xref: /qemu/hw/timer/hpet.c (revision 72ac97cd)
1 /*
2  *  High Precisition Event Timer emulation
3  *
4  *  Copyright (c) 2007 Alexander Graf
5  *  Copyright (c) 2008 IBM Corporation
6  *
7  *  Authors: Beth Kon <bkon@us.ibm.com>
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * *****************************************************************
23  *
24  * This driver attempts to emulate an HPET device in software.
25  */
26 
27 #include "hw/hw.h"
28 #include "hw/i386/pc.h"
29 #include "ui/console.h"
30 #include "qemu/timer.h"
31 #include "hw/timer/hpet.h"
32 #include "hw/sysbus.h"
33 #include "hw/timer/mc146818rtc.h"
34 #include "hw/timer/i8254.h"
35 
36 //#define HPET_DEBUG
37 #ifdef HPET_DEBUG
38 #define DPRINTF printf
39 #else
40 #define DPRINTF(...)
41 #endif
42 
43 #define HPET_MSI_SUPPORT        0
44 
45 #define HPET(obj) OBJECT_CHECK(HPETState, (obj), TYPE_HPET)
46 
47 struct HPETState;
48 typedef struct HPETTimer {  /* timers */
49     uint8_t tn;             /*timer number*/
50     QEMUTimer *qemu_timer;
51     struct HPETState *state;
52     /* Memory-mapped, software visible timer registers */
53     uint64_t config;        /* configuration/cap */
54     uint64_t cmp;           /* comparator */
55     uint64_t fsb;           /* FSB route */
56     /* Hidden register state */
57     uint64_t period;        /* Last value written to comparator */
58     uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
59                              * mode. Next pop will be actual timer expiration.
60                              */
61 } HPETTimer;
62 
63 typedef struct HPETState {
64     /*< private >*/
65     SysBusDevice parent_obj;
66     /*< public >*/
67 
68     MemoryRegion iomem;
69     uint64_t hpet_offset;
70     qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
71     uint32_t flags;
72     uint8_t rtc_irq_level;
73     qemu_irq pit_enabled;
74     uint8_t num_timers;
75     uint32_t intcap;
76     HPETTimer timer[HPET_MAX_TIMERS];
77 
78     /* Memory-mapped, software visible registers */
79     uint64_t capability;        /* capabilities */
80     uint64_t config;            /* configuration */
81     uint64_t isr;               /* interrupt status reg */
82     uint64_t hpet_counter;      /* main counter */
83     uint8_t  hpet_id;           /* instance id */
84 } HPETState;
85 
86 static uint32_t hpet_in_legacy_mode(HPETState *s)
87 {
88     return s->config & HPET_CFG_LEGACY;
89 }
90 
91 static uint32_t timer_int_route(struct HPETTimer *timer)
92 {
93     return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
94 }
95 
96 static uint32_t timer_fsb_route(HPETTimer *t)
97 {
98     return t->config & HPET_TN_FSB_ENABLE;
99 }
100 
101 static uint32_t hpet_enabled(HPETState *s)
102 {
103     return s->config & HPET_CFG_ENABLE;
104 }
105 
106 static uint32_t timer_is_periodic(HPETTimer *t)
107 {
108     return t->config & HPET_TN_PERIODIC;
109 }
110 
111 static uint32_t timer_enabled(HPETTimer *t)
112 {
113     return t->config & HPET_TN_ENABLE;
114 }
115 
116 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
117 {
118     return ((int32_t)(b) - (int32_t)(a) < 0);
119 }
120 
121 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
122 {
123     return ((int64_t)(b) - (int64_t)(a) < 0);
124 }
125 
126 static uint64_t ticks_to_ns(uint64_t value)
127 {
128     return (muldiv64(value, HPET_CLK_PERIOD, FS_PER_NS));
129 }
130 
131 static uint64_t ns_to_ticks(uint64_t value)
132 {
133     return (muldiv64(value, FS_PER_NS, HPET_CLK_PERIOD));
134 }
135 
136 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
137 {
138     new &= mask;
139     new |= old & ~mask;
140     return new;
141 }
142 
143 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
144 {
145     return (!(old & mask) && (new & mask));
146 }
147 
