xref: /qemu/include/exec/cpu-all.h (revision c888f7e0)
1 /*
2  * defines common to all virtual CPUs
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 #ifndef CPU_ALL_H
20 #define CPU_ALL_H
21 
22 #include "exec/cpu-common.h"
23 #include "exec/memory.h"
24 #include "qemu/thread.h"
25 #include "hw/core/cpu.h"
26 #include "qemu/rcu.h"
27 
28 #define EXCP_INTERRUPT 	0x10000 /* async interruption */
29 #define EXCP_HLT        0x10001 /* hlt instruction reached */
30 #define EXCP_DEBUG      0x10002 /* cpu stopped after a breakpoint or singlestep */
31 #define EXCP_HALTED     0x10003 /* cpu is halted (waiting for external event) */
32 #define EXCP_YIELD      0x10004 /* cpu wants to yield timeslice to another */
33 #define EXCP_ATOMIC     0x10005 /* stop-the-world and emulate atomic */
34 
35 /* some important defines:
36  *
37  * HOST_WORDS_BIGENDIAN : if defined, the host cpu is big endian and
38  * otherwise little endian.
39  *
40  * TARGET_WORDS_BIGENDIAN : same for target cpu
41  */
42 
43 #if defined(HOST_WORDS_BIGENDIAN) != defined(TARGET_WORDS_BIGENDIAN)
44 #define BSWAP_NEEDED
45 #endif
46 
47 #ifdef BSWAP_NEEDED
48 
49 static inline uint16_t tswap16(uint16_t s)
50 {
51     return bswap16(s);
52 }
53 
54 static inline uint32_t tswap32(uint32_t s)
55 {
56     return bswap32(s);
57 }
58 
59 static inline uint64_t tswap64(uint64_t s)
60 {
61     return bswap64(s);
62 }
63 
64 static inline void tswap16s(uint16_t *s)
65 {
66     *s = bswap16(*s);
67 }
68 
69 static inline void tswap32s(uint32_t *s)
70 {
71     *s = bswap32(*s);
72 }
73 
74 static inline void tswap64s(uint64_t *s)
75 {
76     *s = bswap64(*s);
77 }
78 
79 #else
80 
81 static inline uint16_t tswap16(uint16_t s)
82 {
83     return s;
84 }
85 
86 static inline uint32_t tswap32(uint32_t s)
87 {
88     return s;
89 }
90 
91 static inline uint64_t tswap64(uint64_t s)
92 {
93     return s;
94 }
95 
96 static inline void tswap16s(uint16_t *s)
97 {
98 }
99 
100 static inline void tswap32s(uint32_t *s)
101 {
102 }
103 
104 static inline void tswap64s(uint64_t *s)
105 {
106 }
107 
108 #endif
109 
110 #if TARGET_LONG_SIZE == 4
111 #define tswapl(s) tswap32(s)
112 #define tswapls(s) tswap32s((uint32_t *)(s))
113 #define bswaptls(s) bswap32s(s)
114 #else
115 #define tswapl(s) tswap64(s)
116 #define tswapls(s) tswap64s((uint64_t *)(s))
117 #define bswaptls(s) bswap64s(s)
118 #endif
119 
120 /* Target-endianness CPU memory access functions. These fit into the
121  * {ld,st}{type}{sign}{size}{endian}_p naming scheme described in bswap.h.
122  */
123 #if defined(TARGET_WORDS_BIGENDIAN)
124 #define lduw_p(p) lduw_be_p(p)
125 #define ldsw_p(p) ldsw_be_p(p)
126 #define ldl_p(p) ldl_be_p(p)
127 #define ldq_p(p) ldq_be_p(p)
128 #define ldfl_p(p) ldfl_be_p(p)
129 #define ldfq_p(p) ldfq_be_p(p)
130 #define stw_p(p, v) stw_be_p(p, v)
131 #define stl_p(p, v) stl_be_p(p, v)
132 #define stq_p(p, v) stq_be_p(p, v)
133 #define stfl_p(p, v) stfl_be_p(p, v)
134 #define stfq_p(p, v) stfq_be_p(p, v)
135 #define ldn_p(p, sz) ldn_be_p(p, sz)
136 #define stn_p(p, sz, v) stn_be_p(p, sz, v)
137 #else
138 #define lduw_p(p) lduw_le_p(p)
139 #define ldsw_p(p) ldsw_le_p(p)
140 #define ldl_p(p) ldl_le_p(p)
141 #define ldq_p(p) ldq_le_p(p)
142 #define ldfl_p(p) ldfl_le_p(p)
143 #define ldfq_p(p) ldfq_le_p(p)
144 #define stw_p(p, v) stw_le_p(p, v)
145 #define stl_p(p, v) stl_le_p(p, v)
146 #define stq_p(p, v) stq_le_p(p, v)
147 #define stfl_p(p, v) stfl_le_p(p, v)
148 #define stfq_p(p, v) stfq_le_p(p, v)
149 #define ldn_p(p, sz) ldn_le_p(p, sz)
150 #define stn_p(p, sz, v) stn_le_p(p, sz, v)
151 #endif
152 
153 /* MMU memory access macros */
154 
155 #if defined(CONFIG_USER_ONLY)
156 #include "exec/user/abitypes.h"
157 
158 /* On some host systems the guest address space is reserved on the host.
