xref: /qemu/hw/timer/hpet.c (revision 8063396b)
1 /*
2  *  High Precision Event Timer emulation
3  *
4  *  Copyright (c) 2007 Alexander Graf
5  *  Copyright (c) 2008 IBM Corporation
6  *
7  *  Authors: Beth Kon <bkon@us.ibm.com>
8  *
9  * This library is free software; you can redistribute it and/or
10  * modify it under the terms of the GNU Lesser General Public
11  * License as published by the Free Software Foundation; either
12  * version 2 of the License, or (at your option) any later version.
13  *
14  * This library is distributed in the hope that it will be useful,
15  * but WITHOUT ANY WARRANTY; without even the implied warranty of
16  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
17  * Lesser General Public License for more details.
18  *
19  * You should have received a copy of the GNU Lesser General Public
20  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
21  *
22  * *****************************************************************
23  *
24  * This driver attempts to emulate an HPET device in software.
25  */
26 
27 #include "qemu/osdep.h"
28 #include "hw/i386/pc.h"
29 #include "hw/irq.h"
30 #include "qapi/error.h"
31 #include "qemu/error-report.h"
32 #include "qemu/timer.h"
33 #include "hw/timer/hpet.h"
34 #include "hw/sysbus.h"
35 #include "hw/rtc/mc146818rtc.h"
36 #include "hw/rtc/mc146818rtc_regs.h"
37 #include "migration/vmstate.h"
38 #include "hw/timer/i8254.h"
39 #include "exec/address-spaces.h"
40 #include "qom/object.h"
41 
42 //#define HPET_DEBUG
43 #ifdef HPET_DEBUG
44 #define DPRINTF printf
45 #else
46 #define DPRINTF(...)
47 #endif
48 
49 #define HPET_MSI_SUPPORT        0
50 
51 OBJECT_DECLARE_SIMPLE_TYPE(HPETState, HPET)
52 
53 struct HPETState;
54 typedef struct HPETTimer {  /* timers */
55     uint8_t tn;             /*timer number*/
56     QEMUTimer *qemu_timer;
57     struct HPETState *state;
58     /* Memory-mapped, software visible timer registers */
59     uint64_t config;        /* configuration/cap */
60     uint64_t cmp;           /* comparator */
61     uint64_t fsb;           /* FSB route */
62     /* Hidden register state */
63     uint64_t period;        /* Last value written to comparator */
64     uint8_t wrap_flag;      /* timer pop will indicate wrap for one-shot 32-bit
65                              * mode. Next pop will be actual timer expiration.
66                              */
67 } HPETTimer;
68 
69 struct HPETState {
70     /*< private >*/
71     SysBusDevice parent_obj;
72     /*< public >*/
73 
74     MemoryRegion iomem;
75     uint64_t hpet_offset;
76     bool hpet_offset_saved;
77     qemu_irq irqs[HPET_NUM_IRQ_ROUTES];
78     uint32_t flags;
79     uint8_t rtc_irq_level;
80     qemu_irq pit_enabled;
81     uint8_t num_timers;
82     uint32_t intcap;
83     HPETTimer timer[HPET_MAX_TIMERS];
84 
85     /* Memory-mapped, software visible registers */
86     uint64_t capability;        /* capabilities */
87     uint64_t config;            /* configuration */