148 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
149 {
150     return ((old & mask) && !(new & mask));
151 }
152 
153 static uint64_t hpet_get_ticks(HPETState *s)
154 {
155     return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
156 }
157 
158 /*
159  * calculate diff between comparator value and current ticks
160  */
161 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
162 {
163 
164     if (t->config & HPET_TN_32BIT) {
165         uint32_t diff, cmp;
166 
167         cmp = (uint32_t)t->cmp;
168         diff = cmp - (uint32_t)current;
169         diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
170         return (uint64_t)diff;
171     } else {
172         uint64_t diff, cmp;
173 
174         cmp = t->cmp;
175         diff = cmp - current;
176         diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
177         return diff;
178     }
179 }
180 
181 static void update_irq(struct HPETTimer *timer, int set)
182 {
183     uint64_t mask;
184     HPETState *s;
185     int route;
186 
187     if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
188         /* if LegacyReplacementRoute bit is set, HPET specification requires
189          * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
190          * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
191          */
192         route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
193     } else {
194         route = timer_int_route(timer);
195     }
196     s = timer->state;
197     mask = 1 << timer->tn;
198     if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
199         s->isr &= ~mask;
200         if (!timer_fsb_route(timer)) {
201             /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
202             if (route >= ISA_NUM_IRQS) {
203                 qemu_irq_raise(s->irqs[route]);
204             } else {
205                 qemu_irq_lower(s->irqs[route]);
206             }
207         }
208     } else if (timer_fsb_route(timer)) {
209         stl_le_phys(&address_space_memory,
210                     timer->fsb >> 32, timer->fsb & 0xffffffff);
211     } else if (timer->config & HPET_TN_TYPE_LEVEL) {
212         s->isr |= mask;
213         /* fold the ICH PIRQ# pin's internal inversion logic into hpet */
214         if (route >= ISA_NUM_IRQS) {
215             qemu_irq_lower(s->irqs[route]);
216         } else {
217             qemu_irq_raise(s->irqs[route]);
218         }
219     } else {
220         s->isr &= ~mask;
221         qemu_irq_pulse(s->irqs[route]);
222     }
223 }
224 
225 static void hpet_pre_save(void *opaque)
226 {
227     HPETState *s = opaque;
228 
229     /* save current counter value */
230     s->hpet_counter = hpet_get_ticks(s);
231 }
232 
233 static int hpet_pre_load(void *opaque)
234 {
235     HPETState *s = opaque;
236 
237     /* version 1 only supports 3, later versions will load the actual value */
238     s->num_timers = HPET_MIN_TIMERS;
239     return 0;
240 }
241 
242 static bool hpet_validate_num_timers(void *opaque, int version_id)
243 {
244     HPETState *s = opaque;
245 
246     if (s->num_timers < HPET_MIN_TIMERS) {
247         return false;
248     } else if (s->num_timers > HPET_MAX_TIMERS) {
249         return false;
250     }
251     return true;
252 }
253 
254 static int hpet_post_load(void *opaque, int version_id)
255 {
256     HPETState *s = opaque;
257 
258     /* Recalculate the offset between the main counter and guest time */
259     s->hpet_offset = ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
260 
261     /* Push number of timers into capability returned via HPET_ID */
262     s->capability &= ~HPET_ID_NUM_TIM_MASK;
263     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
264     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
265 
266     /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