159  * This allows the guest address space to be offset to a convenient location.
160  */
161 extern unsigned long guest_base;
162 extern int have_guest_base;
163 extern unsigned long reserved_va;
164 
165 #if HOST_LONG_BITS <= TARGET_VIRT_ADDR_SPACE_BITS
166 #define GUEST_ADDR_MAX (~0ul)
167 #else
168 #define GUEST_ADDR_MAX (reserved_va ? reserved_va - 1 : \
169                                     (1ul << TARGET_VIRT_ADDR_SPACE_BITS) - 1)
170 #endif
171 #else
172 
173 #include "exec/hwaddr.h"
174 
175 #define SUFFIX
176 #define ARG1         as
177 #define ARG1_DECL    AddressSpace *as
178 #define TARGET_ENDIANNESS
179 #include "exec/memory_ldst.inc.h"
180 
181 #define SUFFIX       _cached_slow
182 #define ARG1         cache
183 #define ARG1_DECL    MemoryRegionCache *cache
184 #define TARGET_ENDIANNESS
185 #include "exec/memory_ldst.inc.h"
186 
187 static inline void stl_phys_notdirty(AddressSpace *as, hwaddr addr, uint32_t val)
188 {
189     address_space_stl_notdirty(as, addr, val,
190                                MEMTXATTRS_UNSPECIFIED, NULL);
191 }
192 
193 #define SUFFIX
194 #define ARG1         as
195 #define ARG1_DECL    AddressSpace *as
196 #define TARGET_ENDIANNESS
197 #include "exec/memory_ldst_phys.inc.h"
198 
199 /* Inline fast path for direct RAM access.  */
200 #define ENDIANNESS
201 #include "exec/memory_ldst_cached.inc.h"
202 
203 #define SUFFIX       _cached
204 #define ARG1         cache
205 #define ARG1_DECL    MemoryRegionCache *cache
206 #define TARGET_ENDIANNESS
207 #include "exec/memory_ldst_phys.inc.h"
208 #endif
209 
210 /* page related stuff */
211 
212 #ifdef TARGET_PAGE_BITS_VARY
213 typedef struct {
214     bool decided;
215     int bits;
216     target_long mask;
217 } TargetPageBits;
218 #if defined(CONFIG_ATTRIBUTE_ALIAS) || !defined(IN_EXEC_VARY)
219 extern const TargetPageBits target_page;
220 #else
221 extern TargetPageBits target_page;
222 #endif
223 #ifdef CONFIG_DEBUG_TCG
224 #define TARGET_PAGE_BITS   ({ assert(target_page.decided); target_page.bits; })
225 #define TARGET_PAGE_MASK   ({ assert(target_page.decided); target_page.mask; })
226 #else
227 #define TARGET_PAGE_BITS   target_page.bits
228 #define TARGET_PAGE_MASK   target_page.mask
229 #endif
230 #define TARGET_PAGE_SIZE   (-(int)TARGET_PAGE_MASK)
231 #else
232 #define TARGET_PAGE_BITS_MIN TARGET_PAGE_BITS
233 #define TARGET_PAGE_SIZE   (1 << TARGET_PAGE_BITS)
234 #define TARGET_PAGE_MASK   ((target_long)-1 << TARGET_PAGE_BITS)
235 #endif
236 
237 #define TARGET_PAGE_ALIGN(addr) ROUND_UP((addr), TARGET_PAGE_SIZE)
238 
239 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
240  * when intptr_t is 32-bit and we are aligning a long long.
