xref: /qemu/hw/virtio/virtio-mem.c (revision b49f4755)
1 /*
2  * Virtio MEM device
3  *
4  * Copyright (C) 2020 Red Hat, Inc.
5  *
6  * Authors:
7  *  David Hildenbrand <david@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.
10  * See the COPYING file in the top-level directory.
11  */
12 
13 #include "qemu/osdep.h"
14 #include "qemu/iov.h"
15 #include "qemu/cutils.h"
16 #include "qemu/error-report.h"
17 #include "qemu/units.h"
18 #include "sysemu/numa.h"
19 #include "sysemu/sysemu.h"
20 #include "sysemu/reset.h"
21 #include "sysemu/runstate.h"
22 #include "hw/virtio/virtio.h"
23 #include "hw/virtio/virtio-bus.h"
24 #include "hw/virtio/virtio-mem.h"
25 #include "qapi/error.h"
26 #include "qapi/visitor.h"
27 #include "exec/ram_addr.h"
28 #include "migration/misc.h"
29 #include "hw/boards.h"
30 #include "hw/qdev-properties.h"
31 #include CONFIG_DEVICES
32 #include "trace.h"
33 
34 static const VMStateDescription vmstate_virtio_mem_device_early;
35 
36 /*
37  * We only had legacy x86 guests that did not support
38  * VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE. Other targets don't have legacy guests.
39  */
40 #if defined(TARGET_X86_64) || defined(TARGET_I386)
41 #define VIRTIO_MEM_HAS_LEGACY_GUESTS
42 #endif
43 
44 /*
45  * Let's not allow blocks smaller than 1 MiB, for example, to keep the tracking
46  * bitmap small.
47  */
48 #define VIRTIO_MEM_MIN_BLOCK_SIZE ((uint32_t)(1 * MiB))
49 
50 static uint32_t virtio_mem_default_thp_size(void)
51 {
52     uint32_t default_thp_size = VIRTIO_MEM_MIN_BLOCK_SIZE;
53 
54 #if defined(__x86_64__) || defined(__arm__) || defined(__powerpc64__)
55     default_thp_size = 2 * MiB;
56 #elif defined(__aarch64__)
57     if (qemu_real_host_page_size() == 4 * KiB) {
58         default_thp_size = 2 * MiB;
59     } else if (qemu_real_host_page_size() == 16 * KiB) {
60         default_thp_size = 32 * MiB;
61     } else if (qemu_real_host_page_size() == 64 * KiB) {
62         default_thp_size = 512 * MiB;
63     }
64 #endif
65 
66     return default_thp_size;
67 }
68 
69 /*
70  * The minimum memslot size depends on this setting ("sane default"), the
71  * device block size, and the memory backend page size. The last (or single)
72  * memslot might be smaller than this constant.
73  */
74 #define VIRTIO_MEM_MIN_MEMSLOT_SIZE (1 * GiB)
75 
76 /*
77  * We want to have a reasonable default block size such that
78  * 1. We avoid splitting THPs when unplugging memory, which degrades
79  *    performance.
80  * 2. We avoid placing THPs for plugged blocks that also cover unplugged
81  *    blocks.
82  *
83  * The actual THP size might differ between Linux kernels, so we try to probe
84  * it. In the future (if we ever run into issues regarding 2.), we might want
85  * to disable THP in case we fail to properly probe the THP size, or if the
86  * block size is configured smaller than the THP size.
87  */
88 static uint32_t thp_size;
89 
90 #define HPAGE_PMD_SIZE_PATH "/sys/kernel/mm/transparent_hugepage/hpage_pmd_size"
91 static uint32_t virtio_mem_thp_size(void)
92 {
93     gchar *content = NULL;
94     const char *endptr;
95     uint64_t tmp;
96 
97     if (thp_size) {
98         return thp_size;
99     }
100 
101     /*
102      * Try to probe the actual THP size, fallback to (sane but eventually
103      * incorrect) default sizes.
104      */
105     if (g_file_get_contents(HPAGE_PMD_SIZE_PATH, &content, NULL, NULL) &&
106         !qemu_strtou64(content, &endptr, 0, &tmp) &&
107         (!endptr || *endptr == '\n')) {
108         /* Sanity-check the value and fallback to something reasonable. */
109         if (!tmp || !is_power_of_2(tmp)) {
110             warn_report("Read unsupported THP size: %" PRIx64, tmp);
111         } else {
112             thp_size = tmp;
113         }
114     }
115 
116     if (!thp_size) {
117         thp_size = virtio_mem_default_thp_size();
118         warn_report("Could not detect THP size, falling back to %" PRIx64
119                     "  MiB.", thp_size / MiB);
120     }
121 
122     g_free(content);
123     return thp_size;
124 }
125 
126 static uint64_t virtio_mem_default_block_size(RAMBlock *rb)
127 {
128     const uint64_t page_size = qemu_ram_pagesize(rb);
129 
130     /* We can have hugetlbfs with a page size smaller than the THP size. */
131     if (page_size == qemu_real_host_page_size()) {
132         return MAX(page_size, virtio_mem_thp_size());
133     }
134     return MAX(page_size, VIRTIO_MEM_MIN_BLOCK_SIZE);
135 }
136 
137 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
138 static bool virtio_mem_has_shared_zeropage(RAMBlock *rb)
139 {
140     /*
141      * We only have a guaranteed shared zeropage on ordinary MAP_PRIVATE
142      * anonymous RAM. In any other case, reading unplugged *can* populate a
143      * fresh page, consuming actual memory.
144      */
145     return !qemu_ram_is_shared(rb) && qemu_ram_get_fd(rb) < 0 &&
146            qemu_ram_pagesize(rb) == qemu_real_host_page_size();
147 }
148 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
149 
150 /*
151  * Size the usable region bigger than the requested size if possible. Esp.
152  * Linux guests will only add (aligned) memory blocks in case they fully
153  * fit into the usable region, but plug+online only a subset of the pages.
154  * The memory block size corresponds mostly to the section size.
155  *
156  * This allows e.g., to add 20MB with a section size of 128MB on x86_64, and
157  * a section size of 512MB on arm64 (as long as the start address is properly
158  * aligned, similar to ordinary DIMMs).
159  *
160  * We can change this at any time and maybe even make it configurable if
161  * necessary (as the section size can change). But it's more likely that the
162  * section size will rather get smaller and not bigger over time.
163  */
164 #if defined(TARGET_X86_64) || defined(TARGET_I386)
165 #define VIRTIO_MEM_USABLE_EXTENT (2 * (128 * MiB))
166 #elif defined(TARGET_ARM)
167 #define VIRTIO_MEM_USABLE_EXTENT (2 * (512 * MiB))
168 #else
169 #error VIRTIO_MEM_USABLE_EXTENT not defined
170 #endif
171 
172 static bool virtio_mem_is_busy(void)
173 {
174     /*
175      * Postcopy cannot handle concurrent discards and we don't want to migrate
176      * pages on-demand with stale content when plugging new blocks.
177      *
178      * For precopy, we don't want unplugged blocks in our migration stream, and
179      * when plugging new blocks, the page content might differ between source
180      * and destination (observable by the guest when not initializing pages
181      * after plugging them) until we're running on the destination (as we didn't
182      * migrate these blocks when they were unplugged).
183      */
184     return migration_in_incoming_postcopy() || !migration_is_idle();
185 }
186 
187 typedef int (*virtio_mem_range_cb)(VirtIOMEM *vmem, void *arg,
188                                    uint64_t offset, uint64_t size);
189 
190 static int virtio_mem_for_each_unplugged_range(VirtIOMEM *vmem, void *arg,
191                                                virtio_mem_range_cb cb)
192 {
193     unsigned long first_zero_bit, last_zero_bit;
194     uint64_t offset, size;
195     int ret = 0;
196 
197     first_zero_bit = find_first_zero_bit(vmem->bitmap, vmem->bitmap_size);
198     while (first_zero_bit < vmem->bitmap_size) {
199         offset = first_zero_bit * vmem->block_size;
200         last_zero_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
201                                       first_zero_bit + 1) - 1;
202         size = (last_zero_bit - first_zero_bit + 1) * vmem->block_size;
203 
204         ret = cb(vmem, arg, offset, size);
205         if (ret) {
206             break;
207         }
208         first_zero_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
209                                             last_zero_bit + 2);
210     }
211     return ret;
212 }
213 
214 static int virtio_mem_for_each_plugged_range(VirtIOMEM *vmem, void *arg,
215                                              virtio_mem_range_cb cb)
216 {
217     unsigned long first_bit, last_bit;
218     uint64_t offset, size;
219     int ret = 0;
220 
221     first_bit = find_first_bit(vmem->bitmap, vmem->bitmap_size);
222     while (first_bit < vmem->bitmap_size) {
223         offset = first_bit * vmem->block_size;
224         last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
225                                       first_bit + 1) - 1;
226         size = (last_bit - first_bit + 1) * vmem->block_size;
227 
228         ret = cb(vmem, arg, offset, size);
229         if (ret) {
230             break;
231         }
232         first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
233                                   last_bit + 2);
234     }
235     return ret;
236 }
237 
238 /*
239  * Adjust the memory section to cover the intersection with the given range.
240  *
241  * Returns false if the intersection is empty, otherwise returns true.
