xref: /qemu/hw/watchdog/wdt_i6300esb.c (revision ab9056ff)
1 /*
2  * Virtual hardware watchdog.
3  *
4  * Copyright (C) 2009 Red Hat Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * By Richard W.M. Jones (rjones@redhat.com).
20  */
21 
22 #include "qemu/osdep.h"
23 
24 #include "qemu/module.h"
25 #include "qemu/timer.h"
26 #include "sysemu/watchdog.h"
27 #include "hw/pci/pci.h"
28 #include "migration/vmstate.h"
29 
30 /*#define I6300ESB_DEBUG 1*/
31 
32 #ifdef I6300ESB_DEBUG
33 #define i6300esb_debug(fs,...) \
34     fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35 #else
36 #define i6300esb_debug(fs,...)
37 #endif
38 
39 /* PCI configuration registers */
40 #define ESB_CONFIG_REG  0x60            /* Config register                   */
41 #define ESB_LOCK_REG    0x68            /* WDT lock register                 */
42 
43 /* Memory mapped registers (offset from base address) */
44 #define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
45 #define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
46 #define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
47 #define ESB_RELOAD_REG  0x0c            /* Reload register                   */
48 
49 /* Lock register bits */
50 #define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
51 #define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
52 #define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
53 
54 /* Config register bits */
55 #define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
56 #define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
57 #define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
58 
59 /* Reload register bits */
60 #define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
61 
62 /* Magic constants */
63 #define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
64 #define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
65 
66 /* Device state. */
67 struct I6300State {
68     PCIDevice dev;
69     MemoryRegion io_mem;
70 
71     int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
72                                  * performed depends on the -watchdog-action
73                                  * param passed on QEMU command line.
74                                  */
75     int clock_scale;            /* Clock scale. */
76 #define CLOCK_SCALE_1KHZ 0
77 #define CLOCK_SCALE_1MHZ 1
78 
79     int int_type;               /* Interrupt type generated. */
80 #define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
81 #define INT_TYPE_SMI 2
82 #define INT_TYPE_DISABLED 3
83 
84     int free_run;               /* If true, reload timer on expiry. */
85     int locked;                 /* If true, enabled field cannot be changed. */
86     int enabled;                /* If true, watchdog is enabled. */
87 
88     QEMUTimer *timer;           /* The actual watchdog timer. */
89 
90     uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
91     uint32_t timer2_preload;
92     int stage;                  /* Stage (1 or 2). */
93 
94     int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
95                                  * registers, and we transition through
96                                  * states 0 -> 1 -> 2 when this happens.
97                                  */
98 
99     int previous_reboot_flag;   /* If the watchdog caused the previous
100                                  * reboot, this flag will be set.
101                                  */
102 };
103 
104 typedef struct I6300State I6300State;
105 
106 #define TYPE_WATCHDOG_I6300ESB_DEVICE "i6300esb"
107 #define WATCHDOG_I6300ESB_DEVICE(obj) \
108     OBJECT_CHECK(I6300State, (obj), TYPE_WATCHDOG_I6300ESB_DEVICE)
109 
110 /* This function is called when the watchdog has either been enabled
111  * (hence it starts counting down) or has been keep-alived.
112  */
113 static void i6300esb_restart_timer(I6300State *d, int stage)
114 {
115     int64_t timeout;
116 
117     if (!d->enabled)
118         return;
119 
120     d->stage = stage;
121 
122     if (d->stage <= 1)
123         timeout = d->timer1_preload;
124     else
125         timeout = d->timer2_preload;
126 
127     if (d->clock_scale == CLOCK_SCALE_1KHZ)
128         timeout <<= 15;
129     else
130         timeout <<= 5;
131 
132     /* Get the timeout in nanoseconds. */
133 
134     timeout = timeout * 30; /* on a PCI bus, 1 tick is 30 ns*/
135 
136     i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
137 
138     timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
139 }
140 
141 /* This is called when the guest disables the watchdog. */
142 static void i6300esb_disable_timer(I6300State *d)
143 {
144     i6300esb_debug("timer disabled\n");
145 
146     timer_del(d->timer);
147 }
148 
149 static void i6300esb_reset(DeviceState *dev)
150 {
151     PCIDevice *pdev = PCI_DEVICE(dev);
152     I6300State *d = WATCHDOG_I6300ESB_DEVICE(pdev);
153 
154     i6300esb_debug("I6300State = %p\n", d);
155 
156     i6300esb_disable_timer(d);
157 
158     /* NB: Don't change d->previous_reboot_flag in this function. */
159 
160     d->reboot_enabled = 1;
161     d->clock_scale = CLOCK_SCALE_1KHZ;
162     d->int_type = INT_TYPE_IRQ;
163     d->free_run = 0;
164     d->locked = 0;
165     d->enabled = 0;
166     d->timer1_preload = 0xfffff;
167     d->timer2_preload = 0xfffff;
168     d->stage = 1;
169     d->unlock_state = 0;
170 }
171 
172 /* This function is called when the watchdog expires.  Note that
173  * the hardware has two timers, and so expiry happens in two stages.