88     uint64_t isr;               /* interrupt status reg */
89     uint64_t hpet_counter;      /* main counter */
90     uint8_t  hpet_id;           /* instance id */
91 };
92 
93 static uint32_t hpet_in_legacy_mode(HPETState *s)
94 {
95     return s->config & HPET_CFG_LEGACY;
96 }
97 
98 static uint32_t timer_int_route(struct HPETTimer *timer)
99 {
100     return (timer->config & HPET_TN_INT_ROUTE_MASK) >> HPET_TN_INT_ROUTE_SHIFT;
101 }
102 
103 static uint32_t timer_fsb_route(HPETTimer *t)
104 {
105     return t->config & HPET_TN_FSB_ENABLE;
106 }
107 
108 static uint32_t hpet_enabled(HPETState *s)
109 {
110     return s->config & HPET_CFG_ENABLE;
111 }
112 
113 static uint32_t timer_is_periodic(HPETTimer *t)
114 {
115     return t->config & HPET_TN_PERIODIC;
116 }
117 
118 static uint32_t timer_enabled(HPETTimer *t)
119 {
120     return t->config & HPET_TN_ENABLE;
121 }
122 
123 static uint32_t hpet_time_after(uint64_t a, uint64_t b)
124 {
125     return ((int32_t)(b - a) < 0);
126 }
127 
128 static uint32_t hpet_time_after64(uint64_t a, uint64_t b)
129 {
130     return ((int64_t)(b - a) < 0);
131 }
132 
133 static uint64_t ticks_to_ns(uint64_t value)
134 {
135     return value * HPET_CLK_PERIOD;
136 }
137 
138 static uint64_t ns_to_ticks(uint64_t value)
139 {
140     return value / HPET_CLK_PERIOD;
141 }
142 
143 static uint64_t hpet_fixup_reg(uint64_t new, uint64_t old, uint64_t mask)
144 {
145     new &= mask;
146     new |= old & ~mask;
147     return new;
148 }
149 
150 static int activating_bit(uint64_t old, uint64_t new, uint64_t mask)
151 {
152     return (!(old & mask) && (new & mask));
153 }
154 
155 static int deactivating_bit(uint64_t old, uint64_t new, uint64_t mask)
156 {
157     return ((old & mask) && !(new & mask));
158 }
159 
160 static uint64_t hpet_get_ticks(HPETState *s)
161 {
162     return ns_to_ticks(qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + s->hpet_offset);
163 }
164 
165 /*
166  * calculate diff between comparator value and current ticks
167  */
168 static inline uint64_t hpet_calculate_diff(HPETTimer *t, uint64_t current)
169 {
170 
171     if (t->config & HPET_TN_32BIT) {
172         uint32_t diff, cmp;
173 
174         cmp = (uint32_t)t->cmp;
175         diff = cmp - (uint32_t)current;
176         diff = (int32_t)diff > 0 ? diff : (uint32_t)1;
177         return (uint64_t)diff;
178     } else {
179         uint64_t diff, cmp;
180 
181         cmp = t->cmp;
182         diff = cmp - current;
183         diff = (int64_t)diff > 0 ? diff : (uint64_t)1;
184         return diff;
185     }
186 }
187 
188 static void update_irq(struct HPETTimer *timer, int set)
189 {
190     uint64_t mask;
191     HPETState *s;
192     int route;
193 
194     if (timer->tn <= 1 && hpet_in_legacy_mode(timer->state)) {
195         /* if LegacyReplacementRoute bit is set, HPET specification requires
196          * timer0 be routed to IRQ0 in NON-APIC or IRQ2 in the I/O APIC,
197          * timer1 be routed to IRQ8 in NON-APIC or IRQ8 in the I/O APIC.