242  */
243 static bool virtio_mem_intersect_memory_section(MemoryRegionSection *s,
244                                                 uint64_t offset, uint64_t size)
245 {
246     uint64_t start = MAX(s->offset_within_region, offset);
247     uint64_t end = MIN(s->offset_within_region + int128_get64(s->size),
248                        offset + size);
249 
250     if (end <= start) {
251         return false;
252     }
253 
254     s->offset_within_address_space += start - s->offset_within_region;
255     s->offset_within_region = start;
256     s->size = int128_make64(end - start);
257     return true;
258 }
259 
260 typedef int (*virtio_mem_section_cb)(MemoryRegionSection *s, void *arg);
261 
262 static int virtio_mem_for_each_plugged_section(const VirtIOMEM *vmem,
263                                                MemoryRegionSection *s,
264                                                void *arg,
265                                                virtio_mem_section_cb cb)
266 {
267     unsigned long first_bit, last_bit;
268     uint64_t offset, size;
269     int ret = 0;
270 
271     first_bit = s->offset_within_region / vmem->block_size;
272     first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size, first_bit);
273     while (first_bit < vmem->bitmap_size) {
274         MemoryRegionSection tmp = *s;
275 
276         offset = first_bit * vmem->block_size;
277         last_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
278                                       first_bit + 1) - 1;
279         size = (last_bit - first_bit + 1) * vmem->block_size;
280 
281         if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) {
282             break;
283         }
284         ret = cb(&tmp, arg);
285         if (ret) {
286             break;
287         }
288         first_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
289                                   last_bit + 2);
290     }
291     return ret;
292 }
293 
294 static int virtio_mem_for_each_unplugged_section(const VirtIOMEM *vmem,
295                                                  MemoryRegionSection *s,
296                                                  void *arg,
297                                                  virtio_mem_section_cb cb)
298 {
299     unsigned long first_bit, last_bit;
300     uint64_t offset, size;
301     int ret = 0;
302 
303     first_bit = s->offset_within_region / vmem->block_size;
304     first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size, first_bit);
305     while (first_bit < vmem->bitmap_size) {
306         MemoryRegionSection tmp = *s;
307 
308         offset = first_bit * vmem->block_size;
309         last_bit = find_next_bit(vmem->bitmap, vmem->bitmap_size,
310                                  first_bit + 1) - 1;
311         size = (last_bit - first_bit + 1) * vmem->block_size;
312 
313         if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) {
314             break;
315         }
316         ret = cb(&tmp, arg);
317         if (ret) {
318             break;
319         }
320         first_bit = find_next_zero_bit(vmem->bitmap, vmem->bitmap_size,
321                                        last_bit + 2);
322     }
323     return ret;
324 }
325 
326 static int virtio_mem_notify_populate_cb(MemoryRegionSection *s, void *arg)
327 {
328     RamDiscardListener *rdl = arg;
329 
330     return rdl->notify_populate(rdl, s);
331 }
332 
333 static int virtio_mem_notify_discard_cb(MemoryRegionSection *s, void *arg)
334 {
335     RamDiscardListener *rdl = arg;
336 
337     rdl->notify_discard(rdl, s);
338     return 0;
339 }
340 
341 static void virtio_mem_notify_unplug(VirtIOMEM *vmem, uint64_t offset,
342                                      uint64_t size)
343 {
344     RamDiscardListener *rdl;
345 
346     QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
347         MemoryRegionSection tmp = *rdl->section;
348 
349         if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) {
350             continue;
351         }
352         rdl->notify_discard(rdl, &tmp);
353     }
354 }
355 
356 static int virtio_mem_notify_plug(VirtIOMEM *vmem, uint64_t offset,
357                                   uint64_t size)
358 {
359     RamDiscardListener *rdl, *rdl2;
360     int ret = 0;
361 
362     QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
363         MemoryRegionSection tmp = *rdl->section;
364 
365         if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) {
366             continue;
367         }
368         ret = rdl->notify_populate(rdl, &tmp);
369         if (ret) {
370             break;
371         }
372     }
373 
374     if (ret) {
375         /* Notify all already-notified listeners. */
376         QLIST_FOREACH(rdl2, &vmem->rdl_list, next) {
377             MemoryRegionSection tmp = *rdl2->section;
378 
379             if (rdl2 == rdl) {
380                 break;
381             }
382             if (!virtio_mem_intersect_memory_section(&tmp, offset, size)) {
383                 continue;
384             }
385             rdl2->notify_discard(rdl2, &tmp);
386         }
387     }
388     return ret;
389 }
390 
391 static void virtio_mem_notify_unplug_all(VirtIOMEM *vmem)
392 {
393     RamDiscardListener *rdl;
394 
395     if (!vmem->size) {
396         return;
397     }
398 
399     QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
400         if (rdl->double_discard_supported) {
401             rdl->notify_discard(rdl, rdl->section);
402         } else {
403             virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
404                                                 virtio_mem_notify_discard_cb);
405         }
406     }
407 }
408 
409 static bool virtio_mem_is_range_plugged(const VirtIOMEM *vmem,
410                                         uint64_t start_gpa, uint64_t size)
411 {
412     const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size;
413     const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1;
414     unsigned long found_bit;
415 
416     /* We fake a shorter bitmap to avoid searching too far. */
417     found_bit = find_next_zero_bit(vmem->bitmap, last_bit + 1, first_bit);
418     return found_bit > last_bit;
419 }
420 
421 static bool virtio_mem_is_range_unplugged(const VirtIOMEM *vmem,
422                                           uint64_t start_gpa, uint64_t size)
423 {
424     const unsigned long first_bit = (start_gpa - vmem->addr) / vmem->block_size;
425     const unsigned long last_bit = first_bit + (size / vmem->block_size) - 1;
426     unsigned long found_bit;
427 
428     /* We fake a shorter bitmap to avoid searching too far. */
429     found_bit = find_next_bit(vmem->bitmap, last_bit + 1, first_bit);
430     return found_bit > last_bit;
431 }
432 
433 static void virtio_mem_set_range_plugged(VirtIOMEM *vmem, uint64_t start_gpa,
434                                          uint64_t size)
435 {
436     const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size;
437     const unsigned long nbits = size / vmem->block_size;
438 
439     bitmap_set(vmem->bitmap, bit, nbits);
440 }
441 
442 static void virtio_mem_set_range_unplugged(VirtIOMEM *vmem, uint64_t start_gpa,
443                                            uint64_t size)
444 {
445     const unsigned long bit = (start_gpa - vmem->addr) / vmem->block_size;
446     const unsigned long nbits = size / vmem->block_size;
447 
448     bitmap_clear(vmem->bitmap, bit, nbits);
449 }
450 
451 static void virtio_mem_send_response(VirtIOMEM *vmem, VirtQueueElement *elem,
452                                      struct virtio_mem_resp *resp)
453 {
454     VirtIODevice *vdev = VIRTIO_DEVICE(vmem);
455     VirtQueue *vq = vmem->vq;
456 
457     trace_virtio_mem_send_response(le16_to_cpu(resp->type));
458     iov_from_buf(elem->in_sg, elem->in_num, 0, resp, sizeof(*resp));
459 
460     virtqueue_push(vq, elem, sizeof(*resp));
461     virtio_notify(vdev, vq);
462 }
463 
464 static void virtio_mem_send_response_simple(VirtIOMEM *vmem,
465                                             VirtQueueElement *elem,
466                                             uint16_t type)
467 {
468     struct virtio_mem_resp resp = {
469         .type = cpu_to_le16(type),
470     };
471 
472     virtio_mem_send_response(vmem, elem, &resp);
473 }
474 
475 static bool virtio_mem_valid_range(const VirtIOMEM *vmem, uint64_t gpa,
476                                    uint64_t size)
477 {
478     if (!QEMU_IS_ALIGNED(gpa, vmem->block_size)) {
479         return false;
480     }
481     if (gpa + size < gpa || !size) {
482         return false;
483     }
484     if (gpa < vmem->addr || gpa >= vmem->addr + vmem->usable_region_size) {
485         return false;
486     }
487     if (gpa + size > vmem->addr + vmem->usable_region_size) {
488         return false;
489     }
490     return true;
491 }
492 
493 static void virtio_mem_activate_memslot(VirtIOMEM *vmem, unsigned int idx)
494 {
495     const uint64_t memslot_offset = idx * vmem->memslot_size;
496 
497     assert(vmem->memslots);
498 
499     /*
500      * Instead of enabling/disabling memslots, we add/remove them. This should
501      * make address space updates faster, because we don't have to loop over
502      * many disabled subregions.
503      */
504     if (memory_region_is_mapped(&vmem->memslots[idx])) {
505         return;
506     }
507     memory_region_add_subregion(vmem->mr, memslot_offset, &vmem->memslots[idx]);
508 }
509 
510 static void virtio_mem_deactivate_memslot(VirtIOMEM *vmem, unsigned int idx)
511 {
512     assert(vmem->memslots);
513 
514     if (!memory_region_is_mapped(&vmem->memslots[idx])) {
515         return;
516     }
517     memory_region_del_subregion(vmem->mr, &vmem->memslots[idx]);
518 }
519 
520 static void virtio_mem_activate_memslots_to_plug(VirtIOMEM *vmem,
521                                                  uint64_t offset, uint64_t size)
522 {
523     const unsigned int start_idx = offset / vmem->memslot_size;
524     const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) /
525                                  vmem->memslot_size;
526     unsigned int idx;
527 
528     assert(vmem->dynamic_memslots);
529 
530     /* Activate all involved memslots in a single transaction. */
531     memory_region_transaction_begin();
532     for (idx = start_idx; idx < end_idx; idx++) {
533         virtio_mem_activate_memslot(vmem, idx);
534     }
535     memory_region_transaction_commit();
536 }
537 
538 static void virtio_mem_deactivate_unplugged_memslots(VirtIOMEM *vmem,
539                                                      uint64_t offset,
540                                                      uint64_t size)
541 {
542     const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
543     const unsigned int start_idx = offset / vmem->memslot_size;
544     const unsigned int end_idx = (offset + size + vmem->memslot_size - 1) /
545                                  vmem->memslot_size;
546     unsigned int idx;
547 
548     assert(vmem->dynamic_memslots);
549 
550     /* Deactivate all memslots with unplugged blocks in a single transaction. */
551     memory_region_transaction_begin();
552     for (idx = start_idx; idx < end_idx; idx++) {
553         const uint64_t memslot_offset = idx * vmem->memslot_size;
554         uint64_t memslot_size = vmem->memslot_size;
555 
556         /* The size of the last memslot might be smaller. */
557         if (idx == vmem->nb_memslots - 1) {
558             memslot_size = region_size - memslot_offset;
559         }
560 
561         /*
562          * Partially covered memslots might still have some blocks plugged and
563          * have to remain active if that's the case.