267     s->flags &= ~(1 << HPET_MSI_SUPPORT);
268     if (s->timer[0].config & HPET_TN_FSB_CAP) {
269         s->flags |= 1 << HPET_MSI_SUPPORT;
270     }
271     return 0;
272 }
273 
274 static bool hpet_rtc_irq_level_needed(void *opaque)
275 {
276     HPETState *s = opaque;
277 
278     return s->rtc_irq_level != 0;
279 }
280 
281 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
282     .name = "hpet/rtc_irq_level",
283     .version_id = 1,
284     .minimum_version_id = 1,
285     .fields = (VMStateField[]) {
286         VMSTATE_UINT8(rtc_irq_level, HPETState),
287         VMSTATE_END_OF_LIST()
288     }
289 };
290 
291 static const VMStateDescription vmstate_hpet_timer = {
292     .name = "hpet_timer",
293     .version_id = 1,
294     .minimum_version_id = 1,
295     .fields = (VMStateField[]) {
296         VMSTATE_UINT8(tn, HPETTimer),
297         VMSTATE_UINT64(config, HPETTimer),
298         VMSTATE_UINT64(cmp, HPETTimer),
299         VMSTATE_UINT64(fsb, HPETTimer),
300         VMSTATE_UINT64(period, HPETTimer),
301         VMSTATE_UINT8(wrap_flag, HPETTimer),
302         VMSTATE_TIMER(qemu_timer, HPETTimer),
303         VMSTATE_END_OF_LIST()
304     }
305 };
306 
307 static const VMStateDescription vmstate_hpet = {
308     .name = "hpet",
309     .version_id = 2,
310     .minimum_version_id = 1,
311     .pre_save = hpet_pre_save,
312     .pre_load = hpet_pre_load,
313     .post_load = hpet_post_load,
314     .fields = (VMStateField[]) {
315         VMSTATE_UINT64(config, HPETState),
316         VMSTATE_UINT64(isr, HPETState),
317         VMSTATE_UINT64(hpet_counter, HPETState),
318         VMSTATE_UINT8_V(num_timers, HPETState, 2),
319         VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
320         VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
321                                     vmstate_hpet_timer, HPETTimer),
322         VMSTATE_END_OF_LIST()
323     },
324     .subsections = (VMStateSubsection[]) {
325         {
326             .vmsd = &vmstate_hpet_rtc_irq_level,
327             .needed = hpet_rtc_irq_level_needed,
328         }, {
329             /* empty */
330         }
331     }
332 };
333 
334 /*
335  * timer expiration callback
336  */
337 static void hpet_timer(void *opaque)
338 {
339     HPETTimer *t = opaque;
340     uint64_t diff;
341 
342     uint64_t period = t->period;
343     uint64_t cur_tick = hpet_get_ticks(t->state);
344 
345     if (timer_is_periodic(t) && period != 0) {
346         if (t->config & HPET_TN_32BIT) {
347             while (hpet_time_after(cur_tick, t->cmp)) {
348                 t->cmp = (uint32_t)(t->cmp + t->period);
349             }
350         } else {
351             while (hpet_time_after64(cur_tick, t->cmp)) {
352                 t->cmp += period;
353             }
354         }
355         diff = hpet_calculate_diff(t, cur_tick);
356         timer_mod(t->qemu_timer,
357                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
358     } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
359         if (t->wrap_flag) {
360             diff = hpet_calculate_diff(t, cur_tick);
361             timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
362                            (int64_t)ticks_to_ns(diff));
363             t->wrap_flag = 0;
364         }
365     }
366     update_irq(t, 1);
367 }
368 
369 static void hpet_set_timer(HPETTimer *t)
370 {
371     uint64_t diff;
372     uint32_t wrap_diff;  /* how many ticks until we wrap? */
373     uint64_t cur_tick = hpet_get_ticks(t->state);
374 
375     /* whenever new timer is being set up, make sure wrap_flag is 0 */
376     t->wrap_flag = 0;
377     diff = hpet_calculate_diff(t, cur_tick);
378 
379     /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
380      * counter wraps in addition to an interrupt with comparator match.