198          */
199         route = (timer->tn == 0) ? 0 : RTC_ISA_IRQ;
200     } else {
201         route = timer_int_route(timer);
202     }
203     s = timer->state;
204     mask = 1 << timer->tn;
205     if (!set || !timer_enabled(timer) || !hpet_enabled(timer->state)) {
206         s->isr &= ~mask;
207         if (!timer_fsb_route(timer)) {
208             qemu_irq_lower(s->irqs[route]);
209         }
210     } else if (timer_fsb_route(timer)) {
211         address_space_stl_le(&address_space_memory, timer->fsb >> 32,
212                              timer->fsb & 0xffffffff, MEMTXATTRS_UNSPECIFIED,
213                              NULL);
214     } else if (timer->config & HPET_TN_TYPE_LEVEL) {
215         s->isr |= mask;
216         qemu_irq_raise(s->irqs[route]);
217     } else {
218         s->isr &= ~mask;
219         qemu_irq_pulse(s->irqs[route]);
220     }
221 }
222 
223 static int hpet_pre_save(void *opaque)
224 {
225     HPETState *s = opaque;
226 
227     /* save current counter value */
228     if (hpet_enabled(s)) {
229         s->hpet_counter = hpet_get_ticks(s);
230     }
231 
232     return 0;
233 }
234 
235 static int hpet_pre_load(void *opaque)
236 {
237     HPETState *s = opaque;
238 
239     /* version 1 only supports 3, later versions will load the actual value */
240     s->num_timers = HPET_MIN_TIMERS;
241     return 0;
242 }
243 
244 static bool hpet_validate_num_timers(void *opaque, int version_id)
245 {
246     HPETState *s = opaque;
247 
248     if (s->num_timers < HPET_MIN_TIMERS) {
249         return false;
250     } else if (s->num_timers > HPET_MAX_TIMERS) {
251         return false;
252     }
253     return true;
254 }
255 
256 static int hpet_post_load(void *opaque, int version_id)
257 {
258     HPETState *s = opaque;
259 
260     /* Recalculate the offset between the main counter and guest time */
261     if (!s->hpet_offset_saved) {
262         s->hpet_offset = ticks_to_ns(s->hpet_counter)
263                         - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
264     }
265 
266     /* Push number of timers into capability returned via HPET_ID */
267     s->capability &= ~HPET_ID_NUM_TIM_MASK;
268     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
269     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
270 
271     /* Derive HPET_MSI_SUPPORT from the capability of the first timer. */
272     s->flags &= ~(1 << HPET_MSI_SUPPORT);
273     if (s->timer[0].config & HPET_TN_FSB_CAP) {
274         s->flags |= 1 << HPET_MSI_SUPPORT;
275     }
276     return 0;
277 }
278 
279 static bool hpet_offset_needed(void *opaque)
280 {
281     HPETState *s = opaque;
282 
283     return hpet_enabled(s) && s->hpet_offset_saved;
284 }
285 
286 static bool hpet_rtc_irq_level_needed(void *opaque)
287 {
288     HPETState *s = opaque;
289 
290     return s->rtc_irq_level != 0;
291 }
292 
293 static const VMStateDescription vmstate_hpet_rtc_irq_level = {
294     .name = "hpet/rtc_irq_level",
295     .version_id = 1,
296     .minimum_version_id = 1,
297     .needed = hpet_rtc_irq_level_needed,
298     .fields = (VMStateField[]) {
299         VMSTATE_UINT8(rtc_irq_level, HPETState),
300         VMSTATE_END_OF_LIST()
301     }
302 };
303 
304 static const VMStateDescription vmstate_hpet_offset = {
305     .name = "hpet/offset",
306     .version_id = 1,
307     .minimum_version_id = 1,
308     .needed = hpet_offset_needed,
309     .fields = (VMStateField[]) {
310         VMSTATE_UINT64(hpet_offset, HPETState),
311         VMSTATE_END_OF_LIST()
312     }
313 };
314 
315 static const VMStateDescription vmstate_hpet_timer = {
316     .name = "hpet_timer",
317     .version_id = 1,
318     .minimum_version_id = 1,
319     .fields = (VMStateField[]) {
320         VMSTATE_UINT8(tn, HPETTimer),
321         VMSTATE_UINT64(config, HPETTimer),
322         VMSTATE_UINT64(cmp, HPETTimer),
323         VMSTATE_UINT64(fsb, HPETTimer),
324         VMSTATE_UINT64(period, HPETTimer),
325         VMSTATE_UINT8(wrap_flag, HPETTimer),
326         VMSTATE_TIMER_PTR(qemu_timer, HPETTimer),
327         VMSTATE_END_OF_LIST()
328     }
329 };
330 
331 static const VMStateDescription vmstate_hpet = {
332     .name = "hpet",
333     .version_id = 2,