564          */
565         if (offset > memslot_offset ||
566             offset + size < memslot_offset + memslot_size) {
567             const uint64_t gpa = vmem->addr + memslot_offset;
568 
569             if (!virtio_mem_is_range_unplugged(vmem, gpa, memslot_size)) {
570                 continue;
571             }
572         }
573 
574         virtio_mem_deactivate_memslot(vmem, idx);
575     }
576     memory_region_transaction_commit();
577 }
578 
579 static int virtio_mem_set_block_state(VirtIOMEM *vmem, uint64_t start_gpa,
580                                       uint64_t size, bool plug)
581 {
582     const uint64_t offset = start_gpa - vmem->addr;
583     RAMBlock *rb = vmem->memdev->mr.ram_block;
584     int ret = 0;
585 
586     if (virtio_mem_is_busy()) {
587         return -EBUSY;
588     }
589 
590     if (!plug) {
591         if (ram_block_discard_range(rb, offset, size)) {
592             return -EBUSY;
593         }
594         virtio_mem_notify_unplug(vmem, offset, size);
595         virtio_mem_set_range_unplugged(vmem, start_gpa, size);
596         /* Deactivate completely unplugged memslots after updating the state. */
597         if (vmem->dynamic_memslots) {
598             virtio_mem_deactivate_unplugged_memslots(vmem, offset, size);
599         }
600         return 0;
601     }
602 
603     if (vmem->prealloc) {
604         void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset;
605         int fd = memory_region_get_fd(&vmem->memdev->mr);
606         Error *local_err = NULL;
607 
608         qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err);
609         if (local_err) {
610             static bool warned;
611 
612             /*
613              * Warn only once, we don't want to fill the log with these
614              * warnings.
615              */
616             if (!warned) {
617                 warn_report_err(local_err);
618                 warned = true;
619             } else {
620                 error_free(local_err);
621             }
622             ret = -EBUSY;
623         }
624     }
625 
626     if (!ret) {
627         /*
628          * Activate before notifying and rollback in case of any errors.
629          *
630          * When activating a yet inactive memslot, memory notifiers will get
631          * notified about the added memory region and can register with the
632          * RamDiscardManager; this will traverse all plugged blocks and skip the
633          * blocks we are plugging here. The following notification will inform
634          * registered listeners about the blocks we're plugging.
635          */
636         if (vmem->dynamic_memslots) {
637             virtio_mem_activate_memslots_to_plug(vmem, offset, size);
638         }
639         ret = virtio_mem_notify_plug(vmem, offset, size);
640         if (ret && vmem->dynamic_memslots) {
641             virtio_mem_deactivate_unplugged_memslots(vmem, offset, size);
642         }
643     }
644     if (ret) {
645         /* Could be preallocation or a notifier populated memory. */
646         ram_block_discard_range(vmem->memdev->mr.ram_block, offset, size);
647         return -EBUSY;
648     }
649 
650     virtio_mem_set_range_plugged(vmem, start_gpa, size);
651     return 0;
652 }
653 
654 static int virtio_mem_state_change_request(VirtIOMEM *vmem, uint64_t gpa,
655                                            uint16_t nb_blocks, bool plug)
656 {
657     const uint64_t size = nb_blocks * vmem->block_size;
658     int ret;
659 
660     if (!virtio_mem_valid_range(vmem, gpa, size)) {
661         return VIRTIO_MEM_RESP_ERROR;
662     }
663 
664     if (plug && (vmem->size + size > vmem->requested_size)) {
665         return VIRTIO_MEM_RESP_NACK;
666     }
667 
668     /* test if really all blocks are in the opposite state */
669     if ((plug && !virtio_mem_is_range_unplugged(vmem, gpa, size)) ||
670         (!plug && !virtio_mem_is_range_plugged(vmem, gpa, size))) {
671         return VIRTIO_MEM_RESP_ERROR;
672     }
673 
674     ret = virtio_mem_set_block_state(vmem, gpa, size, plug);
675     if (ret) {
676         return VIRTIO_MEM_RESP_BUSY;
677     }
678     if (plug) {
679         vmem->size += size;
680     } else {
681         vmem->size -= size;
682     }
683     notifier_list_notify(&vmem->size_change_notifiers, &vmem->size);
684     return VIRTIO_MEM_RESP_ACK;
685 }
686 
687 static void virtio_mem_plug_request(VirtIOMEM *vmem, VirtQueueElement *elem,
688                                     struct virtio_mem_req *req)
689 {
690     const uint64_t gpa = le64_to_cpu(req->u.plug.addr);
691     const uint16_t nb_blocks = le16_to_cpu(req->u.plug.nb_blocks);
692     uint16_t type;
693 
694     trace_virtio_mem_plug_request(gpa, nb_blocks);
695     type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, true);
696     virtio_mem_send_response_simple(vmem, elem, type);
697 }
698 
699 static void virtio_mem_unplug_request(VirtIOMEM *vmem, VirtQueueElement *elem,
700                                       struct virtio_mem_req *req)
701 {
702     const uint64_t gpa = le64_to_cpu(req->u.unplug.addr);
703     const uint16_t nb_blocks = le16_to_cpu(req->u.unplug.nb_blocks);
704     uint16_t type;
705 
706     trace_virtio_mem_unplug_request(gpa, nb_blocks);
707     type = virtio_mem_state_change_request(vmem, gpa, nb_blocks, false);
708     virtio_mem_send_response_simple(vmem, elem, type);
709 }
710 
711 static void virtio_mem_resize_usable_region(VirtIOMEM *vmem,
712                                             uint64_t requested_size,
713                                             bool can_shrink)
714 {
715     uint64_t newsize = MIN(memory_region_size(&vmem->memdev->mr),
716                            requested_size + VIRTIO_MEM_USABLE_EXTENT);
717 
718     /* The usable region size always has to be multiples of the block size. */
719     newsize = QEMU_ALIGN_UP(newsize, vmem->block_size);
720 
721     if (!requested_size) {
722         newsize = 0;
723     }
724 
725     if (newsize < vmem->usable_region_size && !can_shrink) {
726         return;
727     }
728 
729     trace_virtio_mem_resized_usable_region(vmem->usable_region_size, newsize);
730     vmem->usable_region_size = newsize;
731 }
732 
733 static int virtio_mem_unplug_all(VirtIOMEM *vmem)
734 {
735     const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
736     RAMBlock *rb = vmem->memdev->mr.ram_block;
737 
738     if (vmem->size) {
739         if (virtio_mem_is_busy()) {
740             return -EBUSY;
741         }
742         if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) {
743             return -EBUSY;
744         }
745         virtio_mem_notify_unplug_all(vmem);
746 
747         bitmap_clear(vmem->bitmap, 0, vmem->bitmap_size);
748         vmem->size = 0;
749         notifier_list_notify(&vmem->size_change_notifiers, &vmem->size);
750 
751         /* Deactivate all memslots after updating the state. */
752         if (vmem->dynamic_memslots) {
753             virtio_mem_deactivate_unplugged_memslots(vmem, 0, region_size);
754         }
755     }
756 
757     trace_virtio_mem_unplugged_all();
758     virtio_mem_resize_usable_region(vmem, vmem->requested_size, true);
759     return 0;
760 }
761 
762 static void virtio_mem_unplug_all_request(VirtIOMEM *vmem,
763                                           VirtQueueElement *elem)
764 {
765     trace_virtio_mem_unplug_all_request();
766     if (virtio_mem_unplug_all(vmem)) {
767         virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_BUSY);
768     } else {
769         virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ACK);
770     }
771 }
772 
773 static void virtio_mem_state_request(VirtIOMEM *vmem, VirtQueueElement *elem,
774                                      struct virtio_mem_req *req)
775 {
776     const uint16_t nb_blocks = le16_to_cpu(req->u.state.nb_blocks);
777     const uint64_t gpa = le64_to_cpu(req->u.state.addr);
778     const uint64_t size = nb_blocks * vmem->block_size;
779     struct virtio_mem_resp resp = {
780         .type = cpu_to_le16(VIRTIO_MEM_RESP_ACK),
781     };
782 
783     trace_virtio_mem_state_request(gpa, nb_blocks);
784     if (!virtio_mem_valid_range(vmem, gpa, size)) {
785         virtio_mem_send_response_simple(vmem, elem, VIRTIO_MEM_RESP_ERROR);
786         return;
787     }
788 
789     if (virtio_mem_is_range_plugged(vmem, gpa, size)) {
790         resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_PLUGGED);
791     } else if (virtio_mem_is_range_unplugged(vmem, gpa, size)) {
792         resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_UNPLUGGED);
793     } else {
794         resp.u.state.state = cpu_to_le16(VIRTIO_MEM_STATE_MIXED);
795     }
796     trace_virtio_mem_state_response(le16_to_cpu(resp.u.state.state));
797     virtio_mem_send_response(vmem, elem, &resp);
798 }
799 
800 static void virtio_mem_handle_request(VirtIODevice *vdev, VirtQueue *vq)
801 {
802     const int len = sizeof(struct virtio_mem_req);
803     VirtIOMEM *vmem = VIRTIO_MEM(vdev);
804     VirtQueueElement *elem;
805     struct virtio_mem_req req;
806     uint16_t type;
807 
808     while (true) {
809         elem = virtqueue_pop(vq, sizeof(VirtQueueElement));
