xref: /qemu/hw/timer/aspeed_timer.c (revision 52ea63de)
1 /*
2  * ASPEED AST2400 Timer
3  *
4  * Andrew Jeffery <andrew@aj.id.au>
5  *
6  * Copyright (C) 2016 IBM Corp.
7  *
8  * This code is licensed under the GPL version 2 or later.  See
9  * the COPYING file in the top-level directory.
10  */
11 
12 #include "qemu/osdep.h"
13 #include "hw/ptimer.h"
14 #include "hw/sysbus.h"
15 #include "hw/timer/aspeed_timer.h"
16 #include "qemu-common.h"
17 #include "qemu/bitops.h"
18 #include "qemu/main-loop.h"
19 #include "qemu/timer.h"
20 #include "qemu/log.h"
21 #include "trace.h"
22 
23 #define TIMER_NR_REGS 4
24 
25 #define TIMER_CTRL_BITS 4
26 #define TIMER_CTRL_MASK ((1 << TIMER_CTRL_BITS) - 1)
27 
28 #define TIMER_CLOCK_USE_EXT true
29 #define TIMER_CLOCK_EXT_HZ 1000000
30 #define TIMER_CLOCK_USE_APB false
31 #define TIMER_CLOCK_APB_HZ 24000000
32 
33 #define TIMER_REG_STATUS 0
34 #define TIMER_REG_RELOAD 1
35 #define TIMER_REG_MATCH_FIRST 2
36 #define TIMER_REG_MATCH_SECOND 3
37 
38 #define TIMER_FIRST_CAP_PULSE 4
39 
40 enum timer_ctrl_op {
41     op_enable = 0,
42     op_external_clock,
43     op_overflow_interrupt,
44     op_pulse_enable
45 };
46 
47 /**
48  * Avoid mutual references between AspeedTimerCtrlState and AspeedTimer
49  * structs, as it's a waste of memory. The ptimer BH callback needs to know
50  * whether a specific AspeedTimer is enabled, but this information is held in
51  * AspeedTimerCtrlState. So, provide a helper to hoist ourselves from an
52  * arbitrary AspeedTimer to AspeedTimerCtrlState.
53  */
54 static inline AspeedTimerCtrlState *timer_to_ctrl(AspeedTimer *t)
55 {
56     const AspeedTimer (*timers)[] = (void *)t - (t->id * sizeof(*t));
57     return container_of(timers, AspeedTimerCtrlState, timers);
58 }
59 
60 static inline bool timer_ctrl_status(AspeedTimer *t, enum timer_ctrl_op op)
61 {
62     return !!(timer_to_ctrl(t)->ctrl & BIT(t->id * TIMER_CTRL_BITS + op));
63 }
64 
65 static inline bool timer_enabled(AspeedTimer *t)
66 {
67     return timer_ctrl_status(t, op_enable);
68 }
69 
70 static inline bool timer_overflow_interrupt(AspeedTimer *t)
71 {
72     return timer_ctrl_status(t, op_overflow_interrupt);
73 }
74 
75 static inline bool timer_can_pulse(AspeedTimer *t)
76 {
77     return t->id >= TIMER_FIRST_CAP_PULSE;
78 }
79 
80 static void aspeed_timer_expire(void *opaque)
81 {
82     AspeedTimer *t = opaque;
83 
84     /* Only support interrupts on match values of zero for the moment - this is
85      * sufficient to boot an aspeed_defconfig Linux kernel.