174  * If d->stage == 1 then we perform the first stage action (usually,
175  * sending an interrupt) and then restart the timer again for the
176  * second stage.  If the second stage expires then the watchdog
177  * really has run out.
178  */
179 static void i6300esb_timer_expired(void *vp)
180 {
181     I6300State *d = vp;
182 
183     i6300esb_debug("stage %d\n", d->stage);
184 
185     if (d->stage == 1) {
186         /* What to do at the end of stage 1? */
187         switch (d->int_type) {
188         case INT_TYPE_IRQ:
189             fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
190             break;
191         case INT_TYPE_SMI:
192             fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
193             break;
194         }
195 
196         /* Start the second stage. */
197         i6300esb_restart_timer(d, 2);
198     } else {
199         /* Second stage expired, reboot for real. */
200         if (d->reboot_enabled) {
201             d->previous_reboot_flag = 1;
202             watchdog_perform_action(); /* This reboots, exits, etc */
203             i6300esb_reset(DEVICE(d));
204         }
205 
206         /* In "free running mode" we start stage 1 again. */
207         if (d->free_run)
208             i6300esb_restart_timer(d, 1);
209     }
210 }
211 
212 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
213                                   uint32_t data, int len)
214 {
215     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
216     int old;
217 
218     i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
219 
220     if (addr == ESB_CONFIG_REG && len == 2) {
221         d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
222         d->clock_scale =
223             (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
224         d->int_type = (data & ESB_WDT_INTTYPE);
225     } else if (addr == ESB_LOCK_REG && len == 1) {
226         if (!d->locked) {
227             d->locked = (data & ESB_WDT_LOCK) != 0;
228             d->free_run = (data & ESB_WDT_FUNC) != 0;
229             old = d->enabled;
230             d->enabled = (data & ESB_WDT_ENABLE) != 0;
231             if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
232                 i6300esb_restart_timer(d, 1);
233             else if (!d->enabled)
234                 i6300esb_disable_timer(d);
235         }
236     } else {
237         pci_default_write_config(dev, addr, data, len);
238     }
239 }
240 
241 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
242 {
243     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
244     uint32_t data;
245 
246     i6300esb_debug ("addr = %x, len = %d\n", addr, len);
247 
248     if (addr == ESB_CONFIG_REG && len == 2) {
249         data =
250             (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
251             (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
252             d->int_type;
253         return data;
254     } else if (addr == ESB_LOCK_REG && len == 1) {
255         data =
256             (d->free_run ? ESB_WDT_FUNC : 0) |
257             (d->locked ? ESB_WDT_LOCK : 0) |
258             (d->enabled ? ESB_WDT_ENABLE : 0);
259         return data;
260     } else {
261         return pci_default_read_config(dev, addr, len);
262     }
263 }
264 
265 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
266 {
267     i6300esb_debug ("addr = %x\n", (int) addr);
268 
269     return 0;
270 }
271 
272 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
273 {
274     uint32_t data = 0;
275     I6300State *d = vp;
276 
277     i6300esb_debug("addr = %x\n", (int) addr);
278 
279     if (addr == 0xc) {
280         /* The previous reboot flag is really bit 9, but there is
281          * a bug in the Linux driver where it thinks it's bit 12.
282          * Set both.
283          */
284         data = d->previous_reboot_flag ? 0x1200 : 0;
285     }
286 
287     return data;
288 }
289 
290 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
291 {
292     i6300esb_debug("addr = %x\n", (int) addr);
293 
294     return 0;
295 }
296 
297 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
298 {
299     I6300State *d = vp;
300 
301     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
302 
303     if (addr == 0xc && val == 0x80)
304         d->unlock_state = 1;
305     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
306         d->unlock_state = 2;
307 }
308 
309 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
310 {
311     I6300State *d = vp;
312 
313     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
314 
315     if (addr == 0xc && val == 0x80)
316         d->unlock_state = 1;
317     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
318         d->unlock_state = 2;
319     else {
320         if (d->unlock_state == 2) {
321             if (addr == 0xc) {
322                 if ((val & 0x100) != 0)
323                     /* This is the "ping" from the userspace watchdog in
324                      * the guest ...
325                      */
326                     i6300esb_restart_timer(d, 1);
327 
328                 /* Setting bit 9 resets the previous reboot flag.
329                  * There's a bug in the Linux driver where it sets
330                  * bit 12 instead.