334     .minimum_version_id = 1,
335     .pre_save = hpet_pre_save,
336     .pre_load = hpet_pre_load,
337     .post_load = hpet_post_load,
338     .fields = (VMStateField[]) {
339         VMSTATE_UINT64(config, HPETState),
340         VMSTATE_UINT64(isr, HPETState),
341         VMSTATE_UINT64(hpet_counter, HPETState),
342         VMSTATE_UINT8_V(num_timers, HPETState, 2),
343         VMSTATE_VALIDATE("num_timers in range", hpet_validate_num_timers),
344         VMSTATE_STRUCT_VARRAY_UINT8(timer, HPETState, num_timers, 0,
345                                     vmstate_hpet_timer, HPETTimer),
346         VMSTATE_END_OF_LIST()
347     },
348     .subsections = (const VMStateDescription*[]) {
349         &vmstate_hpet_rtc_irq_level,
350         &vmstate_hpet_offset,
351         NULL
352     }
353 };
354 
355 /*
356  * timer expiration callback
357  */
358 static void hpet_timer(void *opaque)
359 {
360     HPETTimer *t = opaque;
361     uint64_t diff;
362 
363     uint64_t period = t->period;
364     uint64_t cur_tick = hpet_get_ticks(t->state);
365 
366     if (timer_is_periodic(t) && period != 0) {
367         if (t->config & HPET_TN_32BIT) {
368             while (hpet_time_after(cur_tick, t->cmp)) {
369                 t->cmp = (uint32_t)(t->cmp + t->period);
370             }
371         } else {
372             while (hpet_time_after64(cur_tick, t->cmp)) {
373                 t->cmp += period;
374             }
375         }
376         diff = hpet_calculate_diff(t, cur_tick);
377         timer_mod(t->qemu_timer,
378                        qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
379     } else if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
380         if (t->wrap_flag) {
381             diff = hpet_calculate_diff(t, cur_tick);
382             timer_mod(t->qemu_timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) +
383                            (int64_t)ticks_to_ns(diff));
384             t->wrap_flag = 0;
385         }
386     }
387     update_irq(t, 1);
388 }
389 
390 static void hpet_set_timer(HPETTimer *t)
391 {
392     uint64_t diff;
393     uint32_t wrap_diff;  /* how many ticks until we wrap? */
394     uint64_t cur_tick = hpet_get_ticks(t->state);
395 
396     /* whenever new timer is being set up, make sure wrap_flag is 0 */
397     t->wrap_flag = 0;
398     diff = hpet_calculate_diff(t, cur_tick);
399 
400     /* hpet spec says in one-shot 32-bit mode, generate an interrupt when
401      * counter wraps in addition to an interrupt with comparator match.
402      */
403     if (t->config & HPET_TN_32BIT && !timer_is_periodic(t)) {
404         wrap_diff = 0xffffffff - (uint32_t)cur_tick;
405         if (wrap_diff < (uint32_t)diff) {
406             diff = wrap_diff;
407             t->wrap_flag = 1;
408         }
409     }
410     timer_mod(t->qemu_timer,
411                    qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + (int64_t)ticks_to_ns(diff));
412 }
413 
414 static void hpet_del_timer(HPETTimer *t)
415 {
416     timer_del(t->qemu_timer);
417     update_irq(t, 0);
418 }
419 
420 #ifdef HPET_DEBUG
421 static uint32_t hpet_ram_readb(void *opaque, hwaddr addr)
422 {
423     printf("qemu: hpet_read b at %" PRIx64 "\n", addr);
424     return 0;
425 }
426 
427 static uint32_t hpet_ram_readw(void *opaque, hwaddr addr)
428 {
429     printf("qemu: hpet_read w at %" PRIx64 "\n", addr);
430     return 0;
431 }
432 #endif
433 
434 static uint64_t hpet_ram_read(void *opaque, hwaddr addr,
435                               unsigned size)
436 {
437     HPETState *s = opaque;
438     uint64_t cur_tick, index;
439 
440     DPRINTF("qemu: Enter hpet_ram_readl at %" PRIx64 "\n", addr);
441     index = addr;
442     /*address range of all TN regs*/
443     if (index >= 0x100 && index <= 0x3ff) {
444         uint8_t timer_id = (addr - 0x100) / 0x20;
445         HPETTimer *timer = &s->timer[timer_id];
446 
447         if (timer_id > s->num_timers) {
448             DPRINTF("qemu: timer id out of range\n");
449             return 0;
450         }
451 
452         switch ((addr - 0x100) % 0x20) {
453         case HPET_TN_CFG:
454             return timer->config;
455         case HPET_TN_CFG + 4: // Interrupt capabilities
