xref: /qemu/hw/watchdog/wdt_i6300esb.c (revision bfa3ab61)
1 /*
2  * Virtual hardware watchdog.
3  *
4  * Copyright (C) 2009 Red Hat Inc.
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see <http://www.gnu.org/licenses/>.
18  *
19  * By Richard W.M. Jones (rjones@redhat.com).
20  */
21 
22 #include <inttypes.h>
23 
24 #include "qemu-common.h"
25 #include "qemu/timer.h"
26 #include "sysemu/watchdog.h"
27 #include "hw/hw.h"
28 #include "hw/pci/pci.h"
29 
30 /*#define I6300ESB_DEBUG 1*/
31 
32 #ifdef I6300ESB_DEBUG
33 #define i6300esb_debug(fs,...) \
34     fprintf(stderr,"i6300esb: %s: "fs,__func__,##__VA_ARGS__)
35 #else
36 #define i6300esb_debug(fs,...)
37 #endif
38 
39 /* PCI configuration registers */
40 #define ESB_CONFIG_REG  0x60            /* Config register                   */
41 #define ESB_LOCK_REG    0x68            /* WDT lock register                 */
42 
43 /* Memory mapped registers (offset from base address) */
44 #define ESB_TIMER1_REG  0x00            /* Timer1 value after each reset     */
45 #define ESB_TIMER2_REG  0x04            /* Timer2 value after each reset     */
46 #define ESB_GINTSR_REG  0x08            /* General Interrupt Status Register */
47 #define ESB_RELOAD_REG  0x0c            /* Reload register                   */
48 
49 /* Lock register bits */
50 #define ESB_WDT_FUNC    (0x01 << 2)   /* Watchdog functionality            */
51 #define ESB_WDT_ENABLE  (0x01 << 1)   /* Enable WDT                        */
52 #define ESB_WDT_LOCK    (0x01 << 0)   /* Lock (nowayout)                   */
53 
54 /* Config register bits */
55 #define ESB_WDT_REBOOT  (0x01 << 5)   /* Enable reboot on timeout          */
56 #define ESB_WDT_FREQ    (0x01 << 2)   /* Decrement frequency               */
57 #define ESB_WDT_INTTYPE (0x11 << 0)   /* Interrupt type on timer1 timeout  */
58 
59 /* Reload register bits */
60 #define ESB_WDT_RELOAD  (0x01 << 8)    /* prevent timeout                   */
61 
62 /* Magic constants */
63 #define ESB_UNLOCK1     0x80            /* Step 1 to unlock reset registers  */
64 #define ESB_UNLOCK2     0x86            /* Step 2 to unlock reset registers  */
65 
66 /* Device state. */
67 struct I6300State {
68     PCIDevice dev;
69     MemoryRegion io_mem;
70 
71     int reboot_enabled;         /* "Reboot" on timer expiry.  The real action
72                                  * performed depends on the -watchdog-action
73                                  * param passed on QEMU command line.
74                                  */
75     int clock_scale;            /* Clock scale. */
76 #define CLOCK_SCALE_1KHZ 0
77 #define CLOCK_SCALE_1MHZ 1
78 
79     int int_type;               /* Interrupt type generated. */
80 #define INT_TYPE_IRQ 0          /* APIC 1, INT 10 */
81 #define INT_TYPE_SMI 2
82 #define INT_TYPE_DISABLED 3
83 
84     int free_run;               /* If true, reload timer on expiry. */
85     int locked;                 /* If true, enabled field cannot be changed. */
86     int enabled;                /* If true, watchdog is enabled. */
87 
88     QEMUTimer *timer;           /* The actual watchdog timer. */
89 
90     uint32_t timer1_preload;    /* Values preloaded into timer1, timer2. */
91     uint32_t timer2_preload;
92     int stage;                  /* Stage (1 or 2). */
93 
94     int unlock_state;           /* Guest writes 0x80, 0x86 to unlock the
95                                  * registers, and we transition through
96                                  * states 0 -> 1 -> 2 when this happens.
97                                  */
98 
99     int previous_reboot_flag;   /* If the watchdog caused the previous
100                                  * reboot, this flag will be set.
101                                  */
102 };
103 
104 typedef struct I6300State I6300State;
105 
106 /* This function is called when the watchdog has either been enabled
107  * (hence it starts counting down) or has been keep-alived.
