DMA_FLASH_ADDR] += 4;
1075         s->regs[R_DMA_LEN] -= 4;
1076     }
1077 
1078     if (s->inject_failure && aspeed_smc_inject_read_failure(s)) {
1079         s->regs[R_DMA_CHECKSUM] = 0xbadc0de;
1080     }
1081 
1082 }
1083 
1084 static void aspeed_smc_dma_rw(AspeedSMCState *s)
1085 {
1086     MemTxResult result;
1087     uint32_t data;
1088 
1089     while (s->regs[R_DMA_LEN]) {
1090         if (s->regs[R_DMA_CTRL] & DMA_CTRL_WRITE) {
1091             data = address_space_ldl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1092                                         MEMTXATTRS_UNSPECIFIED, &result);
1093             if (result != MEMTX_OK) {
1094                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM read failed @%08x\n",
1095                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1096                 return;
1097             }
1098 
1099             address_space_stl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1100                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1101             if (result != MEMTX_OK) {
1102                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash write failed @%08x\n",
1103                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1104                 return;
1105             }
1106         } else {
1107             data = address_space_ldl_le(&s->flash_as, s->regs[R_DMA_FLASH_ADDR],
1108                                         MEMTXATTRS_UNSPECIFIED, &result);
1109             if (result != MEMTX_OK) {
1110                 qemu_log_mask(LOG_GUEST_ERROR, "%s: Flash read failed @%08x\n",
1111                               __func__, s->regs[R_DMA_FLASH_ADDR]);
1112                 return;
1113             }
1114 
1115             address_space_stl_le(&s->dram_as, s->regs[R_DMA_DRAM_ADDR],
1116                                  data, MEMTXATTRS_UNSPECIFIED, &result);
1117             if (result != MEMTX_OK) {
1118                 qemu_log_mask(LOG_GUEST_ERROR, "%s: DRAM write failed @%08x\n",
1119                               __func__, s->regs[R_DMA_DRAM_ADDR]);
1120                 return;
1121             }
1122         }
1123 
1124         /*
1125          * When the DMA is on-going, the DMA registers are updated
1126          * with the current working addresses and length.
1127          */
1128         s->regs[R_DMA_FLASH_ADDR] += 4;
1129         s->regs[R_DMA_DRAM_ADDR] += 4;
1130         s->regs[R_DMA_LEN] -= 4;
1131         s->regs[R_DMA_CHECKSUM] += data;
1132     }
1133 }
1134 
1135 static void aspeed_smc_dma_stop(AspeedSMCState *s)
1136 {
1137     /*
1138      * When the DMA is disabled, INTR_CTRL_DMA_STATUS=0 means the
1139      * engine is idle
1140      */
1141     s->regs[R_INTR_CTRL] &= ~INTR_CTRL_DMA_STATUS;
1142     s->regs[R_DMA_CHECKSUM] = 0;
1143 
1144     /*
1145      * Lower the DMA irq in any case. The IRQ control register could
1146      * have been cleared before disabling the DMA.
1147      */
1148     qemu_irq_lower(s->irq);
1149 }
1150 
1151 /*
1152  * When INTR_CTRL_DMA_STATUS=1, the DMA has completed and a new DMA
1153  * can start even if the result of the previous was not collected.
1154  */
1155 static bool aspeed_smc_dma_in_progress(AspeedSMCState *s)
1156 {
1157     return s->regs[R_DMA_CTRL] & DMA_CTRL_ENABLE &&
1158         !(s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_STATUS);
1159 }
1160 
1161 static void aspeed_smc_dma_done(AspeedSMCState *s)
1162 {
1163     s->regs[R_INTR_CTRL] |= INTR_CTRL_DMA_STATUS;
1164     if (s->regs[R_INTR_CTRL] & INTR_CTRL_DMA_EN) {
1165         qemu_irq_raise(s->irq);
1166     }
1167 }
1168 
1169 static void aspeed_smc_dma_ctrl(AspeedSMCState *s, uint64_t dma_ctrl)
1170 {
1171     if (!(dma_ctrl & DMA_CTRL_ENABLE)) {
1172         s->regs[R_DMA_CTRL] = dma_ctrl;
1173 
1174         aspeed_smc_dma_stop(s);
1175         return;
1176     }
1177 
1178     if (aspeed_smc_dma_in_progress(s)) {
1179         qemu_log_mask(LOG_GUEST_ERROR, "%s: DMA in progress\n",  __func__);
1180         return;
1181     }
1182 
1183     s->regs[R_DMA_CTRL] = dma_ctrl;
1184 
1185     if (s->regs[R_DMA_CTRL] & DMA_CTRL_CKSUM) {
1186         aspeed_smc_dma_checksum(s);
1187     } else {
1188         aspeed_smc_dma_rw(s);
1189     }
1190 
1191     aspeed_smc_dma_done(s);
1192 }
1193 
1194 static void aspeed_smc_write(void *opaque, hwaddr addr, uint64_t data,