456             return timer->config >> 32;
457         case HPET_TN_CMP: // comparator register
458             return timer->cmp;
459         case HPET_TN_CMP + 4:
460             return timer->cmp >> 32;
461         case HPET_TN_ROUTE:
462             return timer->fsb;
463         case HPET_TN_ROUTE + 4:
464             return timer->fsb >> 32;
465         default:
466             DPRINTF("qemu: invalid hpet_ram_readl\n");
467             break;
468         }
469     } else {
470         switch (index) {
471         case HPET_ID:
472             return s->capability;
473         case HPET_PERIOD:
474             return s->capability >> 32;
475         case HPET_CFG:
476             return s->config;
477         case HPET_CFG + 4:
478             DPRINTF("qemu: invalid HPET_CFG + 4 hpet_ram_readl\n");
479             return 0;
480         case HPET_COUNTER:
481             if (hpet_enabled(s)) {
482                 cur_tick = hpet_get_ticks(s);
483             } else {
484                 cur_tick = s->hpet_counter;
485             }
486             DPRINTF("qemu: reading counter  = %" PRIx64 "\n", cur_tick);
487             return cur_tick;
488         case HPET_COUNTER + 4:
489             if (hpet_enabled(s)) {
490                 cur_tick = hpet_get_ticks(s);
491             } else {
492                 cur_tick = s->hpet_counter;
493             }
494             DPRINTF("qemu: reading counter + 4  = %" PRIx64 "\n", cur_tick);
495             return cur_tick >> 32;
496         case HPET_STATUS:
497             return s->isr;
498         default:
499             DPRINTF("qemu: invalid hpet_ram_readl\n");
500             break;
501         }
502     }
503     return 0;
504 }
505 
506 static void hpet_ram_write(void *opaque, hwaddr addr,
507                            uint64_t value, unsigned size)
508 {
509     int i;
510     HPETState *s = opaque;
511     uint64_t old_val, new_val, val, index;
512 
513     DPRINTF("qemu: Enter hpet_ram_writel at %" PRIx64 " = %#x\n", addr, value);
514     index = addr;
515     old_val = hpet_ram_read(opaque, addr, 4);
516     new_val = value;
517 
518     /*address range of all TN regs*/
519     if (index >= 0x100 && index <= 0x3ff) {
520         uint8_t timer_id = (addr - 0x100) / 0x20;
521         HPETTimer *timer = &s->timer[timer_id];
522 
523         DPRINTF("qemu: hpet_ram_writel timer_id = %#x\n", timer_id);
524         if (timer_id > s->num_timers) {
525             DPRINTF("qemu: timer id out of range\n");
526             return;
527         }
528         switch ((addr - 0x100) % 0x20) {
529         case HPET_TN_CFG:
530             DPRINTF("qemu: hpet_ram_writel HPET_TN_CFG\n");
531             if (activating_bit(old_val, new_val, HPET_TN_FSB_ENABLE)) {
532                 update_irq(timer, 0);
533             }
534             val = hpet_fixup_reg(new_val, old_val, HPET_TN_CFG_WRITE_MASK);
535             timer->config = (timer->config & 0xffffffff00000000ULL) | val;
536             if (new_val & HPET_TN_32BIT) {
537                 timer->cmp = (uint32_t)timer->cmp;
538                 timer->period = (uint32_t)timer->period;
539             }
540             if (activating_bit(old_val, new_val, HPET_TN_ENABLE) &&
541                 hpet_enabled(s)) {
542                 hpet_set_timer(timer);
543             } else if (deactivating_bit(old_val, new_val, HPET_TN_ENABLE)) {
544                 hpet_del_timer(timer);
545             }
546             break;
547         case HPET_TN_CFG + 4: // Interrupt capabilities
548             DPRINTF("qemu: invalid HPET_TN_CFG+4 write\n");
549             break;
550         case HPET_TN_CMP: // comparator register
551             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP\n");
552             if (timer->config & HPET_TN_32BIT) {
553                 new_val = (uint32_t)new_val;
554             }
555             if (!timer_is_periodic(timer)
556                 || (timer->config & HPET_TN_SETVAL)) {
557                 timer->cmp = (timer->cmp & 0xffffffff00000000ULL) | new_val;
558             }
559             if (timer_is_periodic(timer)) {
560                 /*
561                  * FIXME: Clamp period to reasonable min value?
