xref: /qemu/include/exec/cpu-all.h (revision 308e7549)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "exec/cpu-common.h"
23 #include "exec/memory.h"
24 #include "qemu/thread.h"
25 #include "hw/core/cpu.h"
26 #include "qemu/rcu.h"
27 
28 #define EXCP_INTERRUPT 	0x10000 /* async interruption */
29 #define EXCP_HLT        0x10001 /* hlt instruction reached */
30 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
31 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
32 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
33 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
34 
35 /* some important defines:
36  *
37  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
38  * otherwise little endian.
39  *
40  * TARGET_WORDS_BIGENDIAN : same for target cpu
41  */
42 
43 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46 
47 #ifdef BSWAP_NEEDED
48 
49 static inline uint16_t tswap16(uint16_t s)
50 {
51     return bswap16(s);
52 }
53 
54 static inline uint32_t tswap32(uint32_t s)
55 {
56     return bswap32(s);
57 }
58 
59 static inline uint64_t tswap64(uint64_t s)
60 {
61     return bswap64(s);
62 }
63 
64 static inline void tswap16s(uint16_t *s)
65 {
66     *s = bswap16(*s);
67 }
68 
69 static inline void tswap32s(uint32_t *s)
70 {
71     *s = bswap32(*s);
72 }
73 
74 static inline void tswap64s(uint64_t *s)
75 {
76     *s = bswap64(*s);
77 }
78 
79 #else
80 
81 static inline uint16_t tswap16(uint16_t s)
82 {
83     return s;
84 }
85 
86 static inline uint32_t tswap32(uint32_t s)
87 {
88     return s;
89 }
90 
91 static inline uint64_t tswap64(uint64_t s)
92 {
93     return s;
94 }
95 
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99 
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103 
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107 
108 #endif
109 
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119 
120 /* Target-endianness CPU memory access functions. These fit into the
121  * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
122  */
123 #if defined(TARGET_WORDS_BIGENDIAN)
124 #define lduw_p(p) lduw_be_p(p)
125 #define ldsw_p(p) ldsw_be_p(p)
126 #define ldl_p(p) ldl_be_p(p)
127 #define ldq_p(p) ldq_be_p(p)
128 #define ldfl_p(p) ldfl_be_p(p)
129 #define ldfq_p(p) ldfq_be_p(p)
130 #define stw_p(p, v) stw_be_p(p, v)
131 #define stl_p(p, v) stl_be_p(p, v)
132 #define stq_p(p, v) stq_be_p(p, v)
133 #define stfl_p(p, v) stfl_be_p(p, v)
134 #define stfq_p(p, v) stfq_be_p(p, v)
135 #define ldn_p(p, sz) ldn_be_p(p, sz)
136 #define stn_p(p, sz, v) stn_be_p(p, sz, v)
137 #else
138 #define lduw_p(p) lduw_le_p(p)
139 #define ldsw_p(p) ldsw_le_p(p)
140 #define ldl_p(p) ldl_le_p(p)
141 #define ldq_p(p) ldq_le_p(p)
142 #define ldfl_p(p) ldfl_le_p(p)
143 #define ldfq_p(p) ldfq_le_p(p)
144 #define stw_p(p, v) stw_le_p(p, v)
145 #define stl_p(p, v) stl_le_p(p, v)
146 #define stq_p(p, v) stq_le_p(p, v)
147 #define stfl_p(p, v) stfl_le_p(p, v)
148 #define stfq_p(p, v) stfq_le_p(p, v)
149 #define ldn_p(p, sz) ldn_le_p(p, sz)
150 #define stn_p(p, sz, v) stn_le_p(p, sz, v)
151 #endif
152 
153 /* MMU memory access macros */
154 
155 #if defined(CONFIG_USER_ONLY)
156 #include "exec/user/abitypes.h"
157 
158 /* On some host systems the guest address space is reserved on the host.
159  * This allows the guest address space to be offset to a convenient location.
160  */
161 extern unsigned long guest_base;
162 extern bool have_guest_base;
163 extern unsigned long reserved_va;
164 
165 /*
166  * Limit the guest addresses as best we can.
167  *
168  * When not using -R reserved_va, we cannot really limit the guest
169  * to less address space than the host.  For 32-bit guests, this
170  * acts as a sanity check that we're not giving the guest an address
171  * that it cannot even represent.  For 64-bit guests... the address
172  * might not be what the real kernel would give, but it is at least
173  * representable in the guest.
174  *
175  * TODO: Improve address allocation to avoid this problem, and to
176  * avoid setting bits at the top of guest addresses that might need
177  * to be used for tags.