108  */
109 static void i6300esb_restart_timer(I6300State *d, int stage)
110 {
111     int64_t timeout;
112 
113     if (!d->enabled)
114         return;
115 
116     d->stage = stage;
117 
118     if (d->stage <= 1)
119         timeout = d->timer1_preload;
120     else
121         timeout = d->timer2_preload;
122 
123     if (d->clock_scale == CLOCK_SCALE_1KHZ)
124         timeout <<= 15;
125     else
126         timeout <<= 5;
127 
128     /* Get the timeout in units of ticks_per_sec.
129      *
130      * ticks_per_sec is typically 10^9 == 0x3B9ACA00 (30 bits), with
131      * 20 bits of user supplied preload, and 15 bits of scale, the
132      * multiply here can exceed 64-bits, before we divide by 33MHz, so
133      * we use a higher-precision intermediate result.
134      */
135     timeout = muldiv64(get_ticks_per_sec(), timeout, 33000000);
136 
137     i6300esb_debug("stage %d, timeout %" PRIi64 "\n", d->stage, timeout);
138 
139     timer_mod(d->timer, qemu_clock_get_ns(QEMU_CLOCK_VIRTUAL) + timeout);
140 }
141 
142 /* This is called when the guest disables the watchdog. */
143 static void i6300esb_disable_timer(I6300State *d)
144 {
145     i6300esb_debug("timer disabled\n");
146 
147     timer_del(d->timer);
148 }
149 
150 static void i6300esb_reset(DeviceState *dev)
151 {
152     PCIDevice *pdev = PCI_DEVICE(dev);
153     I6300State *d = DO_UPCAST(I6300State, dev, pdev);
154 
155     i6300esb_debug("I6300State = %p\n", d);
156 
157     i6300esb_disable_timer(d);
158 
159     /* NB: Don't change d->previous_reboot_flag in this function. */
160 
161     d->reboot_enabled = 1;
162     d->clock_scale = CLOCK_SCALE_1KHZ;
163     d->int_type = INT_TYPE_IRQ;
164     d->free_run = 0;
165     d->locked = 0;
166     d->enabled = 0;
167     d->timer1_preload = 0xfffff;
168     d->timer2_preload = 0xfffff;
169     d->stage = 1;
170     d->unlock_state = 0;
171 }
172 
173 /* This function is called when the watchdog expires.  Note that
174  * the hardware has two timers, and so expiry happens in two stages.
175  * If d->stage == 1 then we perform the first stage action (usually,
176  * sending an interrupt) and then restart the timer again for the
177  * second stage.  If the second stage expires then the watchdog
178  * really has run out.
179  */
180 static void i6300esb_timer_expired(void *vp)
181 {
182     I6300State *d = vp;
183 
184     i6300esb_debug("stage %d\n", d->stage);
185 
186     if (d->stage == 1) {
187         /* What to do at the end of stage 1? */
188         switch (d->int_type) {
189         case INT_TYPE_IRQ:
190             fprintf(stderr, "i6300esb_timer_expired: I would send APIC 1 INT 10 here if I knew how (XXX)\n");
191             break;
192         case INT_TYPE_SMI:
193             fprintf(stderr, "i6300esb_timer_expired: I would send SMI here if I knew how (XXX)\n");
194             break;
195         }
196 
197         /* Start the second stage. */
198         i6300esb_restart_timer(d, 2);
199     } else {
200         /* Second stage expired, reboot for real. */
201         if (d->reboot_enabled) {
202             d->previous_reboot_flag = 1;
203             watchdog_perform_action(); /* This reboots, exits, etc */
204             i6300esb_reset(&d->dev.qdev);
205         }
206 
207         /* In "free running mode" we start stage 1 again. */
208         if (d->free_run)
209             i6300esb_restart_timer(d, 1);
210     }
211 }
212 
213 static void i6300esb_config_write(PCIDevice *dev, uint32_t addr,
214                                   uint32_t data, int len)
215 {
216     I6300State *d = DO_UPCAST(I6300State, dev, dev);
217     int old;
218 
219     i6300esb_debug("addr = %x, data = %x, len = %d\n", addr, data, len);
220 