381      */
382     if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
383         wrap_diff = 0xffffffff - (uint32_t)cur_tick;
384         if (wrap_diff < (uint32_t)diff) {
385             diff = wrap_diff;
386             t->wrap_flag = 1;
387         }
388     }
389     timer_mod(t->qemu_timer,
390                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
391 }
392 
393 static void hpet_del_timer(HPETTimer *t)
394 {
395     timer_del(t->qemu_timer);
396     update_irq(t, 0);
397 }
398 
399 #ifdef HPET_DEBUG
400 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
401 {
402     printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
403     return 0;
404 }
405 
406 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
407 {
408     printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
409     return 0;
410 }
411 #endif
412 
413 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
414                               unsigned size)
415 {
416     HPETState *s = opaque;
417     uint64_t cur_tick, index;
418 
419     DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
420     index = addr;
421     /*address range of all TN regs*/
422     if (index >= 0x100 && index <= 0x3ff) {
423         uint8_t timer_id = (addr - 0x100) / 0x20;
424         HPETTimer *timer = &s->timer[timer_id];
425 
426         if (timer_id > s->num_timers) {
427             DPRINTF("qemu: timer id out of range\n");
428             return 0;
429         }
430 
431         switch ((addr - 0x100) % 0x20) {
432         case HPET_TN_CFG:
433             return timer->config;
434         case HPET_TN_CFG + 4: // Interrupt capabilities
435             return timer->config >> 32;
436         case HPET_TN_CMP: // comparator register
437             return timer->cmp;
438         case HPET_TN_CMP + 4:
439             return timer->cmp >> 32;
440         case HPET_TN_ROUTE:
441             return timer->fsb;
442         case HPET_TN_ROUTE + 4:
443             return timer->fsb >> 32;
444         default:
445             DPRINTF("qemu: invalid hpet_ram_readl\n");
446             break;
447         }
448     } else {
449         switch (index) {
450         case HPET_ID:
451             return s->capability;
452         case HPET_PERIOD:
453             return s->capability >> 32;
454         case HPET_CFG:
455             return s->config;
456         case HPET_CFG + 4:
457             DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
458             return 0;
459         case HPET_COUNTER:
460             if (hpet_enabled(s)) {
461                 cur_tick = hpet_get_ticks(s);
462             } else {
463                 cur_tick = s->hpet_counter;
464             }
465             DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
466             return cur_tick;
467         case HPET_COUNTER + 4:
468             if (hpet_enabled(s)) {
469                 cur_tick = hpet_get_ticks(s);
470             } else {
471                 cur_tick = s->hpet_counter;
472             }
473             DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
474             return cur_tick >> 32;
475         case HPET_STATUS:
476             return s->isr;
477         default:
478             DPRINTF("qemu: invalid hpet_ram_readl\n");
479             break;
480         }
481     }
482     return 0;
483 }
484 
485 static void hpet_ram_write(void *opaque, hwaddr addr,
486                            uint64_t value, unsigned size)
487 {
488     int i;
489     HPETState *s = opaque;
490     uint64_t old_val, new_val, val, index;
491 
492     DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
493     index = addr;
494     old_val = hpet_ram_read(opaque, addr, 4);
495     new_val = value;
496 
497     /*address range of all TN regs*/
498     if (index >= 0x100 && index <= 0x3ff) {
499         uint8_t timer_id = (addr - 0x100) / 0x20;
500         HPETTimer *timer = &s->timer[timer_id];
501 
502         DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
503         if (timer_id > s->num_timers) {
504             DPRINTF("qemu: timer id out of range\n");
505             return;
506         }
507         switch ((addr - 0x100) % 0x20) {
508         case HPET_TN_CFG:
509             DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
510             if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
511                 update_irq(timer, 0);
512             }
513             val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
514             timer->config = (timer->config & 0xffffffff00000000ULL) | val;
515             if (new_val & HPET_TN_32BIT) {
516                 timer->cmp = (uint32_t)timer->cmp;
517                 timer->period = (uint32_t)timer->period;
518             }
519             if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
520                 hpet_enabled(s)) {
521                 hpet_set_timer(timer);
522             } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
523                 hpet_del_timer(timer);
524             }
525             break;
526         case HPET_TN_CFG + 4: // Interrupt capabilities
527             DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
528             break;
529         case HPET_TN_CMP: // comparator register
530             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
531             if (timer->config & HPET_TN_32BIT) {
532                 new_val = (uint32_t)new_val;
533             }
534             if (!timer_is_periodic(timer)
535                 || (timer->config & HPET_TN_SETVAL)) {
536                 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
537             }
538             if (timer_is_periodic(timer)) {
539                 /*
540                  * FIXME: Clamp period to reasonable min value?