562                  * Clamp period to reasonable max value
563                  */
564                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
565                 timer->period =
566                     (timer->period & 0xffffffff00000000ULL) | new_val;
567             }
568             timer->config &= ~HPET_TN_SETVAL;
569             if (hpet_enabled(s)) {
570                 hpet_set_timer(timer);
571             }
572             break;
573         case HPET_TN_CMP + 4: // comparator register high order
574             DPRINTF("qemu: hpet_ram_writel HPET_TN_CMP + 4\n");
575             if (!timer_is_periodic(timer)
576                 || (timer->config & HPET_TN_SETVAL)) {
577                 timer->cmp = (timer->cmp & 0xffffffffULL) | new_val << 32;
578             } else {
579                 /*
580                  * FIXME: Clamp period to reasonable min value?
581                  * Clamp period to reasonable max value
582                  */
583                 new_val &= (timer->config & HPET_TN_32BIT ? ~0u : ~0ull) >> 1;
584                 timer->period =
585                     (timer->period & 0xffffffffULL) | new_val << 32;
586                 }
587                 timer->config &= ~HPET_TN_SETVAL;
588                 if (hpet_enabled(s)) {
589                     hpet_set_timer(timer);
590                 }
591                 break;
592         case HPET_TN_ROUTE:
593             timer->fsb = (timer->fsb & 0xffffffff00000000ULL) | new_val;
594             break;
595         case HPET_TN_ROUTE + 4:
596             timer->fsb = (new_val << 32) | (timer->fsb & 0xffffffff);
597             break;
598         default:
599             DPRINTF("qemu: invalid hpet_ram_writel\n");
600             break;
601         }
602         return;
603     } else {
604         switch (index) {
605         case HPET_ID:
606             return;
607         case HPET_CFG:
608             val = hpet_fixup_reg(new_val, old_val, HPET_CFG_WRITE_MASK);
609             s->config = (s->config & 0xffffffff00000000ULL) | val;
610             if (activating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
611                 /* Enable main counter and interrupt generation. */
612                 s->hpet_offset =
613                     ticks_to_ns(s->hpet_counter) - qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL);
614                 for (i = 0; i < s->num_timers; i++) {
615                     if ((&s->timer[i])->cmp != ~0ULL) {
616                         hpet_set_timer(&s->timer[i]);
617                     }
618                 }
619             } else if (deactivating_bit(old_val, new_val, HPET_CFG_ENABLE)) {
620                 /* Halt main counter and disable interrupt generation. */
621                 s->hpet_counter = hpet_get_ticks(s);
622                 for (i = 0; i < s->num_timers; i++) {
623                     hpet_del_timer(&s->timer[i]);
624                 }
625             }
626             /* i8254 and RTC output pins are disabled
627              * when HPET is in legacy mode */
628             if (activating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
629                 qemu_set_irq(s->pit_enabled, 0);
630                 qemu_irq_lower(s->irqs[0]);