221     if (addr == ESB_CONFIG_REG && len == 2) {
222         d->reboot_enabled = (data & ESB_WDT_REBOOT) == 0;
223         d->clock_scale =
224             (data & ESB_WDT_FREQ) != 0 ? CLOCK_SCALE_1MHZ : CLOCK_SCALE_1KHZ;
225         d->int_type = (data & ESB_WDT_INTTYPE);
226     } else if (addr == ESB_LOCK_REG && len == 1) {
227         if (!d->locked) {
228             d->locked = (data & ESB_WDT_LOCK) != 0;
229             d->free_run = (data & ESB_WDT_FUNC) != 0;
230             old = d->enabled;
231             d->enabled = (data & ESB_WDT_ENABLE) != 0;
232             if (!old && d->enabled) /* Enabled transitioned from 0 -> 1 */
233                 i6300esb_restart_timer(d, 1);
234             else if (!d->enabled)
235                 i6300esb_disable_timer(d);
236         }
237     } else {
238         pci_default_write_config(dev, addr, data, len);
239     }
240 }
241 
242 static uint32_t i6300esb_config_read(PCIDevice *dev, uint32_t addr, int len)
243 {
244     I6300State *d = DO_UPCAST(I6300State, dev, dev);
245     uint32_t data;
246 
247     i6300esb_debug ("addr = %x, len = %d\n", addr, len);
248 
249     if (addr == ESB_CONFIG_REG && len == 2) {
250         data =
251             (d->reboot_enabled ? 0 : ESB_WDT_REBOOT) |
252             (d->clock_scale == CLOCK_SCALE_1MHZ ? ESB_WDT_FREQ : 0) |
253             d->int_type;
254         return data;
255     } else if (addr == ESB_LOCK_REG && len == 1) {
256         data =
257             (d->free_run ? ESB_WDT_FUNC : 0) |
258             (d->locked ? ESB_WDT_LOCK : 0) |
259             (d->enabled ? ESB_WDT_ENABLE : 0);
260         return data;
261     } else {
262         return pci_default_read_config(dev, addr, len);
263     }
264 }
265 
266 static uint32_t i6300esb_mem_readb(void *vp, hwaddr addr)
267 {
268     i6300esb_debug ("addr = %x\n", (int) addr);
269 
270     return 0;
271 }
272 
273 static uint32_t i6300esb_mem_readw(void *vp, hwaddr addr)
274 {
275     uint32_t data = 0;
276     I6300State *d = vp;
277 
278     i6300esb_debug("addr = %x\n", (int) addr);
279 
280     if (addr == 0xc) {
281         /* The previous reboot flag is really bit 9, but there is
282          * a bug in the Linux driver where it thinks it's bit 12.
283          * Set both.
284          */
285         data = d->previous_reboot_flag ? 0x1200 : 0;
286     }
287 
288     return data;
289 }
290 
291 static uint32_t i6300esb_mem_readl(void *vp, hwaddr addr)
292 {
293     i6300esb_debug("addr = %x\n", (int) addr);
294 
295     return 0;
296 }
297 
298 static void i6300esb_mem_writeb(void *vp, hwaddr addr, uint32_t val)
299 {
300     I6300State *d = vp;
301 
302     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
303 
304     if (addr == 0xc && val == 0x80)
305         d->unlock_state = 1;
306     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
307         d->unlock_state = 2;
308 }
309 
310 static void i6300esb_mem_writew(void *vp, hwaddr addr, uint32_t val)
311 {
312     I6300State *d = vp;
313 
314     i6300esb_debug("addr = %x, val = %x\n", (int) addr, val);
315 
316     if (addr == 0xc && val == 0x80)
317         d->unlock_state = 1;
318     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
319         d->unlock_state = 2;
320     else {
321         if (d->unlock_state == 2) {
322             if (addr == 0xc) {
323                 if ((val & 0x100) != 0)
324                     /* This is the "ping" from the userspace watchdog in
325                      * the guest ...
326                      */
327                     i6300esb_restart_timer(d, 1);
328 
329                 /* Setting bit 9 resets the previous reboot flag.
330                  * There's a bug in the Linux driver where it sets
331                  * bit 12 instead.