541                  * Clamp period to reasonable max value
542                  */
543                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
544                 timer->period =
545                     (timer->period & 0xffffffff00000000ULL) | new_val;
546             }
547             timer->config &= ~HPET_TN_SETVAL;
548             if (hpet_enabled(s)) {
549                 hpet_set_timer(timer);
550             }
551             break;
552         case HPET_TN_CMP + 4: // comparator register high order
553             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
554             if (!timer_is_periodic(timer)
555                 || (timer->config & HPET_TN_SETVAL)) {
556                 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
557             } else {
558                 /*
559                  * FIXME: Clamp period to reasonable min value?
560                  * Clamp period to reasonable max value
561                  */
562                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
563                 timer->period =
564                     (timer->period & 0xffffffffULL) | new_val << 32;
565                 }
566                 timer->config &= ~HPET_TN_SETVAL;
567                 if (hpet_enabled(s)) {
568                     hpet_set_timer(timer);
569                 }
570                 break;
571         case HPET_TN_ROUTE:
572             timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
573             break;
574         case HPET_TN_ROUTE + 4:
575             timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
576             break;
577         default:
578             DPRINTF("qemu: invalid hpet_ram_writel\n");
579             break;
580         }
581         return;
582     } else {
583         switch (index) {
584         case HPET_ID:
585             return;
586         case HPET_CFG:
587             val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
588             s->config = (s->config & 0xffffffff00000000ULL) | val;
589             if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
590                 /* Enable main counter and interrupt generation. */
591                 s->hpet_offset =
592                     ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
593                 for (i = 0; i < s->num_timers; i++) {
594                     if ((&s->timer[i])->cmp != ~0ULL) {
595                         hpet_set_timer(&s->timer[i]);
596                     }
597                 }
598             } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
599                 /* Halt main counter and disable interrupt generation. */
600                 s->hpet_counter = hpet_get_ticks(s);
601                 for (i = 0; i < s->num_timers; i++) {
602                     hpet_del_timer(&s->timer[i]);
603                 }
604             }
605             /* i8254 and RTC output pins are disabled
606              * when HPET is in legacy mode */
607             if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
608                 qemu_set_irq(s->pit_enabled, 0);
609                 qemu_irq_lower(s->irqs[0]);
610                 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
611             } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
612                 qemu_irq_lower(s->irqs[0]);
613                 qemu_set_irq(s->pit_enabled, 1);
614                 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
615             }
616             break;
617         case HPET_CFG + 4:
618             DPRINTF("qemu: invalid HPET_CFG+4 write\n");
619             break;
620         case HPET_STATUS:
621             val = new_val & s->isr;
622             for (i = 0; i < s->num_timers; i++) {
623                 if (val & (1 << i)) {
624                     update_irq(&s->timer[i], 0);
625                 }
626             }
627             break;
628         case HPET_COUNTER:
629             if (hpet_enabled(s)) {
630                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
631             }
632             s->hpet_counter =
633                 (s->hpet_counter & 0xffffffff00000000ULL) | value;
634             DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
635                     value, s->hpet_counter);
636             break;
637         case HPET_COUNTER + 4:
638             if (hpet_enabled(s)) {
639                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
640             }
641             s->hpet_counter =
642                 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
643             DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
644                     value, s->hpet_counter);
645             break;