178  */
179 #if MIN(TARGET_VIRT_ADDR_SPACE_BITS, TARGET_ABI_BITS) <= 32
180 # define GUEST_ADDR_MAX_  UINT32_MAX
181 #else
182 # define GUEST_ADDR_MAX_  (~0ul)
183 #endif
184 #define GUEST_ADDR_MAX    (reserved_va ? reserved_va - 1 : GUEST_ADDR_MAX_)
185 
186 #else
187 
188 #include "exec/hwaddr.h"
189 
190 #define SUFFIX
191 #define ARG1         as
192 #define ARG1_DECL    AddressSpace *as
193 #define TARGET_ENDIANNESS
194 #include "exec/memory_ldst.inc.h"
195 
196 #define SUFFIX       _cached_slow
197 #define ARG1         cache
198 #define ARG1_DECL    MemoryRegionCache *cache
199 #define TARGET_ENDIANNESS
200 #include "exec/memory_ldst.inc.h"
201 
202 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
203 {
204     address_space_stl_notdirty(as, addr, val,
205                                MEMTXATTRS_UNSPECIFIED, NULL);
206 }
207 
208 #define SUFFIX
209 #define ARG1         as
210 #define ARG1_DECL    AddressSpace *as
211 #define TARGET_ENDIANNESS
212 #include "exec/memory_ldst_phys.inc.h"
213 
214 /* Inline fast path for direct RAM access.  */
215 #define ENDIANNESS
216 #include "exec/memory_ldst_cached.inc.h"
217 
218 #define SUFFIX       _cached
219 #define ARG1         cache
220 #define ARG1_DECL    MemoryRegionCache *cache
221 #define TARGET_ENDIANNESS
222 #include "exec/memory_ldst_phys.inc.h"
223 #endif
224 
225 /* page related stuff */
226 
227 #ifdef TARGET_PAGE_BITS_VARY
228 typedef struct {
229     bool decided;
230     int bits;
231     target_long mask;
232 } TargetPageBits;
233 #if defined(CONFIG_ATTRIBUTE_ALIAS) || !defined(IN_EXEC_VARY)
234 extern const TargetPageBits target_page;
235 #else
236 extern TargetPageBits target_page;
237 #endif
238 #ifdef CONFIG_DEBUG_TCG
239 #define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
240 #define TARGET_PAGE_MASK   ({ assert(target_page.decided); target_page.mask; })
241 #else
242 #define TARGET_PAGE_BITS   target_page.bits
243 #define TARGET_PAGE_MASK   target_page.mask
244 #endif
245 #define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
246 #else
247 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
248 #define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
249 #define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
250 #endif
251 
252 #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
253 
254 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
255  * when intptr_t is 32-bit and we are aligning a long long.
256  */
257 extern uintptr_t qemu_host_page_size;
258 extern intptr_t qemu_host_page_mask;
259 
260 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
261 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
262 
263 /* same as PROT_xxx */
264 #define PAGE_READ      0x0001
265 #define PAGE_WRITE     0x0002
266 #define PAGE_EXEC      0x0004
267 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
268 #define PAGE_VALID     0x0008
269 /* original state of the write flag (used when tracking self-modifying
270    code */
271 #define PAGE_WRITE_ORG 0x0010
272 /* Invalidate the TLB entry immediately, helpful for s390x
273  * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */
274 #define PAGE_WRITE_INV 0x0040
275 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
276 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
277 #define PAGE_RESERVED  0x0020
278 #endif
279 
280 #if defined(CONFIG_USER_ONLY)
281 void page_dump(FILE *f);
282 
283 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
284                                       target_ulong, unsigned long);
285 int walk_memory_regions(void *, walk_memory_regions_fn);
286 
287 int page_get_flags(target_ulong address);
288 void page_set_flags(target_ulong start, target_ulong end, int flags);
289 int page_check_range(target_ulong start, target_ulong len, int flags);
290 #endif
291 
292 CPUArchState *cpu_copy(CPUArchState *env);
293 
294 /* Flags for use in ENV->INTERRUPT_PENDING.