332                  */
333                 if ((val & 0x200) != 0 || (val & 0x1000) != 0) {
334                     d->previous_reboot_flag = 0;
335                 }
336             }
337 
338             d->unlock_state = 0;
339         }
340     }
341 }
342 
343 static void i6300esb_mem_writel(void *vp, hwaddr addr, uint32_t val)
344 {
345     I6300State *d = vp;
346 
347     i6300esb_debug ("addr = %x, val = %x\n", (int) addr, val);
348 
349     if (addr == 0xc && val == 0x80)
350         d->unlock_state = 1;
351     else if (addr == 0xc && val == 0x86 && d->unlock_state == 1)
352         d->unlock_state = 2;
353     else {
354         if (d->unlock_state == 2) {
355             if (addr == 0)
356                 d->timer1_preload = val & 0xfffff;
357             else if (addr == 4)
358                 d->timer2_preload = val & 0xfffff;
359 
360             d->unlock_state = 0;
361         }
362     }
363 }
364 
365 static const MemoryRegionOps i6300esb_ops = {
366     .old_mmio = {
367         .read = {
368             i6300esb_mem_readb,
369             i6300esb_mem_readw,
370             i6300esb_mem_readl,
371         },
372         .write = {
373             i6300esb_mem_writeb,
374             i6300esb_mem_writew,
375             i6300esb_mem_writel,
376         },
377     },
378     .endianness = DEVICE_LITTLE_ENDIAN,
379 };
380 
381 static const VMStateDescription vmstate_i6300esb = {
382     .name = "i6300esb_wdt",
383     /* With this VMSD's introduction, version_id/minimum_version_id were
384      * erroneously set to sizeof(I6300State), causing a somewhat random
385      * version_id to be set for every build. This eventually broke
386      * migration.
387      *
388      * To correct this without breaking old->new migration for older
389      * versions of QEMU, we've set version_id to a value high enough
390      * to exceed all past values of sizeof(I6300State) across various
391      * build environments, and have reset minimum_version_id to 1,
392      * since this VMSD has never changed and thus can accept all past
393      * versions.
394      *
395      * For future changes we can treat these values as we normally would.
396      */
397     .version_id = 10000,
398     .minimum_version_id = 1,
399     .fields = (VMStateField[]) {
400         VMSTATE_PCI_DEVICE(dev, I6300State),
401         VMSTATE_INT32(reboot_enabled, I6300State),
402         VMSTATE_INT32(clock_scale, I6300State),
403         VMSTATE_INT32(int_type, I6300State),
404         VMSTATE_INT32(free_run, I6300State),
405         VMSTATE_INT32(locked, I6300State),
406         VMSTATE_INT32(enabled, I6300State),
407         VMSTATE_TIMER_PTR(timer, I6300State),
408         VMSTATE_UINT32(timer1_preload, I6300State),
409         VMSTATE_UINT32(timer2_preload, I6300State),
410         VMSTATE_INT32(stage, I6300State),
411         VMSTATE_INT32(unlock_state, I6300State),
412         VMSTATE_INT32(previous_reboot_flag, I6300State),
413         VMSTATE_END_OF_LIST()
414     }
415 };
416 
417 static void i6300esb_realize(PCIDevice *dev, Error **errp)
418 {
419     I6300State *d = DO_UPCAST(I6300State, dev, dev);
420 
421     i6300esb_debug("I6300State = %p\n", d);
422 
423     d->timer = timer_new_ns(QEMU_CLOCK_VIRTUAL, i6300esb_timer_expired, d);
424     d->previous_reboot_flag = 0;
425 
426     memory_region_init_io(&d->io_mem, OBJECT(d), &i6300esb_ops, d,
427                           "i6300esb", 0x10);
428     pci_register_bar(&d->dev, 0, 0, &d->io_mem);
429     /* qemu_register_coalesced_mmio (addr, 0x10); ? */
430 }
431 
432 static WatchdogTimerModel model = {
433     .wdt_name = "i6300esb",
434     .wdt_description = "Intel 6300ESB",
435 };
436 
437 static void i6300esb_class_init(ObjectClass *klass, void *data)
438 {
439     DeviceClass *dc = DEVICE_CLASS(klass);
440     PCIDeviceClass *k = PCI_DEVICE_CLASS(klass);
441 
442     k->config_read = i6300esb_config_read;
443     k->config_write = i6300esb_config_write;
444     k->realize = i6300esb_realize;
445     k->vendor_id = PCI_VENDOR_ID_INTEL;
446     k->device_id = PCI_DEVICE_ID_INTEL_ESB_9;
447     k->class_id = PCI_CLASS_SYSTEM_OTHER;
448     dc->reset = i6300esb_reset;
449     dc->vmsd = &vmstate_i6300esb;
450     set_bit(DEVICE_CATEGORY_MISC, dc->categories);
451 }
452 
453 static const TypeInfo i6300esb_info = {
454     .name          = "i6300esb",
455     .parent        = TYPE_PCI_DEVICE,
456     .instance_size = sizeof(I6300State),
457     .class_init    = i6300esb_class_init,
458 };
459 
460 static void i6300esb_register_types(void)
461 {
462     watchdog_add_model(&model);
463     type_register_static(&i6300esb_info);
464 }
465 
466 type_init(i6300esb_register_types)
467