86      *
87      * TODO: matching on arbitrary values (see e.g. hw/timer/a9gtimer.c)
88      */
89     bool match = !(t->match[0] && t->match[1]);
90     bool interrupt = timer_overflow_interrupt(t) || match;
91     if (timer_enabled(t) && interrupt) {
92         t->level = !t->level;
93         qemu_set_irq(t->irq, t->level);
94     }
95 }
96 
97 static uint64_t aspeed_timer_get_value(AspeedTimer *t, int reg)
98 {
99     uint64_t value;
100 
101     switch (reg) {
102     case TIMER_REG_STATUS:
103         value = ptimer_get_count(t->timer);
104         break;
105     case TIMER_REG_RELOAD:
106         value = t->reload;
107         break;
108     case TIMER_REG_MATCH_FIRST:
109     case TIMER_REG_MATCH_SECOND:
110         value = t->match[reg - 2];
111         break;
112     default:
113         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
114                       __func__, reg);
115         value = 0;
116         break;
117     }
118     return value;
119 }
120 
121 static uint64_t aspeed_timer_read(void *opaque, hwaddr offset, unsigned size)
122 {
123     AspeedTimerCtrlState *s = opaque;
124     const int reg = (offset & 0xf) / 4;
125     uint64_t value;
126 
127     switch (offset) {
128     case 0x30: /* Control Register */
129         value = s->ctrl;
130         break;
131     case 0x34: /* Control Register 2 */
132         value = s->ctrl2;
133         break;
134     case 0x00 ... 0x2c: /* Timers 1 - 4 */
135         value = aspeed_timer_get_value(&s->timers[(offset >> 4)], reg);
136         break;
137     case 0x40 ... 0x8c: /* Timers 5 - 8 */
138         value = aspeed_timer_get_value(&s->timers[(offset >> 4) - 1], reg);
139         break;
140     /* Illegal */
141     case 0x38:
142     case 0x3C:
143     default:
144         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
145                 __func__, offset);
146         value = 0;
147         break;
148     }
149     trace_aspeed_timer_read(offset, size, value);
150     return value;
151 }
152 
153 static void aspeed_timer_set_value(AspeedTimerCtrlState *s, int timer, int reg,
154                                    uint32_t value)
155 {
156     AspeedTimer *t;
157 
158     trace_aspeed_timer_set_value(timer, reg, value);
159     t = &s->timers[timer];
160     switch (reg) {
161     case TIMER_REG_STATUS:
162         if (timer_enabled(t)) {
163             ptimer_set_count(t->timer, value);
164         }
165         break;
166     case TIMER_REG_RELOAD:
167         t->reload = value;
168         ptimer_set_limit(t->timer, value, 1);
169         break;
170     case TIMER_REG_MATCH_FIRST:
171     case TIMER_REG_MATCH_SECOND:
172         if (value) {
173             /* Non-zero match values are unsupported. As such an interrupt will
174              * always be triggered when the timer reaches zero even if the
175              * overflow interrupt control bit is clear.
176              */
177             qemu_log_mask(LOG_UNIMP, "%s: Match value unsupported by device: "
178                     "0x%" PRIx32 "\n", __func__, value);
179         } else {
180             t->match[reg - 2] = value;
181         }
182         break;
183     default:
184         qemu_log_mask(LOG_UNIMP, "%s: Programming error: unexpected reg: %d\n",
185                       __func__, reg);
186         break;
187     }
188 }
189 
190 /* Control register operations are broken out into helpers that can be
191  * explicitly called on aspeed_timer_reset(), but also from
192  * aspeed_timer_ctrl_op().
193  */
194 
195 static void aspeed_timer_ctrl_enable(AspeedTimer *t, bool enable)
196 {
197     trace_aspeed_timer_ctrl_enable(t->id, enable);
198     if (enable) {
199         ptimer_run(t->timer, 0);
200     } else {
201         ptimer_stop(t->timer);
202         ptimer_set_limit(t->timer, t->reload, 1);
203     }
204 }
205 
206 static void aspeed_timer_ctrl_external_clock(AspeedTimer *t, bool enable)
207 {
208     trace_aspeed_timer_ctrl_external_clock(t->id, enable);
209     if (enable) {
210         ptimer_set_freq(t->timer, TIMER_CLOCK_EXT_HZ);
211     } else {
212         ptimer_set_freq(t->timer, TIMER_CLOCK_APB_HZ);
213     }
214 }
215 
216 static void aspeed_timer_ctrl_overflow_interrupt(AspeedTimer *t, bool enable)
217 {
218     trace_aspeed_timer_ctrl_overflow_interrupt(t->id, enable);
219 }
220 
221 static void aspeed_timer_ctrl_pulse_enable(AspeedTimer *t, bool enable)
222 {
223     if (timer_can_pulse(t)) {
224         trace_aspeed_timer_ctrl_pulse_enable(t->id, enable);
225     } else {
226         qemu_log_mask(LOG_GUEST_ERROR,
227                 "%s: Timer does not support pulse mode\n", __func__);
228     }
229 }
230 
231 /**
232  * Given the actions are fixed in number and completely described in helper
233  * functions, dispatch with a lookup table rather than manage control flow with
234  * a switch statement.
