xref: /qemu/include/exec/cpu-common.h (revision d709bbf3)
1 #ifndef CPU_COMMON_H
2 #define CPU_COMMON_H
3 
4 /* CPU interfaces that are target independent.  */
5 
6 #ifndef CONFIG_USER_ONLY
7 #include "exec/hwaddr.h"
8 #endif
9 
10 /**
11  * vaddr:
12  * Type wide enough to contain any #target_ulong virtual address.
13  */
14 typedef uint64_t vaddr;
15 #define VADDR_PRId PRId64
16 #define VADDR_PRIu PRIu64
17 #define VADDR_PRIo PRIo64
18 #define VADDR_PRIx PRIx64
19 #define VADDR_PRIX PRIX64
20 #define VADDR_MAX UINT64_MAX
21 
22 /* Using intptr_t ensures that qemu_*_page_mask is sign-extended even
23  * when intptr_t is 32-bit and we are aligning a long long.
24  */
25 extern uintptr_t qemu_host_page_size;
26 extern intptr_t qemu_host_page_mask;
27 
28 #define HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_host_page_size)
29 #define REAL_HOST_PAGE_ALIGN(addr) ROUND_UP((addr), qemu_real_host_page_size)
30 
31 /* The CPU list lock nests outside page_(un)lock or mmap_(un)lock */
32 void qemu_init_cpu_list(void);
33 void cpu_list_lock(void);
34 void cpu_list_unlock(void);
35 
36 void tcg_flush_softmmu_tlb(CPUState *cs);
37 
38 void tcg_iommu_init_notifier_list(CPUState *cpu);
39 void tcg_iommu_free_notifier_list(CPUState *cpu);
40 
41 #if !defined(CONFIG_USER_ONLY)
42 
43 enum device_endian {
44     DEVICE_NATIVE_ENDIAN,
45     DEVICE_BIG_ENDIAN,
46     DEVICE_LITTLE_ENDIAN,
47 };
48 
49 #if HOST_BIG_ENDIAN
50 #define DEVICE_HOST_ENDIAN DEVICE_BIG_ENDIAN
51 #else
52 #define DEVICE_HOST_ENDIAN DEVICE_LITTLE_ENDIAN
53 #endif
54 
55 /* address in the RAM (different from a physical address) */
56 #if defined(CONFIG_XEN_BACKEND)
57 typedef uint64_t ram_addr_t;
58 #  define RAM_ADDR_MAX UINT64_MAX
59 #  define RAM_ADDR_FMT "%" PRIx64
60 #else
61 typedef uintptr_t ram_addr_t;
62 #  define RAM_ADDR_MAX UINTPTR_MAX
63 #  define RAM_ADDR_FMT "%" PRIxPTR
64 #endif
65 
66 /* memory API */
67 
68 void qemu_ram_remap(ram_addr_t addr, ram_addr_t length);
69 /* This should not be used by devices.  */
70 ram_addr_t qemu_ram_addr_from_host(void *ptr);
71 RAMBlock *qemu_ram_block_by_name(const char *name);
72 RAMBlock *qemu_ram_block_from_host(void *ptr, bool round_offset,
73                                    ram_addr_t *offset);
74 ram_addr_t qemu_ram_block_host_offset(RAMBlock *rb, void *host);
75 void qemu_ram_set_idstr(RAMBlock *block, const char *name, DeviceState *dev);
76 void qemu_ram_unset_idstr(RAMBlock *block);
77 const char *qemu_ram_get_idstr(RAMBlock *rb);
78 void *qemu_ram_get_host_addr(RAMBlock *rb);
79 ram_addr_t qemu_ram_get_offset(RAMBlock *rb);
80 ram_addr_t qemu_ram_get_used_length(RAMBlock *rb);
81 ram_addr_t qemu_ram_get_max_length(RAMBlock *rb);
82 bool qemu_ram_is_shared(RAMBlock *rb);
83 bool qemu_ram_is_noreserve(RAMBlock *rb);
84 bool qemu_ram_is_uf_zeroable(RAMBlock *rb);
85 void qemu_ram_set_uf_zeroable(RAMBlock *rb);
86 bool qemu_ram_is_migratable(RAMBlock *rb);
87 void qemu_ram_set_migratable(RAMBlock *rb);
88 void qemu_ram_unset_migratable(RAMBlock *rb);
89 
90 size_t qemu_ram_pagesize(RAMBlock *block);
91 size_t qemu_ram_pagesize_largest(void);
92 
93 /**
94  * cpu_address_space_init:
95  * @cpu: CPU to add this address space to
96  * @asidx: integer index of this address space
97  * @prefix: prefix to be used as name of address space
98  * @mr: the root memory region of address space
99  *
100  * Add the specified address space to the CPU's cpu_ases list.
101  * The address space added with @asidx 0 is the one used for the
102  * convenience pointer cpu->as.
103  * The target-specific code which registers ASes is responsible
104  * for defining what semantics address space 0, 1, 2, etc have.
105  *
106  * Before the first call to this function, the caller must set
107  * cpu->num_ases to the total number of address spaces it needs
108  * to support.
109  *
110  * Note that with KVM only one address space is supported.
111  */
112 void cpu_address_space_init(CPUState *cpu, int asidx,
113                             const char *prefix, MemoryRegion *mr);
114 
115 void cpu_physical_memory_rw(hwaddr addr, void *buf,
116                             hwaddr len, bool is_write);
117 static inline void cpu_physical_memory_read(hwaddr addr,
118                                             void *buf, hwaddr len)
119 {
120     cpu_physical_memory_rw(addr, buf, len, false);
121 }
122 static inline void cpu_physical_memory_write(hwaddr addr,
123                                              const void *buf, hwaddr len)
124 {
125     cpu_physical_memory_rw(addr, (void *)buf, len, true);
126 }
127 void cpu_reloading_memory_map(void);
128 void *cpu_physical_memory_map(hwaddr addr,
129                               hwaddr *plen,
130                               bool is_write);
131 void cpu_physical_memory_unmap(void *buffer, hwaddr len,
132                                bool is_write, hwaddr access_len);
133 void cpu_register_map_client(QEMUBH *bh);
134 void cpu_unregister_map_client(QEMUBH *bh);
135 
136 bool cpu_physical_memory_is_io(hwaddr phys_addr);
137 
138 /* Coalesced MMIO regions are areas where write operations can be reordered.
139  * This usually implies that write operations are side-effect free.  This allows
140  * batching which can make a major impact on performance when using
141  * virtualization.
142  */
143 void qemu_flush_coalesced_mmio_buffer(void);
144 
145 void cpu_flush_icache_range(hwaddr start, hwaddr len);
146 
147 typedef int (RAMBlockIterFunc)(RAMBlock *rb, void *opaque);
148 
149 int qemu_ram_foreach_block(RAMBlockIterFunc func, void *opaque);
150 int ram_block_discard_range(RAMBlock *rb, uint64_t start, size_t length);
151 
152 #endif
153 
154 /* Returns: 0 on success, -1 on error */
155 int cpu_memory_rw_debug(CPUState *cpu, vaddr addr,
156                         void *ptr, size_t len, bool is_write);
157 
158 /* vl.c */
159 extern int singlestep;
160 
161 void list_cpus(const char *optarg);
162 
163 #endif /* CPU_COMMON_H */
164