331                  */
332                 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
333                     d->previous_reboot_flag = 0;
334                 }
335             }
336 
337             d->unlock_state = 0;
338         }
339     }
340 }
341 
342 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
343 {
344     I6300State *d = vp;
345 
346     i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
347 
348     if (addr == 0xc && val == 0x80)
349         d->unlock_state = 1;
350     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
351         d->unlock_state = 2;
352     else {
353         if (d->unlock_state == 2) {
354             if (addr == 0)
355                 d->timer1_preload = val & 0xfffff;
356             else if (addr == 4)
357                 d->timer2_preload = val & 0xfffff;
358 
359             d->unlock_state = 0;
360         }
361     }
362 }
363 
364 static uint64_t i6300esb_mem_readfn(void *opaque, hwaddr addr, unsigned size)
365 {
366     switch (size) {
367     case 1:
368         return i6300esb_mem_readb(opaque, addr);
369     case 2:
370         return i6300esb_mem_readw(opaque, addr);
371     case 4:
372         return i6300esb_mem_readl(opaque, addr);
373     default:
374         g_assert_not_reached();
375     }
376 }
377 
378 static void i6300esb_mem_writefn(void *opaque, hwaddr addr,
379                                  uint64_t value, unsigned size)
380 {
381     switch (size) {
382     case 1:
383         i6300esb_mem_writeb(opaque, addr, value);
384         break;
385     case 2:
386         i6300esb_mem_writew(opaque, addr, value);
387         break;
388     case 4:
389         i6300esb_mem_writel(opaque, addr, value);
390         break;
391     default:
392         g_assert_not_reached();
393     }
394 }
395 
396 static const MemoryRegionOps i6300esb_ops = {
397     .read = i6300esb_mem_readfn,
398     .write = i6300esb_mem_writefn,
399     .valid.min_access_size = 1,
400     .valid.max_access_size = 4,
401     .endianness = DEVICE_LITTLE_ENDIAN,
402 };
403 
404 static const VMStateDescription vmstate_i6300esb = {
405     .name = "i6300esb_wdt",
406     /* With this VMSD's introduction, version_id/minimum_version_id were
407      * erroneously set to sizeof(I6300State), causing a somewhat random
408      * version_id to be set for every build. This eventually broke
409      * migration.
410      *
411      * To correct this without breaking old->new migration for older
412      * versions of QEMU, we've set version_id to a value high enough
413      * to exceed all past values of sizeof(I6300State) across various
414      * build environments, and have reset minimum_version_id to 1,
415      * since this VMSD has never changed and thus can accept all past
416      * versions.
417      *
418      * For future changes we can treat these values as we normally would.
419      */
420     .version_id = 10000,
421     .minimum_version_id = 1,
422     .fields = (VMStateField[]) {
423         VMSTATE_PCI_DEVICE(dev, I6300State),
424         VMSTATE_INT32(reboot_enabled, I6300State),
425         VMSTATE_INT32(clock_scale, I6300State),
426         VMSTATE_INT32(int_type, I6300State),
427         VMSTATE_INT32(free_run, I6300State),
428         VMSTATE_INT32(locked, I6300State),
429         VMSTATE_INT32(enabled, I6300State),
430         VMSTATE_TIMER_PTR(timer, I6300State),
431         VMSTATE_UINT32(timer1_preload, I6300State),
432         VMSTATE_UINT32(timer2_preload, I6300State),
433         VMSTATE_INT32(stage, I6300State),
434         VMSTATE_INT32(unlock_state, I6300State),
435         VMSTATE_INT32(previous_reboot_flag, I6300State),
436         VMSTATE_END_OF_LIST()
437     }
438 };
439 
440 static void i6300esb_realize(PCIDevice *dev, Error **errp)
441 {
442     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
443 
444     i6300esb_debug("I6300State = %p\n", d);
445 
446     d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
447     d->previous_reboot_flag = 0;
448 
449     memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
450                           "i6300esb", 0x10);
451     pci_register_bar(&d->dev, 0, 0, &d->io_mem);
452 }
453 
454 static void i6300esb_exit(PCIDevice *dev)
455 {
456     I6300State *d = WATCHDOG_I6300ESB_DEVICE(dev);
457 
458     timer_del(d->timer);
459     timer_free(d->timer);
460 }
461 
462 static WatchdogTimerModel model = {
463     .wdt_name = "i6300esb",
464     .wdt_description = "Intel 6300ESB",
465 };
466 
467 static void i6300esb_class_init(ObjectClass *klass, void *data)
468 {
469     DeviceClass *dc = DEVICE_CLASS(klass);
470     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
471 
472     k->config_read = i6300esb_config_read;
473     k->config_write = i6300esb_config_write;
474     k->realize = i6300esb_realize;
475     k->exit = i6300esb_exit;
476     k->vendor_id = PCI_VENDOR_ID_INTEL;
477     k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
478     k->class_id = PCI_CLASS_SYSTEM_OTHER;
479     dc->reset = i6300esb_reset;
480     dc->vmsd = &vmstate_i6300esb;
481     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
482 }
483 
484 static const TypeInfo i6300esb_info = {
485     .name          = TYPE_WATCHDOG_I6300ESB_DEVICE,
486     .parent        = TYPE_PCI_DEVICE,
487     .instance_size = sizeof(I6300State),
488     .class_init    = i6300esb_class_init,
489     .interfaces = (InterfaceInfo[]) {
490         { INTERFACE_CONVENTIONAL_PCI_DEVICE },
491         { },
492     },
493 };
494 
495 static void i6300esb_register_types(void)
496 {
497     watchdog_add_model(&model);
498     type_register_static(&i6300esb_info);
499 }
500 
501 type_init(i6300esb_register_types)
502