235  */
236 static void (*const ctrl_ops[])(AspeedTimer *, bool) = {
237     [op_enable] = aspeed_timer_ctrl_enable,
238     [op_external_clock] = aspeed_timer_ctrl_external_clock,
239     [op_overflow_interrupt] = aspeed_timer_ctrl_overflow_interrupt,
240     [op_pulse_enable] = aspeed_timer_ctrl_pulse_enable,
241 };
242 
243 /**
244  * Conditionally affect changes chosen by a timer's control bit.
245  *
246  * The aspeed_timer_ctrl_op() interface is convenient for the
247  * aspeed_timer_set_ctrl() function as the "no change" early exit can be
248  * calculated for all operations, which cleans up the caller code. However the
249  * interface isn't convenient for the reset function where we want to enter a
250  * specific state without artificially constructing old and new values that
251  * will fall through the change guard (and motivates extracting the actions
252  * out to helper functions).
253  *
254  * @t: The timer to manipulate
255  * @op: The type of operation to be performed
256  * @old: The old state of the timer's control bits
257  * @new: The incoming state for the timer's control bits
258  */
259 static void aspeed_timer_ctrl_op(AspeedTimer *t, enum timer_ctrl_op op,
260                                  uint8_t old, uint8_t new)
261 {
262     const uint8_t mask = BIT(op);
263     const bool enable = !!(new & mask);
264     const bool changed = ((old ^ new) & mask);
265     if (!changed) {
266         return;
267     }
268     ctrl_ops[op](t, enable);
269 }
270 
271 static void aspeed_timer_set_ctrl(AspeedTimerCtrlState *s, uint32_t reg)
272 {
273     int i;
274     int shift;
275     uint8_t t_old, t_new;
276     AspeedTimer *t;
277     const uint8_t enable_mask = BIT(op_enable);
278 
279     /* Handle a dependency between the 'enable' and remaining three
280      * configuration bits - i.e. if more than one bit in the control set has
281      * changed, including the 'enable' bit, then we want either disable the
282      * timer and perform configuration, or perform configuration and then
283      * enable the timer
284      */
285     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
286         t = &s->timers[i];
287         shift = (i * TIMER_CTRL_BITS);
288         t_old = (s->ctrl >> shift) & TIMER_CTRL_MASK;
289         t_new = (reg >> shift) & TIMER_CTRL_MASK;
290 
291         /* If we are disabling, do so first */
292         if ((t_old & enable_mask) && !(t_new & enable_mask)) {
293             aspeed_timer_ctrl_enable(t, false);
294         }
295         aspeed_timer_ctrl_op(t, op_external_clock, t_old, t_new);
296         aspeed_timer_ctrl_op(t, op_overflow_interrupt, t_old, t_new);
297         aspeed_timer_ctrl_op(t, op_pulse_enable, t_old, t_new);
298         /* If we are enabling, do so last */
299         if (!(t_old & enable_mask) && (t_new & enable_mask)) {
300             aspeed_timer_ctrl_enable(t, true);
301         }
302     }
303     s->ctrl = reg;
304 }
305 
306 static void aspeed_timer_set_ctrl2(AspeedTimerCtrlState *s, uint32_t value)
307 {
308     trace_aspeed_timer_set_ctrl2(value);
309 }
310 
311 static void aspeed_timer_write(void *opaque, hwaddr offset, uint64_t value,
312                                unsigned size)
313 {
314     const uint32_t tv = (uint32_t)(value & 0xFFFFFFFF);
315     const int reg = (offset & 0xf) / 4;
316     AspeedTimerCtrlState *s = opaque;
317 
318     switch (offset) {
319     /* Control Registers */
320     case 0x30:
321         aspeed_timer_set_ctrl(s, tv);
322         break;
323     case 0x34:
324         aspeed_timer_set_ctrl2(s, tv);
325         break;
326     /* Timer Registers */
327     case 0x00 ... 0x2c:
328         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS), reg, tv);
329         break;
330     case 0x40 ... 0x8c:
331         aspeed_timer_set_value(s, (offset >> TIMER_NR_REGS) - 1, reg, tv);
332         break;
