xref: /qemu/hw/watchdog/wdt_i6300esb.c (revision 448058aa)
1 /*
2  * Virtual hardware watchdog.
3  *
4  * Copyright (C) 2009 Red Hat Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * By Richard W.M. Jones (rjones@redhat.com).
20  */
21 
22 #include "qemu/osdep.h"
23 
24 #include "qemu/module.h"
25 #include "qemu/timer.h"
26 #include "sysemu/watchdog.h"
27 #include "hw/pci/pci.h"
28 #include "migration/vmstate.h"
29 #include "qom/object.h"
30 
31 /*#define I6300ESB_DEBUG 1*/
32 
33 #ifdef I6300ESB_DEBUG
34 #define i6300esb_debug(fs,...) \
35     fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
36 #else
37 #define i6300esb_debug(fs,...)
38 #endif
39 
40 /* PCI configuration registers */
41 #define ESB_CONFIG_REG  0x60            /* Config register                   */
42 #define ESB_LOCK_REG    0x68            /* WDT lock register                 */
43 
44 /* Memory mapped registers (offset from base address) */
45 #define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
46 #define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
47 #define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
48 #define ESB_RELOAD_REG  0x0c            /* Reload register                   */
49 
50 /* Lock register bits */
51 #define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
52 #define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
53 #define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
54 
55 /* Config register bits */
56 #define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
57 #define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
58 #define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
59 
60 /* Reload register bits */
61 #define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
62 
63 /* Magic constants */
64 #define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
65 #define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
66 
67 /* Device state. */
68 struct I6300State {
69     PCIDevice dev;
70     MemoryRegion io_mem;
71 
72     int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
73                                  * performed depends on the -watchdog-action
74                                  * param passed on QEMU command line.
75                                  */
76     int clock_scale;            /* Clock scale. */
77 #define CLOCK_SCALE_1KHZ 0
78 #define CLOCK_SCALE_1MHZ 1
79 
80     int int_type;               /* Interrupt type generated. */
81 #define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
82 #define INT_TYPE_SMI 2
83 #define INT_TYPE_DISABLED 3
84 
85     int free_run;               /* If true, reload timer on expiry. */
86     int locked;                 /* If true, enabled field cannot be changed. */
87     int enabled;                /* If true, watchdog is enabled. */
88 
89     QEMUTimer *timer;           /* The actual watchdog timer. */
90 
91     uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
92     uint32_t timer2_preload;
93     int stage;                  /* Stage (1 or 2). */
94 
95     int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
96                                  * registers, and we transition through
97                                  * states 0 -> 1 -> 2 when this happens.
98                                  */
99 
100     int previous_reboot_flag;   /* If the watchdog caused the previous
101                                  * reboot, this flag will be set.
102                                  */
103 };
104 
105 typedef struct I6300State I6300State;
106 
107 #define TYPE_WATCHDOG_I6300ESB_DEVICE "i6300esb"
108 DECLARE_INSTANCE_CHECKER(I6300State, WATCHDOG_I6300ESB_DEVICE,
109                          TYPE_WATCHDOG_I6300ESB_DEVICE)
110 
111 /* This function is called when the watchdog has either been enabled
112  * (hence it starts counting down) or has been keep-alived.
113  */
114 static void i6300esb_restart_timer(I6300State *d, int stage)
115 {
116     int64_t timeout;
117 
118     if (!d->enabled)
119         return;
120 
121     d->stage = stage;
122 
123     if (d->stage <= 1)
124         timeout = d->timer1_preload;
125     else
126         timeout = d->timer2_preload;
127 
128     if (d->clock_scale == CLOCK_SCALE_1KHZ)
129         timeout <<= 15;
130     else
131         timeout <<= 5;
132 
133     /* Get the timeout in nanoseconds. */
134 
135     timeout = timeout * 30; /* on a PCI bus, 1 tick is 30 ns*/
136 
137     i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
138 
139     timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
140 }
141 
142 /* This is called when the guest disables the watchdog. */
143 static void i6300esb_disable_timer(I6300State *d)
144 {
145     i6300esb_debug("timer disabled\n");
146 
147     timer_del(d->timer);
148 }
149 
150 static void i6300esb_reset(DeviceState *dev)
151 {
152     PCIDevice *pdev = PCI_DEVICE(dev);
153     I6300State *d = WATCHDOG_I6300ESB_DEVICE(pdev);
154 
155     i6300esb_debug("I6300State = %p\n", d);
156 
157     i6300esb_disable_timer(d);
158 
159     /* NB: Don't change d->previous_reboot_flag in this function. */
160 
161     d->reboot_enabled = 1;
162     d->clock_scale = CLOCK_SCALE_1KHZ;
163     d->int_type = INT_TYPE_IRQ;
164     d->free_run = 0;
165     d->locked = 0;
166     d->enabled = 0;
167     d->timer1_preload = 0xfffff;
168     d->timer2_preload = 0xfffff;
169     d->stage = 1;
170     d->unlock_state = 0;
171 }
172 
173 /* This function is called when the watchdog expires.  Note that
174  * the hardware has two timers, and so expiry happens in two stages.