631                 qemu_irq_lower(s->irqs[RTC_ISA_IRQ]);
632             } else if (deactivating_bit(old_val, new_val, HPET_CFG_LEGACY)) {
633                 qemu_irq_lower(s->irqs[0]);
634                 qemu_set_irq(s->pit_enabled, 1);
635                 qemu_set_irq(s->irqs[RTC_ISA_IRQ], s->rtc_irq_level);
636             }
637             break;
638         case HPET_CFG + 4:
639             DPRINTF("qemu: invalid HPET_CFG+4 write\n");
640             break;
641         case HPET_STATUS:
642             val = new_val & s->isr;
643             for (i = 0; i < s->num_timers; i++) {
644                 if (val & (1 << i)) {
645                     update_irq(&s->timer[i], 0);
646                 }
647             }
648             break;
649         case HPET_COUNTER:
650             if (hpet_enabled(s)) {
651                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
652             }
653             s->hpet_counter =
654                 (s->hpet_counter & 0xffffffff00000000ULL) | value;
655             DPRINTF("qemu: HPET counter written. ctr = %#x -> %" PRIx64 "\n",
656                     value, s->hpet_counter);
657             break;
658         case HPET_COUNTER + 4:
659             if (hpet_enabled(s)) {
660                 DPRINTF("qemu: Writing counter while HPET enabled!\n");
661             }
662             s->hpet_counter =
663                 (s->hpet_counter & 0xffffffffULL) | (((uint64_t)value) << 32);
664             DPRINTF("qemu: HPET counter + 4 written. ctr = %#x -> %" PRIx64 "\n",
665                     value, s->hpet_counter);
666             break;
667         default:
668             DPRINTF("qemu: invalid hpet_ram_writel\n");
669             break;
670         }
671     }
672 }
673 
674 static const MemoryRegionOps hpet_ram_ops = {
675     .read = hpet_ram_read,
676     .write = hpet_ram_write,
677     .valid = {
678         .min_access_size = 4,
679         .max_access_size = 4,
680     },
681     .endianness = DEVICE_NATIVE_ENDIAN,
682 };
683 
684 static void hpet_reset(DeviceState *d)
685 {
686     HPETState *s = HPET(d);
687     SysBusDevice *sbd = SYS_BUS_DEVICE(d);
688     int i;
689 
690     for (i = 0; i < s->num_timers; i++) {
691         HPETTimer *timer = &s->timer[i];
692 
693         hpet_del_timer(timer);
694         timer->cmp = ~0ULL;
695         timer->config = HPET_TN_PERIODIC_CAP | HPET_TN_SIZE_CAP;
696         if (s->flags & (1 << HPET_MSI_SUPPORT)) {
697             timer->config |= HPET_TN_FSB_CAP;
698         }
699         /* advertise availability of ioapic int */
700         timer->config |=  (uint64_t)s->intcap << 32;
701         timer->period = 0ULL;
702         timer->wrap_flag = 0;
703     }
704 
705     qemu_set_irq(s->pit_enabled, 1);
706     s->hpet_counter = 0ULL;
707     s->hpet_offset = 0ULL;
708     s->config = 0ULL;
709     hpet_cfg.hpet[s->hpet_id].event_timer_block_id = (uint32_t)s->capability;
710     hpet_cfg.hpet[s->hpet_id].address = sbd->mmio[0].addr;
711 
712     /* to document that the RTC lowers its output on reset as well */
713     s->rtc_irq_level = 0;
714 }
715 
716 static void hpet_handle_legacy_irq(void *opaque, int n, int level)
717 {
718     HPETState *s = HPET(opaque);
719 
720     if (n == HPET_LEGACY_PIT_INT) {