333     /* Illegal */
334     case 0x38:
335     case 0x3C:
336     default:
337         qemu_log_mask(LOG_GUEST_ERROR, "%s: Bad offset 0x%" HWADDR_PRIx "\n",
338                 __func__, offset);
339         break;
340     }
341 }
342 
343 static const MemoryRegionOps aspeed_timer_ops = {
344     .read = aspeed_timer_read,
345     .write = aspeed_timer_write,
346     .endianness = DEVICE_LITTLE_ENDIAN,
347     .valid.min_access_size = 4,
348     .valid.max_access_size = 4,
349     .valid.unaligned = false,
350 };
351 
352 static void aspeed_init_one_timer(AspeedTimerCtrlState *s, uint8_t id)
353 {
354     QEMUBH *bh;
355     AspeedTimer *t = &s->timers[id];
356 
357     t->id = id;
358     bh = qemu_bh_new(aspeed_timer_expire, t);
359     t->timer = ptimer_init(bh);
360 }
361 
362 static void aspeed_timer_realize(DeviceState *dev, Error **errp)
363 {
364     int i;
365     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
366     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
367 
368     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
369         aspeed_init_one_timer(s, i);
370         sysbus_init_irq(sbd, &s->timers[i].irq);
371     }
372     memory_region_init_io(&s->iomem, OBJECT(s), &aspeed_timer_ops, s,
373                           TYPE_ASPEED_TIMER, 0x1000);
374     sysbus_init_mmio(sbd, &s->iomem);
375 }
376 
377 static void aspeed_timer_reset(DeviceState *dev)
378 {
379     int i;
380     AspeedTimerCtrlState *s = ASPEED_TIMER(dev);
381 
382     for (i = 0; i < ASPEED_TIMER_NR_TIMERS; i++) {
383         AspeedTimer *t = &s->timers[i];
384         /* Explicitly call helpers to avoid any conditional behaviour through
385          * aspeed_timer_set_ctrl().
386          */
387         aspeed_timer_ctrl_enable(t, false);
388         aspeed_timer_ctrl_external_clock(t, TIMER_CLOCK_USE_APB);
389         aspeed_timer_ctrl_overflow_interrupt(t, false);
390         aspeed_timer_ctrl_pulse_enable(t, false);
391         t->level = 0;
392         t->reload = 0;
393         t->match[0] = 0;
394         t->match[1] = 0;
395     }
396     s->ctrl = 0;
397     s->ctrl2 = 0;
398 }
399 
400 static const VMStateDescription vmstate_aspeed_timer = {
401     .name = "aspeed.timer",
402     .version_id = 1,
403     .minimum_version_id = 1,
404     .fields = (VMStateField[]) {
405         VMSTATE_UINT8(id, AspeedTimer),
406         VMSTATE_INT32(level, AspeedTimer),
407         VMSTATE_PTIMER(timer, AspeedTimer),
408         VMSTATE_UINT32(reload, AspeedTimer),
409         VMSTATE_UINT32_ARRAY(match, AspeedTimer, 2),
410         VMSTATE_END_OF_LIST()
411     }
412 };
413 
414 static const VMStateDescription vmstate_aspeed_timer_state = {
415     .name = "aspeed.timerctrl",
416     .version_id = 1,
417     .minimum_version_id = 1,
418     .fields = (VMStateField[]) {
419         VMSTATE_UINT32(ctrl, AspeedTimerCtrlState),
420         VMSTATE_UINT32(ctrl2, AspeedTimerCtrlState),
421         VMSTATE_STRUCT_ARRAY(timers, AspeedTimerCtrlState,
422                              ASPEED_TIMER_NR_TIMERS, 1, vmstate_aspeed_timer,
423                              AspeedTimer),
424         VMSTATE_END_OF_LIST()
425     }
426 };
427 
428 static void timer_class_init(ObjectClass *klass, void *data)
429 {
430     DeviceClass *dc = DEVICE_CLASS(klass);
431 
432     dc->realize = aspeed_timer_realize;
433     dc->reset = aspeed_timer_reset;
434     dc->desc = "ASPEED Timer";
435     dc->vmsd = &vmstate_aspeed_timer_state;
436 }
437 
438 static const TypeInfo aspeed_timer_info = {
439     .name = TYPE_ASPEED_TIMER,
440     .parent = TYPE_SYS_BUS_DEVICE,
441     .instance_size = sizeof(AspeedTimerCtrlState),
442     .class_init = timer_class_init,
443 };
444 
445 static void aspeed_timer_register_types(void)
446 {
447     type_register_static(&aspeed_timer_info);
448 }
449 
450 type_init(aspeed_timer_register_types)
451