241  */
242 extern uintptr_t qemu_host_page_size;
243 extern intptr_t qemu_host_page_mask;
244 
245 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
246 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
247 
248 /* same as PROT_xxx */
249 #define PAGE_READ      0x0001
250 #define PAGE_WRITE     0x0002
251 #define PAGE_EXEC      0x0004
252 #define PAGE_BITS      (PAGE_READ | PAGE_WRITE | PAGE_EXEC)
253 #define PAGE_VALID     0x0008
254 /* original state of the write flag (used when tracking self-modifying
255    code */
256 #define PAGE_WRITE_ORG 0x0010
257 /* Invalidate the TLB entry immediately, helpful for s390x
258  * Low-Address-Protection. Used with PAGE_WRITE in tlb_set_page_with_attrs() */
259 #define PAGE_WRITE_INV 0x0040
260 #if defined(CONFIG_BSD) && defined(CONFIG_USER_ONLY)
261 /* FIXME: Code that sets/uses this is broken and needs to go away.  */
262 #define PAGE_RESERVED  0x0020
263 #endif
264 
265 #if defined(CONFIG_USER_ONLY)
266 void page_dump(FILE *f);
267 
268 typedef int (*walk_memory_regions_fn)(void *, target_ulong,
269                                       target_ulong, unsigned long);
270 int walk_memory_regions(void *, walk_memory_regions_fn);
271 
272 int page_get_flags(target_ulong address);
273 void page_set_flags(target_ulong start, target_ulong end, int flags);
274 int page_check_range(target_ulong start, target_ulong len, int flags);
275 #endif
276 
277 CPUArchState *cpu_copy(CPUArchState *env);
278 
279 /* Flags for use in ENV->INTERRUPT_PENDING.
280 
281    The numbers assigned here are non-sequential in order to preserve
282    binary compatibility with the vmstate dump.  Bit 0 (0x0001) was
283    previously used for CPU_INTERRUPT_EXIT, and is cleared when loading
284    the vmstate dump.  */
285 
286 /* External hardware interrupt pending.  This is typically used for
287    interrupts from devices.  */
288 #define CPU_INTERRUPT_HARD        0x0002
289 
290 /* Exit the current TB.  This is typically used when some system-level device
291    makes some change to the memory mapping.  E.g. the a20 line change.  */
292 #define CPU_INTERRUPT_EXITTB      0x0004
293 
294 /* Halt the CPU.  */
295 #define CPU_INTERRUPT_HALT        0x0020
296 
297 /* Debug event pending.  */
298 #define CPU_INTERRUPT_DEBUG       0x0080
299 
300 /* Reset signal.  */
301 #define CPU_INTERRUPT_RESET       0x0400
302 
303 /* Several target-specific external hardware interrupts.  Each target/cpu.h
304    should define proper names based on these defines.  */
305 #define CPU_INTERRUPT_TGT_EXT_0   0x0008
306 #define CPU_INTERRUPT_TGT_EXT_1   0x0010
307 #define CPU_INTERRUPT_TGT_EXT_2   0x0040
308 #define CPU_INTERRUPT_TGT_EXT_3   0x0200
309 #define CPU_INTERRUPT_TGT_EXT_4   0x1000
310 
311 /* Several target-specific internal interrupts.  These differ from the
312    preceding target-specific interrupts in that they are intended to
313    originate from within the cpu itself, typically in response to some
314    instruction being executed.  These, therefore, are not masked while
315    single-stepping within the debugger.  */
316 #define CPU_INTERRUPT_TGT_INT_0   0x0100
317 #define CPU_INTERRUPT_TGT_INT_1   0x0800
318 #define CPU_INTERRUPT_TGT_INT_2   0x2000
319 
320 /* First unused bit: 0x4000.  */
321 
322 /* The set of all bits that should be masked when single-stepping.  */
323 #define CPU_INTERRUPT_SSTEP_MASK \
324     (CPU_INTERRUPT_HARD          \
325      | CPU_INTERRUPT_TGT_EXT_0   \
326      | CPU_INTERRUPT_TGT_EXT_1   \
327      | CPU_INTERRUPT_TGT_EXT_2   \
328      | CPU_INTERRUPT_TGT_EXT_3   \
329      | CPU_INTERRUPT_TGT_EXT_4)
330 
331 #ifdef CONFIG_USER_ONLY
332 
333 /*
334  * Allow some level of source compatibility with softmmu.  We do not
335  * support any of the more exotic features, so only invalid pages may
336  * be signaled by probe_access_flags().
337  */
338 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
339 #define TLB_MMIO            0
340 #define TLB_WATCHPOINT      0
341 
342 #else
343 
344 /*
345  * Flags stored in the low bits of the TLB virtual address.
346  * These are defined so that fast path ram access is all zeros.
347  * The flags all must be between TARGET_PAGE_BITS and
348  * maximum address alignment bit.
349  *
350  * Use TARGET_PAGE_BITS_MIN so that these bits are constant
351  * when TARGET_PAGE_BITS_VARY is in effect.