646         default:
647             DPRINTF("qemu: invalid hpet_ram_writel\n");
648             break;
649         }
650     }
651 }
652 
653 static const MemoryRegionOps hpet_ram_ops = {
654     .read = hpet_ram_read,
655     .write = hpet_ram_write,
656     .valid = {
657         .min_access_size = 4,
658         .max_access_size = 4,
659     },
660     .endianness = DEVICE_NATIVE_ENDIAN,
661 };
662 
663 static void hpet_reset(DeviceState *d)
664 {
665     HPETState *s = HPET(d);
666     SysBusDevice *sbd = SYS_BUS_DEVICE(d);
667     int i;
668 
669     for (i = 0; i < s->num_timers; i++) {
670         HPETTimer *timer = &s->timer[i];
671 
672         hpet_del_timer(timer);
673         timer->cmp = ~0ULL;
674         timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
675         if (s->flags & (1 << HPET_MSI_SUPPORT)) {
676             timer->config |= HPET_TN_FSB_CAP;
677         }
678         /* advertise availability of ioapic int */
679         timer->config |=  (uint64_t)s->intcap << 32;
680         timer->period = 0ULL;
681         timer->wrap_flag = 0;
682     }
683 
684     qemu_set_irq(s->pit_enabled, 1);
685     s->hpet_counter = 0ULL;
686     s->hpet_offset = 0ULL;
687     s->config = 0ULL;
688     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
689     hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
690 
691     /* to document that the RTC lowers its output on reset as well */
692     s->rtc_irq_level = 0;
693 }
694 
695 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
696 {
697     HPETState *s = HPET(opaque);
698 
699     if (n == HPET_LEGACY_PIT_INT) {
700         if (!hpet_in_legacy_mode(s)) {
701             qemu_set_irq(s->irqs[0], level);
702         }
703     } else {
704         s->rtc_irq_level = level;
705         if (!hpet_in_legacy_mode(s)) {
706             qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
707         }
708     }
709 }
710 
711 static void hpet_init(Object *obj)
712 {
713     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
714     HPETState *s = HPET(obj);
715 
716     /* HPET Area */
717     memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", 0x400);
718     sysbus_init_mmio(sbd, &s->iomem);
719 }
720 
721 static void hpet_realize(DeviceState *dev, Error **errp)
722 {
723     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
724     HPETState *s = HPET(dev);
725     int i;
726     HPETTimer *timer;
727 
728     if (!s->intcap) {
729         error_printf("Hpet's intcap not initialized.\n");
730     }
731     if (hpet_cfg.count == UINT8_MAX) {
732         /* first instance */
733         hpet_cfg.count = 0;
734     }
735 
736     if (hpet_cfg.count == 8) {
737         error_setg(errp, "Only 8 instances of HPET is allowed");
738         return;
739     }
740 
741     s->hpet_id = hpet_cfg.count++;
742 
743     for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
744         sysbus_init_irq(sbd, &s->irqs[i]);
745     }
746 
747     if (s->num_timers < HPET_MIN_TIMERS) {
748         s->num_timers = HPET_MIN_TIMERS;
749     } else if (s->num_timers > HPET_MAX_TIMERS) {
750         s->num_timers = HPET_MAX_TIMERS;
751     }
752     for (i = 0; i < HPET_MAX_TIMERS; i++) {
753         timer = &s->timer[i];
754         timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
755         timer->tn = i;
756         timer->state = s;
757     }
758 
759     /* 64-bit main counter; LegacyReplacementRoute. */
760     s->capability = 0x8086a001ULL;
761     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
762     s->capability |= ((HPET_CLK_PERIOD) << 32);
763 
764     qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
765     qdev_init_gpio_out(dev, &s->pit_enabled, 1);
766 }
767 
768 static Property hpet_device_properties[] = {
769     DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
770     DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
771     DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
772     DEFINE_PROP_END_OF_LIST(),
773 };
774 
775 static void hpet_device_class_init(ObjectClass *klass, void *data)
776 {
777     DeviceClass *dc = DEVICE_CLASS(klass);
778 
779     dc->realize = hpet_realize;
780     dc->reset = hpet_reset;
781     dc->vmsd = &vmstate_hpet;
782     dc->props = hpet_device_properties;
783 }
784 
785 static const TypeInfo hpet_device_info = {
786     .name          = TYPE_HPET,
787     .parent        = TYPE_SYS_BUS_DEVICE,
788     .instance_size = sizeof(HPETState),
789     .instance_init = hpet_init,
790     .class_init    = hpet_device_class_init,
791 };
792 
793 static void hpet_register_types(void)
794 {
795     type_register_static(&hpet_device_info);
796 }
797 
798 type_init(hpet_register_types)
799