1195                              unsigned int size)
1196 {
1197     AspeedSMCState *s = ASPEED_SMC(opaque);
1198     uint32_t value = data;
1199 
1200     addr >>= 2;
1201 
1202     if (addr == s->r_conf ||
1203         addr == s->r_timings ||
1204         addr == s->r_ce_ctrl) {
1205         s->regs[addr] = value;
1206     } else if (addr >= s->r_ctrl0 && addr < s->r_ctrl0 + s->num_cs) {
1207         int cs = addr - s->r_ctrl0;
1208         s->regs[addr] = value;
1209         aspeed_smc_flash_update_cs(&s->flashes[cs]);
1210     } else if (addr >= R_SEG_ADDR0 &&
1211                addr < R_SEG_ADDR0 + s->ctrl->max_slaves) {
1212         int cs = addr - R_SEG_ADDR0;
1213 
1214         if (value != s->regs[R_SEG_ADDR0 + cs]) {
1215             aspeed_smc_flash_set_segment(s, cs, value);
1216         }
1217     } else if (addr == R_DUMMY_DATA) {
1218         s->regs[addr] = value & 0xff;
1219     } else if (addr == R_INTR_CTRL) {
1220         s->regs[addr] = value;
1221     } else if (s->ctrl->has_dma && addr == R_DMA_CTRL) {
1222         aspeed_smc_dma_ctrl(s, value);
1223     } else if (s->ctrl->has_dma && addr == R_DMA_DRAM_ADDR) {
1224         s->regs[addr] = DMA_DRAM_ADDR(s, value);
1225     } else if (s->ctrl->has_dma && addr == R_DMA_FLASH_ADDR) {
1226         s->regs[addr] = DMA_FLASH_ADDR(s, value);
1227     } else if (s->ctrl->has_dma && addr == R_DMA_LEN) {
1228         s->regs[addr] = DMA_LENGTH(value);
1229     } else {
1230         qemu_log_mask(LOG_UNIMP, "%s: not implemented: 0x%" HWADDR_PRIx "\n",
1231                       __func__, addr);
1232         return;
1233     }
1234 }
1235 
1236 static const MemoryRegionOps aspeed_smc_ops = {
1237     .read = aspeed_smc_read,
1238     .write = aspeed_smc_write,
1239     .endianness = DEVICE_LITTLE_ENDIAN,
1240     .valid.unaligned = true,
1241 };
1242 
1243 
1244 /*
1245  * Initialize the custom address spaces for DMAs
1246  */
1247 static void aspeed_smc_dma_setup(AspeedSMCState *s, Error **errp)
1248 {
1249     char *name;
1250 
1251     if (!s->dram_mr) {
1252         error_setg(errp, TYPE_ASPEED_SMC ": 'dram' link not set");
1253         return;
1254     }
1255 
1256     name = g_strdup_printf("%s-dma-flash", s->ctrl->name);
1257     address_space_init(&s->flash_as, &s->mmio_flash, name);
1258     g_free(name);
1259 
1260     name = g_strdup_printf("%s-dma-dram", s->ctrl->name);
1261     address_space_init(&s->dram_as, s->dram_mr, name);
1262     g_free(name);
1263 }
1264 
1265 static void aspeed_smc_realize(DeviceState *dev, Error **errp)
1266 {
1267     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
1268     AspeedSMCState *s = ASPEED_SMC(dev);
1269     AspeedSMCClass *mc = ASPEED_SMC_GET_CLASS(s);
1270     int i;
1271     char name[32];
1272     hwaddr offset = 0;
1273 
1274     s->ctrl = mc->ctrl;
1275 
1276     /* keep a copy under AspeedSMCState to speed up accesses */
1277     s->r_conf = s->ctrl->r_conf;
1278     s->r_ce_ctrl = s->ctrl->r_ce_ctrl;
1279     s->r_ctrl0 = s->ctrl->r_ctrl0;
1280     s->r_timings = s->ctrl->r_timings;
1281     s->conf_enable_w0 = s->ctrl->conf_enable_w0;
1282 
1283     /* Enforce some real HW limits */
1284     if (s->num_cs > s->ctrl->max_slaves) {
1285         qemu_log_mask(LOG_GUEST_ERROR, "%s: num_cs cannot exceed: %d\n",
1286                       __func__, s->ctrl->max_slaves);
1287         s->num_cs = s->ctrl->max_slaves;
1288     }
1289 
1290     /* DMA irq. Keep it first for the initialization in the SoC */
1291     sysbus_init_irq(sbd, &s->irq);
1292 
1293     s->spi = ssi_create_bus(dev, "spi");
1294 
1295     /* Setup cs_lines for slaves */
1296     s->cs_lines = g_new0(qemu_irq, s->num_cs);
1297     ssi_auto_connect_slaves(dev, s->cs_lines, s->spi);
1298 
1299     for (i = 0; i < s->num_cs; ++i) {
1300         sysbus_init_irq(sbd, &s->cs_lines[i]);
1301     }
1302 
1303     /* The memory region for the controller registers */
1304     memory_region_init_io(&s->mmio, OBJECT(s), &aspeed_smc_ops, s,
1305                           s->ctrl->name, s->ctrl->nregs * 4);
1306     sysbus_init_mmio(sbd, &s->mmio);
1307 
1308     /*
1309      * The container memory region representing the address space
1310      * window in which the flash modules are mapped. The size and
1311      * address depends on the SoC model and controller type.