810         if (!elem) {
811             return;
812         }
813 
814         if (iov_to_buf(elem->out_sg, elem->out_num, 0, &req, len) < len) {
815             virtio_error(vdev, "virtio-mem protocol violation: invalid request"
816                          " size: %d", len);
817             virtqueue_detach_element(vq, elem, 0);
818             g_free(elem);
819             return;
820         }
821 
822         if (iov_size(elem->in_sg, elem->in_num) <
823             sizeof(struct virtio_mem_resp)) {
824             virtio_error(vdev, "virtio-mem protocol violation: not enough space"
825                          " for response: %zu",
826                          iov_size(elem->in_sg, elem->in_num));
827             virtqueue_detach_element(vq, elem, 0);
828             g_free(elem);
829             return;
830         }
831 
832         type = le16_to_cpu(req.type);
833         switch (type) {
834         case VIRTIO_MEM_REQ_PLUG:
835             virtio_mem_plug_request(vmem, elem, &req);
836             break;
837         case VIRTIO_MEM_REQ_UNPLUG:
838             virtio_mem_unplug_request(vmem, elem, &req);
839             break;
840         case VIRTIO_MEM_REQ_UNPLUG_ALL:
841             virtio_mem_unplug_all_request(vmem, elem);
842             break;
843         case VIRTIO_MEM_REQ_STATE:
844             virtio_mem_state_request(vmem, elem, &req);
845             break;
846         default:
847             virtio_error(vdev, "virtio-mem protocol violation: unknown request"
848                          " type: %d", type);
849             virtqueue_detach_element(vq, elem, 0);
850             g_free(elem);
851             return;
852         }
853 
854         g_free(elem);
855     }
856 }
857 
858 static void virtio_mem_get_config(VirtIODevice *vdev, uint8_t *config_data)
859 {
860     VirtIOMEM *vmem = VIRTIO_MEM(vdev);
861     struct virtio_mem_config *config = (void *) config_data;
862 
863     config->block_size = cpu_to_le64(vmem->block_size);
864     config->node_id = cpu_to_le16(vmem->node);
865     config->requested_size = cpu_to_le64(vmem->requested_size);
866     config->plugged_size = cpu_to_le64(vmem->size);
867     config->addr = cpu_to_le64(vmem->addr);
868     config->region_size = cpu_to_le64(memory_region_size(&vmem->memdev->mr));
869     config->usable_region_size = cpu_to_le64(vmem->usable_region_size);
870 }
871 
872 static uint64_t virtio_mem_get_features(VirtIODevice *vdev, uint64_t features,
873                                         Error **errp)
874 {
875     MachineState *ms = MACHINE(qdev_get_machine());
876     VirtIOMEM *vmem = VIRTIO_MEM(vdev);
877 
878     if (ms->numa_state) {
879 #if defined(CONFIG_ACPI)
880         virtio_add_feature(&features, VIRTIO_MEM_F_ACPI_PXM);
881 #endif
882     }
883     assert(vmem->unplugged_inaccessible != ON_OFF_AUTO_AUTO);
884     if (vmem->unplugged_inaccessible == ON_OFF_AUTO_ON) {
885         virtio_add_feature(&features, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE);
886     }
887     return features;
888 }
889 
890 static int virtio_mem_validate_features(VirtIODevice *vdev)
891 {
892     if (virtio_host_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE) &&
893         !virtio_vdev_has_feature(vdev, VIRTIO_MEM_F_UNPLUGGED_INACCESSIBLE)) {
894         return -EFAULT;
895     }
896     return 0;
897 }
898 
899 static void virtio_mem_system_reset(void *opaque)
900 {
901     VirtIOMEM *vmem = VIRTIO_MEM(opaque);
902 
903     /*
904      * During usual resets, we will unplug all memory and shrink the usable
905      * region size. This is, however, not possible in all scenarios. Then,
906      * the guest has to deal with this manually (VIRTIO_MEM_REQ_UNPLUG_ALL).
907      */
908     virtio_mem_unplug_all(vmem);
909 }
910 
911 static void virtio_mem_prepare_mr(VirtIOMEM *vmem)
912 {
913     const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
914 
915     assert(!vmem->mr && vmem->dynamic_memslots);
916     vmem->mr = g_new0(MemoryRegion, 1);
917     memory_region_init(vmem->mr, OBJECT(vmem), "virtio-mem",
918                        region_size);
919     vmem->mr->align = memory_region_get_alignment(&vmem->memdev->mr);
920 }
921 
922 static void virtio_mem_prepare_memslots(VirtIOMEM *vmem)
923 {
924     const uint64_t region_size = memory_region_size(&vmem->memdev->mr);
925     unsigned int idx;
926 
927     g_assert(!vmem->memslots && vmem->nb_memslots && vmem->dynamic_memslots);
928     vmem->memslots = g_new0(MemoryRegion, vmem->nb_memslots);
929 
930     /* Initialize our memslots, but don't map them yet. */
931     for (idx = 0; idx < vmem->nb_memslots; idx++) {
932         const uint64_t memslot_offset = idx * vmem->memslot_size;
933         uint64_t memslot_size = vmem->memslot_size;
934         char name[20];
935 
936         /* The size of the last memslot might be smaller. */
937         if (idx == vmem->nb_memslots - 1) {
938             memslot_size = region_size - memslot_offset;
939         }
940 
941         snprintf(name, sizeof(name), "memslot-%u", idx);
942         memory_region_init_alias(&vmem->memslots[idx], OBJECT(vmem), name,
943                                  &vmem->memdev->mr, memslot_offset,
944                                  memslot_size);
945         /*
946          * We want to be able to atomically and efficiently activate/deactivate
947          * individual memslots without affecting adjacent memslots in memory
948          * notifiers.
949          */
950         memory_region_set_unmergeable(&vmem->memslots[idx], true);
951     }
952 }
953 
954 static void virtio_mem_device_realize(DeviceState *dev, Error **errp)
955 {
956     MachineState *ms = MACHINE(qdev_get_machine());
957     int nb_numa_nodes = ms->numa_state ? ms->numa_state->num_nodes : 0;
958     VirtIODevice *vdev = VIRTIO_DEVICE(dev);
959     VirtIOMEM *vmem = VIRTIO_MEM(dev);
960     uint64_t page_size;
961     RAMBlock *rb;
962     int ret;
963 
964     if (!vmem->memdev) {
965         error_setg(errp, "'%s' property is not set", VIRTIO_MEM_MEMDEV_PROP);
966         return;
967     } else if (host_memory_backend_is_mapped(vmem->memdev)) {
968         error_setg(errp, "'%s' property specifies a busy memdev: %s",
969                    VIRTIO_MEM_MEMDEV_PROP,
970                    object_get_canonical_path_component(OBJECT(vmem->memdev)));
971         return;
972     } else if (!memory_region_is_ram(&vmem->memdev->mr) ||
973         memory_region_is_rom(&vmem->memdev->mr) ||
974         !vmem->memdev->mr.ram_block) {
975         error_setg(errp, "'%s' property specifies an unsupported memdev",
976                    VIRTIO_MEM_MEMDEV_PROP);
977         return;
978     } else if (vmem->memdev->prealloc) {
979         error_setg(errp, "'%s' property specifies a memdev with preallocation"
980                    " enabled: %s. Instead, specify 'prealloc=on' for the"
981                    " virtio-mem device. ", VIRTIO_MEM_MEMDEV_PROP,
982                    object_get_canonical_path_component(OBJECT(vmem->memdev)));
983         return;
984     }
985 
986     if ((nb_numa_nodes && vmem->node >= nb_numa_nodes) ||
987         (!nb_numa_nodes && vmem->node)) {
988         error_setg(errp, "'%s' property has value '%" PRIu32 "', which exceeds"
989                    "the number of numa nodes: %d", VIRTIO_MEM_NODE_PROP,
990                    vmem->node, nb_numa_nodes ? nb_numa_nodes : 1);
991         return;
992     }
993 
994     if (enable_mlock) {
995         error_setg(errp, "Incompatible with mlock");
996         return;
997     }
998 
999     rb = vmem->memdev->mr.ram_block;
1000     page_size = qemu_ram_pagesize(rb);
1001 
1002 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
1003     switch (vmem->unplugged_inaccessible) {
1004     case ON_OFF_AUTO_AUTO:
1005         if (virtio_mem_has_shared_zeropage(rb)) {
1006             vmem->unplugged_inaccessible = ON_OFF_AUTO_OFF;
1007         } else {
1008             vmem->unplugged_inaccessible = ON_OFF_AUTO_ON;
1009         }
1010         break;
1011     case ON_OFF_AUTO_OFF:
1012         if (!virtio_mem_has_shared_zeropage(rb)) {
1013             warn_report("'%s' property set to 'off' with a memdev that does"
1014                         " not support the shared zeropage.",
1015                         VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP);
1016         }
1017         break;
1018     default:
1019         break;
1020     }
1021 #else /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
1022     vmem->unplugged_inaccessible = ON_OFF_AUTO_ON;
1023 #endif /* VIRTIO_MEM_HAS_LEGACY_GUESTS */
1024 
1025     if (vmem->dynamic_memslots &&
1026         vmem->unplugged_inaccessible != ON_OFF_AUTO_ON) {
1027         error_setg(errp, "'%s' property set to 'on' requires '%s' to be 'on'",
1028                    VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP,
1029                    VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP);
1030         return;
1031     }
1032 
1033     /*
1034      * If the block size wasn't configured by the user, use a sane default. This
1035      * allows using hugetlbfs backends of any page size without manual
1036      * intervention.