175  * If d->stage == 1 then we perform the first stage action (usually,
176  * sending an interrupt) and then restart the timer again for the
177  * second stage.  If the second stage expires then the watchdog
178  * really has run out.
179  */
180 static void i6300esb_timer_expired(void *vp)
181 {
182     I6300State *d = vp;
183 
184     i6300esb_debug("stage %d\n", d->stage);
185 
186     if (d->stage == 1) {
187         /* What to do at the end of stage 1? */
188         switch (d->int_type) {
189         case INT_TYPE_IRQ:
190             fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
191             break;
192         case INT_TYPE_SMI:
193             fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
194             break;
195         }
196 
197         /* Start the second stage. */
198         i6300esb_restart_timer(d, 2);
199     } else {
200         /* Second stage expired, reboot for real. */
201         if (d->reboot_enabled) {
202             d->previous_reboot_flag = 1;
203             watchdog_perform_action(); /* This reboots, exits, etc */
204             i6300esb_reset(DEVICE(d));
205         }
206 
207         /* In "free running mode" we start stage 1 again. */
208         if (d->free_run)
209             i6300esb_restart_timer(d, 1);
210     }
211 }
212 
213 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
214                                   uint32_t data, int len)
215 {
216     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
217     int old;
218 
219     i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
220 
221     if (addr == ESB_CONFIG_REG && len == 2) {
222         d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
223         d->clock_scale =
224             (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
225         d->int_type = (data & ESB_WDT_INTTYPE);
226     } else if (addr == ESB_LOCK_REG && len == 1) {
227         if (!d->locked) {
228             d->locked = (data & ESB_WDT_LOCK) != 0;
229             d->free_run = (data & ESB_WDT_FUNC) != 0;
230             old = d->enabled;
231             d->enabled = (data & ESB_WDT_ENABLE) != 0;
232             if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
233                 i6300esb_restart_timer(d, 1);
234             else if (!d->enabled)
235                 i6300esb_disable_timer(d);
236         }
237     } else {
238         pci_default_write_config(dev, addr, data, len);
239     }
240 }
241 
242 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
243 {
244     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
245     uint32_t data;
246 
247     i6300esb_debug ("addr = %x, len = %d\n", addr, len);
248 
249     if (addr == ESB_CONFIG_REG && len == 2) {
250         data =
251             (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
252             (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
253             d->int_type;
254         return data;
255     } else if (addr == ESB_LOCK_REG && len == 1) {
256         data =
257             (d->free_run ? ESB_WDT_FUNC : 0) |
258             (d->locked ? ESB_WDT_LOCK : 0) |
259             (d->enabled ? ESB_WDT_ENABLE : 0);
260         return data;
261     } else {
262         return pci_default_read_config(dev, addr, len);
263     }
264 }
265 
266 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
267 {
268     i6300esb_debug ("addr = %x\n", (int) addr);
269 
270     return 0;
271 }
272 
273 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
274 {
275     uint32_t data = 0;
276     I6300State *d = vp;
277 
278     i6300esb_debug("addr = %x\n", (int) addr);
279 
280     if (addr == 0xc) {
281         /* The previous reboot flag is really bit 9, but there is
282          * a bug in the Linux driver where it thinks it's bit 12.
283          * Set both.
284          */
285         data = d->previous_reboot_flag ? 0x1200 : 0;
286     }
287 
288     return data;
289 }
290 
291 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
292 {
293     i6300esb_debug("addr = %x\n", (int) addr);
294 
295     return 0;
296 }
297 
298 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
299 {
300     I6300State *d = vp;
301 
302     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
303 
304     if (addr == 0xc && val == 0x80)
305         d->unlock_state = 1;
306     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
307         d->unlock_state = 2;
308 }
309 
310 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
311 {
312     I6300State *d = vp;
313 
314     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
315 
316     if (addr == 0xc && val == 0x80)
317         d->unlock_state = 1;
318     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
319         d->unlock_state = 2;
320     else {
321         if (d->unlock_state == 2) {
322             if (addr == 0xc) {
323                 if ((val & 0x100) != 0)
324                     /* This is the "ping" from the userspace watchdog in
325                      * the guest ...
326                      */
327                     i6300esb_restart_timer(d, 1);
328 
329                 /* Setting bit 9 resets the previous reboot flag.
330                  * There's a bug in the Linux driver where it sets
331                  * bit 12 instead.