295 
296    The numbers assigned here are non-sequential in order to preserve
297    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
298    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
299    the vmstate dump.  */
300 
301 /* External hardware interrupt pending.  This is typically used for
302    interrupts from devices.  */
303 #define CPU_INTERRUPT_HARD        0x0002
304 
305 /* Exit the current TB.  This is typically used when some system-level device
306    makes some change to the memory mapping.  E.g. the a20 line change.  */
307 #define CPU_INTERRUPT_EXITTB      0x0004
308 
309 /* Halt the CPU.  */
310 #define CPU_INTERRUPT_HALT        0x0020
311 
312 /* Debug event pending.  */
313 #define CPU_INTERRUPT_DEBUG       0x0080
314 
315 /* Reset signal.  */
316 #define CPU_INTERRUPT_RESET       0x0400
317 
318 /* Several target-specific external hardware interrupts.  Each target/cpu.h
319    should define proper names based on these defines.  */
320 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
321 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
322 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
323 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
324 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
325 
326 /* Several target-specific internal interrupts.  These differ from the
327    preceding target-specific interrupts in that they are intended to
328    originate from within the cpu itself, typically in response to some
329    instruction being executed.  These, therefore, are not masked while
330    single-stepping within the debugger.  */
331 #define CPU_INTERRUPT_TGT_INT_0   0x0100
332 #define CPU_INTERRUPT_TGT_INT_1   0x0800
333 #define CPU_INTERRUPT_TGT_INT_2   0x2000
334 
335 /* First unused bit: 0x4000.  */
336 
337 /* The set of all bits that should be masked when single-stepping.  */
338 #define CPU_INTERRUPT_SSTEP_MASK \
339     (CPU_INTERRUPT_HARD          \
340      | CPU_INTERRUPT_TGT_EXT_0   \
341      | CPU_INTERRUPT_TGT_EXT_1   \
342      | CPU_INTERRUPT_TGT_EXT_2   \
343      | CPU_INTERRUPT_TGT_EXT_3   \
344      | CPU_INTERRUPT_TGT_EXT_4)
345 
346 #ifdef CONFIG_USER_ONLY
347 
348 /*
349  * Allow some level of source compatibility with softmmu.  We do not
350  * support any of the more exotic features, so only invalid pages may
351  * be signaled by probe_access_flags().
352  */
353 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
354 #define TLB_MMIO            0
355 #define TLB_WATCHPOINT      0
356 
357 #else
358 
359 /*
360  * Flags stored in the low bits of the TLB virtual address.
361  * These are defined so that fast path ram access is all zeros.
362  * The flags all must be between TARGET_PAGE_BITS and
363  * maximum address alignment bit.
364  *
365  * Use TARGET_PAGE_BITS_MIN so that these bits are constant
366  * when TARGET_PAGE_BITS_VARY is in effect.
367  */
368 /* Zero if TLB entry is valid.  */
369 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
370 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
371    contain the page physical address.  */
372 #define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
373 /* Set if TLB entry is an IO callback.  */
374 #define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
375 /* Set if TLB entry contains a watchpoint.  */
376 #define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
377 /* Set if TLB entry requires byte swap.  */
378 #define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
379 /* Set if TLB entry writes ignored.  */
380 #define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
381 
382 /* Use this mask to check interception with an alignment mask
383  * in a TCG backend.
384  */
385 #define TLB_FLAGS_MASK \
386     (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
387     | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
388 
389 /**
390  * tlb_hit_page: return true if page aligned @addr is a hit against the
391  * TLB entry @tlb_addr
392  *
393  * @addr: virtual address to test (must be page aligned)
394  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
395  */
396 static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
397 {
398     return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
399 }
400 
401 /**
402  * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
403  *
404  * @addr: virtual address to test (need not be page aligned)
405  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
406  */
407 static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
408 {
409     return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
410 }
411 
412 void dump_exec_info(void);
413 void dump_opcount_info(void);
414 #endif /* !CONFIG_USER_ONLY */
415 
416 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
417                         void *ptr, target_ulong len, bool is_write);
418 
419 int cpu_exec(CPUState *cpu);
420 
421 /**
422  * cpu_set_cpustate_pointers(cpu)
423  * @cpu: The cpu object
424  *
425  * Set the generic pointers in CPUState into the outer object.
426  */
427 static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
428 {
429     cpu->parent_obj.env_ptr = &cpu->env;
430     cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
431 }
432 
433 /**
434  * env_archcpu(env)
435  * @env: The architecture environment
436  *
437  * Return the ArchCPU associated with the environment.
438  */
439 static inline ArchCPU *env_archcpu(CPUArchState *env)
440 {
441     return container_of(env, ArchCPU, env);
442 }
443 
444 /**
445  * env_cpu(env)
446  * @env: The architecture environment
447  *
448  * Return the CPUState associated with the environment.
449  */
450 static inline CPUState *env_cpu(CPUArchState *env)
451 {
452     return &env_archcpu(env)->parent_obj;
453 }
454 
455 /**
456  * env_neg(env)
457  * @env: The architecture environment
458  *
459  * Return the CPUNegativeOffsetState associated with the environment.
460  */
461 static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
462 {
463     ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
464     return &arch_cpu->neg;
465 }
466 
467 /**
468  * cpu_neg(cpu)
469  * @cpu: The generic CPUState
470  *
471  * Return the CPUNegativeOffsetState associated with the cpu.
472  */
473 static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
474 {
475     ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
476     return &arch_cpu->neg;
477 }
478 
479 /**
480  * env_tlb(env)
481  * @env: The architecture environment
482  *
483  * Return the CPUTLB state associated with the environment.
484  */
485 static inline CPUTLB *env_tlb(CPUArchState *env)
486 {
487     return &env_neg(env)->tlb;
488 }
489 
490 #endif /* CPU_ALL_H */
491