1037      */
1038     if (!vmem->block_size) {
1039         vmem->block_size = virtio_mem_default_block_size(rb);
1040     }
1041 
1042     if (vmem->block_size < page_size) {
1043         error_setg(errp, "'%s' property has to be at least the page size (0x%"
1044                    PRIx64 ")", VIRTIO_MEM_BLOCK_SIZE_PROP, page_size);
1045         return;
1046     } else if (vmem->block_size < virtio_mem_default_block_size(rb)) {
1047         warn_report("'%s' property is smaller than the default block size (%"
1048                     PRIx64 " MiB)", VIRTIO_MEM_BLOCK_SIZE_PROP,
1049                     virtio_mem_default_block_size(rb) / MiB);
1050     }
1051     if (!QEMU_IS_ALIGNED(vmem->requested_size, vmem->block_size)) {
1052         error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64
1053                    ")", VIRTIO_MEM_REQUESTED_SIZE_PROP,
1054                    VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size);
1055         return;
1056     } else if (!QEMU_IS_ALIGNED(vmem->addr, vmem->block_size)) {
1057         error_setg(errp, "'%s' property has to be multiples of '%s' (0x%" PRIx64
1058                    ")", VIRTIO_MEM_ADDR_PROP, VIRTIO_MEM_BLOCK_SIZE_PROP,
1059                    vmem->block_size);
1060         return;
1061     } else if (!QEMU_IS_ALIGNED(memory_region_size(&vmem->memdev->mr),
1062                                 vmem->block_size)) {
1063         error_setg(errp, "'%s' property memdev size has to be multiples of"
1064                    "'%s' (0x%" PRIx64 ")", VIRTIO_MEM_MEMDEV_PROP,
1065                    VIRTIO_MEM_BLOCK_SIZE_PROP, vmem->block_size);
1066         return;
1067     }
1068 
1069     if (ram_block_coordinated_discard_require(true)) {
1070         error_setg(errp, "Discarding RAM is disabled");
1071         return;
1072     }
1073 
1074     /*
1075      * We don't know at this point whether shared RAM is migrated using
1076      * QEMU or migrated using the file content. "x-ignore-shared" will be
1077      * configured after realizing the device. So in case we have an
1078      * incoming migration, simply always skip the discard step.
1079      *
1080      * Otherwise, make sure that we start with a clean slate: either the
1081      * memory backend might get reused or the shared file might still have
1082      * memory allocated.
1083      */
1084     if (!runstate_check(RUN_STATE_INMIGRATE)) {
1085         ret = ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb));
1086         if (ret) {
1087             error_setg_errno(errp, -ret, "Unexpected error discarding RAM");
1088             ram_block_coordinated_discard_require(false);
1089             return;
1090         }
1091     }
1092 
1093     virtio_mem_resize_usable_region(vmem, vmem->requested_size, true);
1094 
1095     vmem->bitmap_size = memory_region_size(&vmem->memdev->mr) /
1096                         vmem->block_size;
1097     vmem->bitmap = bitmap_new(vmem->bitmap_size);
1098 
1099     virtio_init(vdev, VIRTIO_ID_MEM, sizeof(struct virtio_mem_config));
1100     vmem->vq = virtio_add_queue(vdev, 128, virtio_mem_handle_request);
1101 
1102     /*
1103      * With "dynamic-memslots=off" (old behavior) we always map the whole
1104      * RAM memory region directly.
1105      */
1106     if (vmem->dynamic_memslots) {
1107         if (!vmem->mr) {
1108             virtio_mem_prepare_mr(vmem);
1109         }
1110         if (vmem->nb_memslots <= 1) {
1111             vmem->nb_memslots = 1;
1112             vmem->memslot_size = memory_region_size(&vmem->memdev->mr);
1113         }
1114         if (!vmem->memslots) {
1115             virtio_mem_prepare_memslots(vmem);
1116         }
1117     } else {
1118         assert(!vmem->mr && !vmem->nb_memslots && !vmem->memslots);
1119     }
1120 
1121     host_memory_backend_set_mapped(vmem->memdev, true);
1122     vmstate_register_ram(&vmem->memdev->mr, DEVICE(vmem));
1123     if (vmem->early_migration) {
1124         vmstate_register_any(VMSTATE_IF(vmem),
1125                              &vmstate_virtio_mem_device_early, vmem);
1126     }
1127     qemu_register_reset(virtio_mem_system_reset, vmem);
1128 
1129     /*
1130      * Set ourselves as RamDiscardManager before the plug handler maps the
1131      * memory region and exposes it via an address space.
1132      */
1133     memory_region_set_ram_discard_manager(&vmem->memdev->mr,
1134                                           RAM_DISCARD_MANAGER(vmem));
1135 }
1136 
1137 static void virtio_mem_device_unrealize(DeviceState *dev)
1138 {
1139     VirtIODevice *vdev = VIRTIO_DEVICE(dev);
1140     VirtIOMEM *vmem = VIRTIO_MEM(dev);
1141 
1142     /*
1143      * The unplug handler unmapped the memory region, it cannot be
1144      * found via an address space anymore. Unset ourselves.
1145      */
1146     memory_region_set_ram_discard_manager(&vmem->memdev->mr, NULL);
1147     qemu_unregister_reset(virtio_mem_system_reset, vmem);
1148     if (vmem->early_migration) {
1149         vmstate_unregister(VMSTATE_IF(vmem), &vmstate_virtio_mem_device_early,
1150                            vmem);
1151     }
1152     vmstate_unregister_ram(&vmem->memdev->mr, DEVICE(vmem));
1153     host_memory_backend_set_mapped(vmem->memdev, false);
1154     virtio_del_queue(vdev, 0);
1155     virtio_cleanup(vdev);
1156     g_free(vmem->bitmap);
1157     ram_block_coordinated_discard_require(false);
1158 }
1159 
1160 static int virtio_mem_discard_range_cb(VirtIOMEM *vmem, void *arg,
1161                                        uint64_t offset, uint64_t size)
1162 {
1163     RAMBlock *rb = vmem->memdev->mr.ram_block;
1164 
1165     return ram_block_discard_range(rb, offset, size) ? -EINVAL : 0;
1166 }
1167 
1168 static int virtio_mem_restore_unplugged(VirtIOMEM *vmem)
1169 {
1170     /* Make sure all memory is really discarded after migration. */
1171     return virtio_mem_for_each_unplugged_range(vmem, NULL,
1172                                                virtio_mem_discard_range_cb);
1173 }
1174 
1175 static int virtio_mem_activate_memslot_range_cb(VirtIOMEM *vmem, void *arg,
1176                                                 uint64_t offset, uint64_t size)
1177 {
1178     virtio_mem_activate_memslots_to_plug(vmem, offset, size);
1179     return 0;
1180 }
1181 
1182 static int virtio_mem_post_load_bitmap(VirtIOMEM *vmem)
1183 {
1184     RamDiscardListener *rdl;
1185     int ret;
1186 
1187     /*
1188      * We restored the bitmap and updated the requested size; activate all
1189      * memslots (so listeners register) before notifying about plugged blocks.
1190      */
1191     if (vmem->dynamic_memslots) {
1192         /*
1193          * We don't expect any active memslots at this point to deactivate: no
1194          * memory was plugged on the migration destination.
1195          */
1196         virtio_mem_for_each_plugged_range(vmem, NULL,
1197                                           virtio_mem_activate_memslot_range_cb);
1198     }
1199 
1200     /*
1201      * We started out with all memory discarded and our memory region is mapped
1202      * into an address space. Replay, now that we updated the bitmap.
1203      */
1204     QLIST_FOREACH(rdl, &vmem->rdl_list, next) {
1205         ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1206                                                  virtio_mem_notify_populate_cb);
1207         if (ret) {
1208             return ret;
1209         }
1210     }
1211     return 0;
1212 }
1213 
1214 static int virtio_mem_post_load(void *opaque, int version_id)
1215 {
1216     VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1217     int ret;
1218 
1219     if (!vmem->early_migration) {
1220         ret = virtio_mem_post_load_bitmap(vmem);
1221         if (ret) {
1222             return ret;
1223         }
1224     }
1225 
1226     /*
1227      * If shared RAM is migrated using the file content and not using QEMU,
1228      * don't mess with preallocation and postcopy.