332                  */
333                 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
334                     d->previous_reboot_flag = 0;
335                 }
336             }
337 
338             d->unlock_state = 0;
339         }
340     }
341 }
342 
343 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
344 {
345     I6300State *d = vp;
346 
347     i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
348 
349     if (addr == 0xc && val == 0x80)
350         d->unlock_state = 1;
351     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
352         d->unlock_state = 2;
353     else {
354         if (d->unlock_state == 2) {
355             if (addr == 0)
356                 d->timer1_preload = val & 0xfffff;
357             else if (addr == 4)
358                 d->timer2_preload = val & 0xfffff;
359 
360             d->unlock_state = 0;
361         }
362     }
363 }
364 
365 static uint64_t i6300esb_mem_readfn(void *opaque, hwaddr addr, unsigned size)
366 {
367     switch (size) {
368     case 1:
369         return i6300esb_mem_readb(opaque, addr);
370     case 2:
371         return i6300esb_mem_readw(opaque, addr);
372     case 4:
373         return i6300esb_mem_readl(opaque, addr);
374     default:
375         g_assert_not_reached();
376     }
377 }
378 
379 static void i6300esb_mem_writefn(void *opaque, hwaddr addr,
380                                  uint64_t value, unsigned size)
381 {
382     switch (size) {
383     case 1:
384         i6300esb_mem_writeb(opaque, addr, value);
385         break;
386     case 2:
387         i6300esb_mem_writew(opaque, addr, value);
388         break;
389     case 4:
390         i6300esb_mem_writel(opaque, addr, value);
391         break;
392     default:
393         g_assert_not_reached();
394     }
395 }
396 
397 static const MemoryRegionOps i6300esb_ops = {
398     .read = i6300esb_mem_readfn,
399     .write = i6300esb_mem_writefn,
400     .valid.min_access_size = 1,
401     .valid.max_access_size = 4,
402     .endianness = DEVICE_LITTLE_ENDIAN,
403 };
404 
405 static const VMStateDescription vmstate_i6300esb = {
406     .name = "i6300esb_wdt",
407     /* With this VMSD's introduction, version_id/minimum_version_id were
408      * erroneously set to sizeof(I6300State), causing a somewhat random
409      * version_id to be set for every build. This eventually broke
410      * migration.
411      *
412      * To correct this without breaking old->new migration for older
413      * versions of QEMU, we've set version_id to a value high enough
414      * to exceed all past values of sizeof(I6300State) across various
415      * build environments, and have reset minimum_version_id to 1,
416      * since this VMSD has never changed and thus can accept all past
417      * versions.
418      *
419      * For future changes we can treat these values as we normally would.
420      */
421     .version_id = 10000,
422     .minimum_version_id = 1,
423     .fields = (VMStateField[]) {
424         VMSTATE_PCI_DEVICE(dev, I6300State),
425         VMSTATE_INT32(reboot_enabled, I6300State),
426         VMSTATE_INT32(clock_scale, I6300State),
427         VMSTATE_INT32(int_type, I6300State),
428         VMSTATE_INT32(free_run, I6300State),
429         VMSTATE_INT32(locked, I6300State),
430         VMSTATE_INT32(enabled, I6300State),
431         VMSTATE_TIMER_PTR(timer, I6300State),
432         VMSTATE_UINT32(timer1_preload, I6300State),
433         VMSTATE_UINT32(timer2_preload, I6300State),
434         VMSTATE_INT32(stage, I6300State),
435         VMSTATE_INT32(unlock_state, I6300State),
436         VMSTATE_INT32(previous_reboot_flag, I6300State),
437         VMSTATE_END_OF_LIST()
438     }
439 };
440 
441 static void i6300esb_realize(PCIDevice *dev, Error **errp)
442 {
443     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
444 
445     i6300esb_debug("I6300State = %p\n", d);
446 
447     d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
448     d->previous_reboot_flag = 0;
449 
450     memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
451                           "i6300esb", 0x10);
452     pci_register_bar(&d->dev, 0, 0, &d->io_mem);
453 }
454 
455 static void i6300esb_exit(PCIDevice *dev)
456 {
457     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
458 
459     timer_del(d->timer);
460     timer_free(d->timer);
461 }
462 
463 static WatchdogTimerModel model = {
464     .wdt_name = "i6300esb",
465     .wdt_description = "Intel 6300ESB",
466 };
467 
468 static void i6300esb_class_init(ObjectClass *klass, void *data)
469 {
470     DeviceClass *dc = DEVICE_CLASS(klass);
471     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
472 
473     k->config_read = i6300esb_config_read;
474     k->config_write = i6300esb_config_write;
475     k->realize = i6300esb_realize;
476     k->exit = i6300esb_exit;
477     k->vendor_id = PCI_VENDOR_ID_INTEL;
478     k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
479     k->class_id = PCI_CLASS_SYSTEM_OTHER;
480     dc->reset = i6300esb_reset;
481     dc->vmsd = &vmstate_i6300esb;
482     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
483 }
484 
485 static const TypeInfo i6300esb_info = {
486     .name          = TYPE_WATCHDOG_I6300ESB_DEVICE,
487     .parent        = TYPE_PCI_DEVICE,
488     .instance_size = sizeof(I6300State),
489     .class_init    = i6300esb_class_init,
490     .interfaces = (InterfaceInfo[]) {
491         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
492         { },
493     },
494 };
495 
496 static void i6300esb_register_types(void)
497 {
498     watchdog_add_model(&model);
499     type_register_static(&i6300esb_info);
500 }
501 
502 type_init(i6300esb_register_types)
503