721         if (!hpet_in_legacy_mode(s)) {
722             qemu_set_irq(s->irqs[0], level);
723         }
724     } else {
725         s->rtc_irq_level = level;
726         if (!hpet_in_legacy_mode(s)) {
727             qemu_set_irq(s->irqs[RTC_ISA_IRQ], level);
728         }
729     }
730 }
731 
732 static void hpet_init(Object *obj)
733 {
734     SysBusDevice *sbd = SYS_BUS_DEVICE(obj);
735     HPETState *s = HPET(obj);
736 
737     /* HPET Area */
738     memory_region_init_io(&s->iomem, obj, &hpet_ram_ops, s, "hpet", HPET_LEN);
739     sysbus_init_mmio(sbd, &s->iomem);
740 }
741 
742 static void hpet_realize(DeviceState *dev, Error **errp)
743 {
744     SysBusDevice *sbd = SYS_BUS_DEVICE(dev);
745     HPETState *s = HPET(dev);
746     int i;
747     HPETTimer *timer;
748 
749     if (!s->intcap) {
750         warn_report("Hpet's intcap not initialized");
751     }
752     if (hpet_cfg.count == UINT8_MAX) {
753         /* first instance */
754         hpet_cfg.count = 0;
755     }
756 
757     if (hpet_cfg.count == 8) {
758         error_setg(errp, "Only 8 instances of HPET is allowed");
759         return;
760     }
761 
762     s->hpet_id = hpet_cfg.count++;
763 
764     for (i = 0; i < HPET_NUM_IRQ_ROUTES; i++) {
765         sysbus_init_irq(sbd, &s->irqs[i]);
766     }
767 
768     if (s->num_timers < HPET_MIN_TIMERS) {
769         s->num_timers = HPET_MIN_TIMERS;
770     } else if (s->num_timers > HPET_MAX_TIMERS) {
771         s->num_timers = HPET_MAX_TIMERS;
772     }
773     for (i = 0; i < HPET_MAX_TIMERS; i++) {
774         timer = &s->timer[i];
775         timer->qemu_timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, hpet_timer, timer);
776         timer->tn = i;
777         timer->state = s;
778     }
779 
780     /* 64-bit main counter; LegacyReplacementRoute. */
781     s->capability = 0x8086a001ULL;
782     s->capability |= (s->num_timers - 1) << HPET_ID_NUM_TIM_SHIFT;
783     s->capability |= ((uint64_t)(HPET_CLK_PERIOD * FS_PER_NS) << 32);
784 
785     qdev_init_gpio_in(dev, hpet_handle_legacy_irq, 2);
786     qdev_init_gpio_out(dev, &s->pit_enabled, 1);
787 }
788 
789 static Property hpet_device_properties[] = {
790     DEFINE_PROP_UINT8("timers", HPETState, num_timers, HPET_MIN_TIMERS),
791     DEFINE_PROP_BIT("msi", HPETState, flags, HPET_MSI_SUPPORT, false),
792     DEFINE_PROP_UINT32(HPET_INTCAP, HPETState, intcap, 0),
793     DEFINE_PROP_BOOL("hpet-offset-saved", HPETState, hpet_offset_saved, true),
794     DEFINE_PROP_END_OF_LIST(),
795 };
796 
797 static void hpet_device_class_init(ObjectClass *klass, void *data)
798 {
799     DeviceClass *dc = DEVICE_CLASS(klass);
800 
801     dc->realize = hpet_realize;
802     dc->reset = hpet_reset;
803     dc->vmsd = &vmstate_hpet;
804     device_class_set_props(dc, hpet_device_properties);
805 }
806 
807 static const TypeInfo hpet_device_info = {
808     .name          = TYPE_HPET,
809     .parent        = TYPE_SYS_BUS_DEVICE,
810     .instance_size = sizeof(HPETState),
811     .instance_init = hpet_init,
812     .class_init    = hpet_device_class_init,
813 };
814 
815 static void hpet_register_types(void)
816 {
817     type_register_static(&hpet_device_info);
818 }
819 
820 type_init(hpet_register_types)
821