1229      */
1230     if (migrate_ram_is_ignored(vmem->memdev->mr.ram_block)) {
1231         return 0;
1232     }
1233 
1234     if (vmem->prealloc && !vmem->early_migration) {
1235         warn_report("Proper preallocation with migration requires a newer QEMU machine");
1236     }
1237 
1238     if (migration_in_incoming_postcopy()) {
1239         return 0;
1240     }
1241 
1242     return virtio_mem_restore_unplugged(vmem);
1243 }
1244 
1245 static int virtio_mem_prealloc_range_cb(VirtIOMEM *vmem, void *arg,
1246                                         uint64_t offset, uint64_t size)
1247 {
1248     void *area = memory_region_get_ram_ptr(&vmem->memdev->mr) + offset;
1249     int fd = memory_region_get_fd(&vmem->memdev->mr);
1250     Error *local_err = NULL;
1251 
1252     qemu_prealloc_mem(fd, area, size, 1, NULL, &local_err);
1253     if (local_err) {
1254         error_report_err(local_err);
1255         return -ENOMEM;
1256     }
1257     return 0;
1258 }
1259 
1260 static int virtio_mem_post_load_early(void *opaque, int version_id)
1261 {
1262     VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1263     RAMBlock *rb = vmem->memdev->mr.ram_block;
1264     int ret;
1265 
1266     if (!vmem->prealloc) {
1267         goto post_load_bitmap;
1268     }
1269 
1270     /*
1271      * If shared RAM is migrated using the file content and not using QEMU,
1272      * don't mess with preallocation and postcopy.
1273      */
1274     if (migrate_ram_is_ignored(rb)) {
1275         goto post_load_bitmap;
1276     }
1277 
1278     /*
1279      * We restored the bitmap and verified that the basic properties
1280      * match on source and destination, so we can go ahead and preallocate
1281      * memory for all plugged memory blocks, before actual RAM migration starts
1282      * touching this memory.
1283      */
1284     ret = virtio_mem_for_each_plugged_range(vmem, NULL,
1285                                             virtio_mem_prealloc_range_cb);
1286     if (ret) {
1287         return ret;
1288     }
1289 
1290     /*
1291      * This is tricky: postcopy wants to start with a clean slate. On
1292      * POSTCOPY_INCOMING_ADVISE, postcopy code discards all (ordinarily
1293      * preallocated) RAM such that postcopy will work as expected later.
1294      *
1295      * However, we run after POSTCOPY_INCOMING_ADVISE -- but before actual
1296      * RAM migration. So let's discard all memory again. This looks like an
1297      * expensive NOP, but actually serves a purpose: we made sure that we
1298      * were able to allocate all required backend memory once. We cannot
1299      * guarantee that the backend memory we will free will remain free
1300      * until we need it during postcopy, but at least we can catch the
1301      * obvious setup issues this way.
1302      */
1303     if (migration_incoming_postcopy_advised()) {
1304         if (ram_block_discard_range(rb, 0, qemu_ram_get_used_length(rb))) {
1305             return -EBUSY;
1306         }
1307     }
1308 
1309 post_load_bitmap:
1310     /* Finally, update any other state to be consistent with the new bitmap. */
1311     return virtio_mem_post_load_bitmap(vmem);
1312 }
1313 
1314 typedef struct VirtIOMEMMigSanityChecks {
1315     VirtIOMEM *parent;
1316     uint64_t addr;
1317     uint64_t region_size;
1318     uint64_t block_size;
1319     uint32_t node;
1320 } VirtIOMEMMigSanityChecks;
1321 
1322 static int virtio_mem_mig_sanity_checks_pre_save(void *opaque)
1323 {
1324     VirtIOMEMMigSanityChecks *tmp = opaque;
1325     VirtIOMEM *vmem = tmp->parent;
1326 
1327     tmp->addr = vmem->addr;
1328     tmp->region_size = memory_region_size(&vmem->memdev->mr);
1329     tmp->block_size = vmem->block_size;
1330     tmp->node = vmem->node;
1331     return 0;
1332 }
1333 
1334 static int virtio_mem_mig_sanity_checks_post_load(void *opaque, int version_id)
1335 {
1336     VirtIOMEMMigSanityChecks *tmp = opaque;
1337     VirtIOMEM *vmem = tmp->parent;
1338     const uint64_t new_region_size = memory_region_size(&vmem->memdev->mr);
1339 
1340     if (tmp->addr != vmem->addr) {
1341         error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64,
1342                      VIRTIO_MEM_ADDR_PROP, tmp->addr, vmem->addr);
1343         return -EINVAL;
1344     }
1345     /*
1346      * Note: Preparation for resizable memory regions. The maximum size
1347      * of the memory region must not change during migration.
1348      */
1349     if (tmp->region_size != new_region_size) {
1350         error_report("Property '%s' size changed from 0x%" PRIx64 " to 0x%"
1351                      PRIx64, VIRTIO_MEM_MEMDEV_PROP, tmp->region_size,
1352                      new_region_size);
1353         return -EINVAL;
1354     }
1355     if (tmp->block_size != vmem->block_size) {
1356         error_report("Property '%s' changed from 0x%" PRIx64 " to 0x%" PRIx64,
1357                      VIRTIO_MEM_BLOCK_SIZE_PROP, tmp->block_size,
1358                      vmem->block_size);
1359         return -EINVAL;
1360     }
1361     if (tmp->node != vmem->node) {
1362         error_report("Property '%s' changed from %" PRIu32 " to %" PRIu32,
1363                      VIRTIO_MEM_NODE_PROP, tmp->node, vmem->node);
1364         return -EINVAL;
1365     }
1366     return 0;
1367 }
1368 
1369 static const VMStateDescription vmstate_virtio_mem_sanity_checks = {
1370     .name = "virtio-mem-device/sanity-checks",
1371     .pre_save = virtio_mem_mig_sanity_checks_pre_save,
1372     .post_load = virtio_mem_mig_sanity_checks_post_load,
1373     .fields = (VMStateField[]) {
1374         VMSTATE_UINT64(addr, VirtIOMEMMigSanityChecks),
1375         VMSTATE_UINT64(region_size, VirtIOMEMMigSanityChecks),
1376         VMSTATE_UINT64(block_size, VirtIOMEMMigSanityChecks),
1377         VMSTATE_UINT32(node, VirtIOMEMMigSanityChecks),
1378         VMSTATE_END_OF_LIST(),
1379     },
1380 };
1381 
1382 static bool virtio_mem_vmstate_field_exists(void *opaque, int version_id)
1383 {
1384     const VirtIOMEM *vmem = VIRTIO_MEM(opaque);
1385 
1386     /* With early migration, these fields were already migrated. */
1387     return !vmem->early_migration;
1388 }
1389 
1390 static const VMStateDescription vmstate_virtio_mem_device = {
1391     .name = "virtio-mem-device",
1392     .minimum_version_id = 1,
1393     .version_id = 1,
1394     .priority = MIG_PRI_VIRTIO_MEM,
1395     .post_load = virtio_mem_post_load,
1396     .fields = (VMStateField[]) {
1397         VMSTATE_WITH_TMP_TEST(VirtIOMEM, virtio_mem_vmstate_field_exists,
1398                               VirtIOMEMMigSanityChecks,
1399                               vmstate_virtio_mem_sanity_checks),
1400         VMSTATE_UINT64(usable_region_size, VirtIOMEM),
1401         VMSTATE_UINT64_TEST(size, VirtIOMEM, virtio_mem_vmstate_field_exists),
1402         VMSTATE_UINT64(requested_size, VirtIOMEM),
1403         VMSTATE_BITMAP_TEST(bitmap, VirtIOMEM, virtio_mem_vmstate_field_exists,
1404                             0, bitmap_size),
1405         VMSTATE_END_OF_LIST()
1406     },
1407 };
1408 
1409 /*
1410  * Transfer properties that are immutable while migration is active early,
1411  * such that we have have this information around before migrating any RAM
1412  * content.
1413  *
1414  * Note that virtio_mem_is_busy() makes sure these properties can no longer
1415  * change on the migration source until migration completed.
1416  *
1417  * With QEMU compat machines, we transmit these properties later, via
1418  * vmstate_virtio_mem_device instead -- see virtio_mem_vmstate_field_exists().