1312      */
1313     snprintf(name, sizeof(name), "%s.flash", s->ctrl->name);
1314 
1315     memory_region_init_io(&s->mmio_flash, OBJECT(s),
1316                           &aspeed_smc_flash_default_ops, s, name,
1317                           s->ctrl->flash_window_size);
1318     sysbus_init_mmio(sbd, &s->mmio_flash);
1319 
1320     s->flashes = g_new0(AspeedSMCFlash, s->ctrl->max_slaves);
1321 
1322     /*
1323      * Let's create a sub memory region for each possible slave. All
1324      * have a configurable memory segment in the overall flash mapping
1325      * window of the controller but, there is not necessarily a flash
1326      * module behind to handle the memory accesses. This depends on
1327      * the board configuration.
1328      */
1329     for (i = 0; i < s->ctrl->max_slaves; ++i) {
1330         AspeedSMCFlash *fl = &s->flashes[i];
1331 
1332         snprintf(name, sizeof(name), "%s.%d", s->ctrl->name, i);
1333 
1334         fl->id = i;
1335         fl->controller = s;
1336         fl->size = s->ctrl->segments[i].size;
1337         memory_region_init_io(&fl->mmio, OBJECT(s), &aspeed_smc_flash_ops,
1338                               fl, name, fl->size);
1339         memory_region_add_subregion(&s->mmio_flash, offset, &fl->mmio);
1340         offset += fl->size;
1341     }
1342 
1343     /* DMA support */
1344     if (s->ctrl->has_dma) {
1345         aspeed_smc_dma_setup(s, errp);
1346     }
1347 }
1348 
1349 static const VMStateDescription vmstate_aspeed_smc = {
1350     .name = "aspeed.smc",
1351     .version_id = 2,
1352     .minimum_version_id = 2,
1353     .fields = (VMStateField[]) {
1354         VMSTATE_UINT32_ARRAY(regs, AspeedSMCState, ASPEED_SMC_R_MAX),
1355         VMSTATE_UINT8(snoop_index, AspeedSMCState),
1356         VMSTATE_UINT8(snoop_dummies, AspeedSMCState),
1357         VMSTATE_END_OF_LIST()
1358     }
1359 };
1360 
1361 static Property aspeed_smc_properties[] = {
1362     DEFINE_PROP_UINT32("num-cs", AspeedSMCState, num_cs, 1),
1363     DEFINE_PROP_BOOL("inject-failure", AspeedSMCState, inject_failure, false),
1364     DEFINE_PROP_UINT64("sdram-base", AspeedSMCState, sdram_base, 0),
1365     DEFINE_PROP_LINK("dram", AspeedSMCState, dram_mr,
1366                      TYPE_MEMORY_REGION, MemoryRegion *),
1367     DEFINE_PROP_END_OF_LIST(),
1368 };
1369 
1370 static void aspeed_smc_class_init(ObjectClass *klass, void *data)
1371 {
1372     DeviceClass *dc = DEVICE_CLASS(klass);
1373     AspeedSMCClass *mc = ASPEED_SMC_CLASS(klass);
1374 
1375     dc->realize = aspeed_smc_realize;
1376     dc->reset = aspeed_smc_reset;
1377     dc->props = aspeed_smc_properties;
1378     dc->vmsd = &vmstate_aspeed_smc;
1379     mc->ctrl = data;
1380 }
1381 
1382 static const TypeInfo aspeed_smc_info = {
1383     .name           = TYPE_ASPEED_SMC,
1384     .parent         = TYPE_SYS_BUS_DEVICE,
1385     .instance_size  = sizeof(AspeedSMCState),
1386     .class_size     = sizeof(AspeedSMCClass),
1387     .abstract       = true,
1388 };
1389 
1390 static void aspeed_smc_register_types(void)
1391 {
1392     int i;
1393 
1394     type_register_static(&aspeed_smc_info);
1395     for (i = 0; i < ARRAY_SIZE(controllers); ++i) {
1396         TypeInfo ti = {
1397             .name       = controllers[i].name,
1398             .parent     = TYPE_ASPEED_SMC,
1399             .class_init = aspeed_smc_class_init,
1400             .class_data = (void *)&controllers[i],
1401         };
1402         type_register(&ti);
1403     }
1404 }
1405 
1406 type_init(aspeed_smc_register_types)
1407