352  */
353 /* Zero if TLB entry is valid.  */
354 #define TLB_INVALID_MASK    (1 << (TARGET_PAGE_BITS_MIN - 1))
355 /* Set if TLB entry references a clean RAM page.  The iotlb entry will
356    contain the page physical address.  */
357 #define TLB_NOTDIRTY        (1 << (TARGET_PAGE_BITS_MIN - 2))
358 /* Set if TLB entry is an IO callback.  */
359 #define TLB_MMIO            (1 << (TARGET_PAGE_BITS_MIN - 3))
360 /* Set if TLB entry contains a watchpoint.  */
361 #define TLB_WATCHPOINT      (1 << (TARGET_PAGE_BITS_MIN - 4))
362 /* Set if TLB entry requires byte swap.  */
363 #define TLB_BSWAP           (1 << (TARGET_PAGE_BITS_MIN - 5))
364 /* Set if TLB entry writes ignored.  */
365 #define TLB_DISCARD_WRITE   (1 << (TARGET_PAGE_BITS_MIN - 6))
366 
367 /* Use this mask to check interception with an alignment mask
368  * in a TCG backend.
369  */
370 #define TLB_FLAGS_MASK \
371     (TLB_INVALID_MASK | TLB_NOTDIRTY | TLB_MMIO \
372     | TLB_WATCHPOINT | TLB_BSWAP | TLB_DISCARD_WRITE)
373 
374 /**
375  * tlb_hit_page: return true if page aligned @addr is a hit against the
376  * TLB entry @tlb_addr
377  *
378  * @addr: virtual address to test (must be page aligned)
379  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
380  */
381 static inline bool tlb_hit_page(target_ulong tlb_addr, target_ulong addr)
382 {
383     return addr == (tlb_addr & (TARGET_PAGE_MASK | TLB_INVALID_MASK));
384 }
385 
386 /**
387  * tlb_hit: return true if @addr is a hit against the TLB entry @tlb_addr
388  *
389  * @addr: virtual address to test (need not be page aligned)
390  * @tlb_addr: TLB entry address (a CPUTLBEntry addr_read/write/code value)
391  */
392 static inline bool tlb_hit(target_ulong tlb_addr, target_ulong addr)
393 {
394     return tlb_hit_page(tlb_addr, addr & TARGET_PAGE_MASK);
395 }
396 
397 void dump_exec_info(void);
398 void dump_opcount_info(void);
399 #endif /* !CONFIG_USER_ONLY */
400 
401 int cpu_memory_rw_debug(CPUState *cpu, target_ulong addr,
402                         void *ptr, target_ulong len, bool is_write);
403 
404 int cpu_exec(CPUState *cpu);
405 
406 /**
407  * cpu_set_cpustate_pointers(cpu)
408  * @cpu: The cpu object
409  *
410  * Set the generic pointers in CPUState into the outer object.
411  */
412 static inline void cpu_set_cpustate_pointers(ArchCPU *cpu)
413 {
414     cpu->parent_obj.env_ptr = &cpu->env;
415     cpu->parent_obj.icount_decr_ptr = &cpu->neg.icount_decr;
416 }
417 
418 /**
419  * env_archcpu(env)
420  * @env: The architecture environment
421  *
422  * Return the ArchCPU associated with the environment.
423  */
424 static inline ArchCPU *env_archcpu(CPUArchState *env)
425 {
426     return container_of(env, ArchCPU, env);
427 }
428 
429 /**
430  * env_cpu(env)
431  * @env: The architecture environment
432  *
433  * Return the CPUState associated with the environment.
434  */
435 static inline CPUState *env_cpu(CPUArchState *env)
436 {
437     return &env_archcpu(env)->parent_obj;
438 }
439 
440 /**
441  * env_neg(env)
442  * @env: The architecture environment
443  *
444  * Return the CPUNegativeOffsetState associated with the environment.
445  */
446 static inline CPUNegativeOffsetState *env_neg(CPUArchState *env)
447 {
448     ArchCPU *arch_cpu = container_of(env, ArchCPU, env);
449     return &arch_cpu->neg;
450 }
451 
452 /**
453  * cpu_neg(cpu)
454  * @cpu: The generic CPUState
455  *
456  * Return the CPUNegativeOffsetState associated with the cpu.
457  */
458 static inline CPUNegativeOffsetState *cpu_neg(CPUState *cpu)
459 {
460     ArchCPU *arch_cpu = container_of(cpu, ArchCPU, parent_obj);
461     return &arch_cpu->neg;
462 }
463 
464 /**
465  * env_tlb(env)
466  * @env: The architecture environment
467  *
468  * Return the CPUTLB state associated with the environment.
469  */
470 static inline CPUTLB *env_tlb(CPUArchState *env)
471 {
472     return &env_neg(env)->tlb;
473 }
474 
475 #endif /* CPU_ALL_H */
476