1419  */
1420 static const VMStateDescription vmstate_virtio_mem_device_early = {
1421     .name = "virtio-mem-device-early",
1422     .minimum_version_id = 1,
1423     .version_id = 1,
1424     .early_setup = true,
1425     .post_load = virtio_mem_post_load_early,
1426     .fields = (VMStateField[]) {
1427         VMSTATE_WITH_TMP(VirtIOMEM, VirtIOMEMMigSanityChecks,
1428                          vmstate_virtio_mem_sanity_checks),
1429         VMSTATE_UINT64(size, VirtIOMEM),
1430         VMSTATE_BITMAP(bitmap, VirtIOMEM, 0, bitmap_size),
1431         VMSTATE_END_OF_LIST()
1432     },
1433 };
1434 
1435 static const VMStateDescription vmstate_virtio_mem = {
1436     .name = "virtio-mem",
1437     .minimum_version_id = 1,
1438     .version_id = 1,
1439     .fields = (VMStateField[]) {
1440         VMSTATE_VIRTIO_DEVICE,
1441         VMSTATE_END_OF_LIST()
1442     },
1443 };
1444 
1445 static void virtio_mem_fill_device_info(const VirtIOMEM *vmem,
1446                                         VirtioMEMDeviceInfo *vi)
1447 {
1448     vi->memaddr = vmem->addr;
1449     vi->node = vmem->node;
1450     vi->requested_size = vmem->requested_size;
1451     vi->size = vmem->size;
1452     vi->max_size = memory_region_size(&vmem->memdev->mr);
1453     vi->block_size = vmem->block_size;
1454     vi->memdev = object_get_canonical_path(OBJECT(vmem->memdev));
1455 }
1456 
1457 static MemoryRegion *virtio_mem_get_memory_region(VirtIOMEM *vmem, Error **errp)
1458 {
1459     if (!vmem->memdev) {
1460         error_setg(errp, "'%s' property must be set", VIRTIO_MEM_MEMDEV_PROP);
1461         return NULL;
1462     } else if (vmem->dynamic_memslots) {
1463         if (!vmem->mr) {
1464             virtio_mem_prepare_mr(vmem);
1465         }
1466         return vmem->mr;
1467     }
1468 
1469     return &vmem->memdev->mr;
1470 }
1471 
1472 static void virtio_mem_decide_memslots(VirtIOMEM *vmem, unsigned int limit)
1473 {
1474     uint64_t region_size, memslot_size, min_memslot_size;
1475     unsigned int memslots;
1476     RAMBlock *rb;
1477 
1478     if (!vmem->dynamic_memslots) {
1479         return;
1480     }
1481 
1482     /* We're called exactly once, before realizing the device. */
1483     assert(!vmem->nb_memslots);
1484 
1485     /* If realizing the device will fail, just assume a single memslot. */
1486     if (limit <= 1 || !vmem->memdev || !vmem->memdev->mr.ram_block) {
1487         vmem->nb_memslots = 1;
1488         return;
1489     }
1490 
1491     rb = vmem->memdev->mr.ram_block;
1492     region_size = memory_region_size(&vmem->memdev->mr);
1493 
1494     /*
1495      * Determine the default block size now, to determine the minimum memslot
1496      * size. We want the minimum slot size to be at least the device block size.
1497      */
1498     if (!vmem->block_size) {
1499         vmem->block_size = virtio_mem_default_block_size(rb);
1500     }
1501     /* If realizing the device will fail, just assume a single memslot. */
1502     if (vmem->block_size < qemu_ram_pagesize(rb) ||
1503         !QEMU_IS_ALIGNED(region_size, vmem->block_size)) {
1504         vmem->nb_memslots = 1;
1505         return;
1506     }
1507 
1508     /*
1509      * All memslots except the last one have a reasonable minimum size, and
1510      * and all memslot sizes are aligned to the device block size.
1511      */
1512     memslot_size = QEMU_ALIGN_UP(region_size / limit, vmem->block_size);
1513     min_memslot_size = MAX(vmem->block_size, VIRTIO_MEM_MIN_MEMSLOT_SIZE);
1514     memslot_size = MAX(memslot_size, min_memslot_size);
1515 
1516     memslots = QEMU_ALIGN_UP(region_size, memslot_size) / memslot_size;
1517     if (memslots != 1) {
1518         vmem->memslot_size = memslot_size;
1519     }
1520     vmem->nb_memslots = memslots;
1521 }
1522 
1523 static unsigned int virtio_mem_get_memslots(VirtIOMEM *vmem)
1524 {
1525     if (!vmem->dynamic_memslots) {
1526         /* Exactly one static RAM memory region. */
1527         return 1;
1528     }
1529 
1530     /* We're called after instructed to make a decision. */
1531     g_assert(vmem->nb_memslots);
1532     return vmem->nb_memslots;
1533 }
1534 
1535 static void virtio_mem_add_size_change_notifier(VirtIOMEM *vmem,
1536                                                 Notifier *notifier)
1537 {
1538     notifier_list_add(&vmem->size_change_notifiers, notifier);
1539 }
1540 
1541 static void virtio_mem_remove_size_change_notifier(VirtIOMEM *vmem,
1542                                                    Notifier *notifier)
1543 {
1544     notifier_remove(notifier);
1545 }
1546 
1547 static void virtio_mem_get_size(Object *obj, Visitor *v, const char *name,
1548                                 void *opaque, Error **errp)
1549 {
1550     const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1551     uint64_t value = vmem->size;
1552 
1553     visit_type_size(v, name, &value, errp);
1554 }
1555 
1556 static void virtio_mem_get_requested_size(Object *obj, Visitor *v,
1557                                           const char *name, void *opaque,
1558                                           Error **errp)
1559 {
1560     const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1561     uint64_t value = vmem->requested_size;
1562 
1563     visit_type_size(v, name, &value, errp);
1564 }
1565 
1566 static void virtio_mem_set_requested_size(Object *obj, Visitor *v,
1567                                           const char *name, void *opaque,
1568                                           Error **errp)
1569 {
1570     VirtIOMEM *vmem = VIRTIO_MEM(obj);
1571     uint64_t value;
1572 
1573     if (!visit_type_size(v, name, &value, errp)) {
1574         return;
1575     }
1576 
1577     /*
1578      * The block size and memory backend are not fixed until the device was
1579      * realized. realize() will verify these properties then.
1580      */
1581     if (DEVICE(obj)->realized) {
1582         if (!QEMU_IS_ALIGNED(value, vmem->block_size)) {
1583             error_setg(errp, "'%s' has to be multiples of '%s' (0x%" PRIx64
1584                        ")", name, VIRTIO_MEM_BLOCK_SIZE_PROP,
1585                        vmem->block_size);
1586             return;
1587         } else if (value > memory_region_size(&vmem->memdev->mr)) {
1588             error_setg(errp, "'%s' cannot exceed the memory backend size"
1589                        "(0x%" PRIx64 ")", name,
1590                        memory_region_size(&vmem->memdev->mr));
1591             return;
1592         }
1593 
1594         if (value != vmem->requested_size) {
1595             virtio_mem_resize_usable_region(vmem, value, false);
1596             vmem->requested_size = value;
1597         }
1598         /*
1599          * Trigger a config update so the guest gets notified. We trigger
1600          * even if the size didn't change (especially helpful for debugging).
1601          */
1602         virtio_notify_config(VIRTIO_DEVICE(vmem));
1603     } else {
1604         vmem->requested_size = value;
1605     }
1606 }
1607 
1608 static void virtio_mem_get_block_size(Object *obj, Visitor *v, const char *name,
1609                                       void *opaque, Error **errp)
1610 {
1611     const VirtIOMEM *vmem = VIRTIO_MEM(obj);
1612     uint64_t value = vmem->block_size;
1613 
1614     /*
1615      * If not configured by the user (and we're not realized yet), use the
1616      * default block size we would use with the current memory backend.
1617      */
1618     if (!value) {
1619         if (vmem->memdev && memory_region_is_ram(&vmem->memdev->mr)) {
1620             value = virtio_mem_default_block_size(vmem->memdev->mr.ram_block);
1621         } else {
1622             value = virtio_mem_thp_size();
1623         }
1624     }
1625 
1626     visit_type_size(v, name, &value, errp);
1627 }
1628 
1629 static void virtio_mem_set_block_size(Object *obj, Visitor *v, const char *name,
1630                                       void *opaque, Error **errp)
1631 {
1632     VirtIOMEM *vmem = VIRTIO_MEM(obj);
1633     uint64_t value;
1634 
1635     if (DEVICE(obj)->realized) {
1636         error_setg(errp, "'%s' cannot be changed", name);
1637         return;
1638     }
1639 
1640     if (!visit_type_size(v, name, &value, errp)) {
1641         return;
1642     }
1643 
1644     if (value < VIRTIO_MEM_MIN_BLOCK_SIZE) {
1645         error_setg(errp, "'%s' property has to be at least 0x%" PRIx32, name,
1646                    VIRTIO_MEM_MIN_BLOCK_SIZE);
1647         return;
1648     } else if (!is_power_of_2(value)) {
1649         error_setg(errp, "'%s' property has to be a power of two", name);
1650         return;
1651     }
1652     vmem->block_size = value;
1653 }
1654 
1655 static void virtio_mem_instance_init(Object *obj)
1656 {
1657     VirtIOMEM *vmem = VIRTIO_MEM(obj);
1658 
1659     notifier_list_init(&vmem->size_change_notifiers);
1660     QLIST_INIT(&vmem->rdl_list);
1661 
1662     object_property_add(obj, VIRTIO_MEM_SIZE_PROP, "size", virtio_mem_get_size,
1663                         NULL, NULL, NULL);
1664     object_property_add(obj, VIRTIO_MEM_REQUESTED_SIZE_PROP, "size",
1665                         virtio_mem_get_requested_size,
1666                         virtio_mem_set_requested_size, NULL, NULL);
1667     object_property_add(obj, VIRTIO_MEM_BLOCK_SIZE_PROP, "size",
1668                         virtio_mem_get_block_size, virtio_mem_set_block_size,
1669                         NULL, NULL);
1670 }
1671 
1672 static void virtio_mem_instance_finalize(Object *obj)
1673 {
1674     VirtIOMEM *vmem = VIRTIO_MEM(obj);
1675 
1676     /*
1677      * Note: the core already dropped the references on all memory regions
1678      * (it's passed as the owner to memory_region_init_*()) and finalized
1679      * these objects. We can simply free the memory.
1680      */
1681     g_free(vmem->memslots);
1682     vmem->memslots = NULL;
1683     g_free(vmem->mr);
1684     vmem->mr = NULL;
1685 }
1686 
1687 static Property virtio_mem_properties[] = {
1688     DEFINE_PROP_UINT64(VIRTIO_MEM_ADDR_PROP, VirtIOMEM, addr, 0),
1689     DEFINE_PROP_UINT32(VIRTIO_MEM_NODE_PROP, VirtIOMEM, node, 0),
1690     DEFINE_PROP_BOOL(VIRTIO_MEM_PREALLOC_PROP, VirtIOMEM, prealloc, false),
1691     DEFINE_PROP_LINK(VIRTIO_MEM_MEMDEV_PROP, VirtIOMEM, memdev,
1692                      TYPE_MEMORY_BACKEND, HostMemoryBackend *),
1693 #if defined(VIRTIO_MEM_HAS_LEGACY_GUESTS)
1694     DEFINE_PROP_ON_OFF_AUTO(VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP, VirtIOMEM,
1695                             unplugged_inaccessible, ON_OFF_AUTO_ON),
1696 #endif
1697     DEFINE_PROP_BOOL(VIRTIO_MEM_EARLY_MIGRATION_PROP, VirtIOMEM,
1698                      early_migration, true),
1699     DEFINE_PROP_BOOL(VIRTIO_MEM_DYNAMIC_MEMSLOTS_PROP, VirtIOMEM,
1700                      dynamic_memslots, false),
1701     DEFINE_PROP_END_OF_LIST(),
1702 };
1703 
1704 static uint64_t virtio_mem_rdm_get_min_granularity(const RamDiscardManager *rdm,
1705                                                    const MemoryRegion *mr)
1706 {
1707     const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1708 
1709     g_assert(mr == &vmem->memdev->mr);
1710     return vmem->block_size;
1711 }
1712 
1713 static bool virtio_mem_rdm_is_populated(const RamDiscardManager *rdm,
1714                                         const MemoryRegionSection *s)
1715 {
1716     const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1717     uint64_t start_gpa = vmem->addr + s->offset_within_region;
1718     uint64_t end_gpa = start_gpa + int128_get64(s->size);
1719 
1720     g_assert(s->mr == &vmem->memdev->mr);
1721 
1722     start_gpa = QEMU_ALIGN_DOWN(start_gpa, vmem->block_size);
1723     end_gpa = QEMU_ALIGN_UP(end_gpa, vmem->block_size);
1724 
1725     if (!virtio_mem_valid_range(vmem, start_gpa, end_gpa - start_gpa)) {
1726         return false;
1727     }
1728 
1729     return virtio_mem_is_range_plugged(vmem, start_gpa, end_gpa - start_gpa);
1730 }
1731 
1732 struct VirtIOMEMReplayData {
1733     void *fn;
1734     void *opaque;
1735 };
1736 
1737 static int virtio_mem_rdm_replay_populated_cb(MemoryRegionSection *s, void *arg)
1738 {
1739     struct VirtIOMEMReplayData *data = arg;
1740 
1741     return ((ReplayRamPopulate)data->fn)(s, data->opaque);
1742 }
1743 
1744 static int virtio_mem_rdm_replay_populated(const RamDiscardManager *rdm,
1745                                            MemoryRegionSection *s,
1746                                            ReplayRamPopulate replay_fn,
1747                                            void *opaque)
1748 {
1749     const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1750     struct VirtIOMEMReplayData data = {
1751         .fn = replay_fn,
1752         .opaque = opaque,
1753     };
1754 
1755     g_assert(s->mr == &vmem->memdev->mr);
1756     return virtio_mem_for_each_plugged_section(vmem, s, &data,
1757                                             virtio_mem_rdm_replay_populated_cb);
1758 }
1759 
1760 static int virtio_mem_rdm_replay_discarded_cb(MemoryRegionSection *s,
1761                                               void *arg)
1762 {
1763     struct VirtIOMEMReplayData *data = arg;
1764 
1765     ((ReplayRamDiscard)data->fn)(s, data->opaque);
1766     return 0;
1767 }
1768 
1769 static void virtio_mem_rdm_replay_discarded(const RamDiscardManager *rdm,
1770                                             MemoryRegionSection *s,
1771                                             ReplayRamDiscard replay_fn,
1772                                             void *opaque)
1773 {
1774     const VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1775     struct VirtIOMEMReplayData data = {
1776         .fn = replay_fn,
1777         .opaque = opaque,
1778     };
1779 
1780     g_assert(s->mr == &vmem->memdev->mr);
1781     virtio_mem_for_each_unplugged_section(vmem, s, &data,
1782                                           virtio_mem_rdm_replay_discarded_cb);
1783 }
1784 
1785 static void virtio_mem_rdm_register_listener(RamDiscardManager *rdm,
1786                                              RamDiscardListener *rdl,
1787                                              MemoryRegionSection *s)
1788 {
1789     VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1790     int ret;
1791 
1792     g_assert(s->mr == &vmem->memdev->mr);
1793     rdl->section = memory_region_section_new_copy(s);
1794 
1795     QLIST_INSERT_HEAD(&vmem->rdl_list, rdl, next);
1796     ret = virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1797                                               virtio_mem_notify_populate_cb);
1798     if (ret) {
1799         error_report("%s: Replaying plugged ranges failed: %s", __func__,
1800                      strerror(-ret));
1801     }
1802 }
1803 
1804 static void virtio_mem_rdm_unregister_listener(RamDiscardManager *rdm,
1805                                                RamDiscardListener *rdl)
1806 {
1807     VirtIOMEM *vmem = VIRTIO_MEM(rdm);
1808 
1809     g_assert(rdl->section->mr == &vmem->memdev->mr);
1810     if (vmem->size) {
1811         if (rdl->double_discard_supported) {
1812             rdl->notify_discard(rdl, rdl->section);
1813         } else {
1814             virtio_mem_for_each_plugged_section(vmem, rdl->section, rdl,
1815                                                 virtio_mem_notify_discard_cb);
1816         }
1817     }
1818 
1819     memory_region_section_free_copy(rdl->section);
1820     rdl->section = NULL;
1821     QLIST_REMOVE(rdl, next);
1822 }
1823 
1824 static void virtio_mem_unplug_request_check(VirtIOMEM *vmem, Error **errp)
1825 {
1826     if (vmem->unplugged_inaccessible == ON_OFF_AUTO_OFF) {
1827         /*
1828          * We could allow it with a usable region size of 0, but let's just
1829          * not care about that legacy setting.
1830          */
1831         error_setg(errp, "virtio-mem device cannot get unplugged while"
1832                    " '" VIRTIO_MEM_UNPLUGGED_INACCESSIBLE_PROP "' != 'on'");
1833         return;
1834     }
1835 
1836     if (vmem->size) {
1837         error_setg(errp, "virtio-mem device cannot get unplugged while"
1838                    " '" VIRTIO_MEM_SIZE_PROP "' != '0'");
1839         return;
1840     }
1841     if (vmem->requested_size) {
1842         error_setg(errp, "virtio-mem device cannot get unplugged while"
1843                    " '" VIRTIO_MEM_REQUESTED_SIZE_PROP "' != '0'");
1844         return;
1845     }
1846 }
1847 
1848 static void virtio_mem_class_init(ObjectClass *klass, void *data)
1849 {
1850     DeviceClass *dc = DEVICE_CLASS(klass);
1851     VirtioDeviceClass *vdc = VIRTIO_DEVICE_CLASS(klass);
1852     VirtIOMEMClass *vmc = VIRTIO_MEM_CLASS(klass);
1853     RamDiscardManagerClass *rdmc = RAM_DISCARD_MANAGER_CLASS(klass);
1854 
1855     device_class_set_props(dc, virtio_mem_properties);
1856     dc->vmsd = &vmstate_virtio_mem;
1857 
1858     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
1859     vdc->realize = virtio_mem_device_realize;
1860     vdc->unrealize = virtio_mem_device_unrealize;
1861     vdc->get_config = virtio_mem_get_config;
1862     vdc->get_features = virtio_mem_get_features;
1863     vdc->validate_features = virtio_mem_validate_features;
1864     vdc->vmsd = &vmstate_virtio_mem_device;
1865 
1866     vmc->fill_device_info = virtio_mem_fill_device_info;
1867     vmc->get_memory_region = virtio_mem_get_memory_region;
1868     vmc->decide_memslots = virtio_mem_decide_memslots;
1869     vmc->get_memslots = virtio_mem_get_memslots;
1870     vmc->add_size_change_notifier = virtio_mem_add_size_change_notifier;
1871     vmc->remove_size_change_notifier = virtio_mem_remove_size_change_notifier;
1872     vmc->unplug_request_check = virtio_mem_unplug_request_check;
1873 
1874     rdmc->get_min_granularity = virtio_mem_rdm_get_min_granularity;
1875     rdmc->is_populated = virtio_mem_rdm_is_populated;
1876     rdmc->replay_populated = virtio_mem_rdm_replay_populated;
1877     rdmc->replay_discarded = virtio_mem_rdm_replay_discarded;
1878     rdmc->register_listener = virtio_mem_rdm_register_listener;
1879     rdmc->unregister_listener = virtio_mem_rdm_unregister_listener;
1880 }
1881 
1882 static const TypeInfo virtio_mem_info = {
1883     .name = TYPE_VIRTIO_MEM,
1884     .parent = TYPE_VIRTIO_DEVICE,
1885     .instance_size = sizeof(VirtIOMEM),
1886     .instance_init = virtio_mem_instance_init,
1887     .instance_finalize = virtio_mem_instance_finalize,
1888     .class_init = virtio_mem_class_init,
1889     .class_size = sizeof(VirtIOMEMClass),
1890     .interfaces = (InterfaceInfo[]) {
1891         { TYPE_RAM_DISCARD_MANAGER },
1892         { }
1893     },
1894 };
1895 
1896 static void virtio_register_types(void)
1897 {
1898     type_register_static(&virtio_mem_info);
1899 }
1900 
1901 type_init(virtio_register_types)
1902