xref: /qemu/include/exec/exec-all.h (revision 33848cee)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "qemu-common.h"
24 #include "exec/tb-context.h"
25 
26 /* allow to see translation results - the slowdown should be negligible, so we leave it */
27 #define DEBUG_DISAS
28 
29 /* Page tracking code uses ram addresses in system mode, and virtual
30    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
31    type.  */
32 #if defined(CONFIG_USER_ONLY)
33 typedef abi_ulong tb_page_addr_t;
34 #else
35 typedef ram_addr_t tb_page_addr_t;
36 #endif
37 
38 /* is_jmp field values */
39 #define DISAS_NEXT    0 /* next instruction can be analyzed */
40 #define DISAS_JUMP    1 /* only pc was modified dynamically */
41 #define DISAS_UPDATE  2 /* cpu state was modified dynamically */
42 #define DISAS_TB_JUMP 3 /* only pc was modified statically */
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUArchState *env, struct TranslationBlock *tb);
47 void restore_state_to_opc(CPUArchState *env, struct TranslationBlock *tb,
48                           target_ulong *data);
49 
50 void cpu_gen_init(void);
51 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc);
52 
53 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
54 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
55 TranslationBlock *tb_gen_code(CPUState *cpu,
56                               target_ulong pc, target_ulong cs_base,
57                               uint32_t flags,
58                               int cflags);
59 
60 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
61 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
62 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
63 
64 #if !defined(CONFIG_USER_ONLY)
65 void cpu_reloading_memory_map(void);
66 /**
67  * cpu_address_space_init:
68  * @cpu: CPU to add this address space to
69  * @as: address space to add
70  * @asidx: integer index of this address space
71  *
72  * Add the specified address space to the CPU's cpu_ases list.
73  * The address space added with @asidx 0 is the one used for the
74  * convenience pointer cpu->as.
75  * The target-specific code which registers ASes is responsible
76  * for defining what semantics address space 0, 1, 2, etc have.
77  *
78  * Before the first call to this function, the caller must set
79  * cpu->num_ases to the total number of address spaces it needs
80  * to support.
81  *
82  * Note that with KVM only one address space is supported.
83  */
84 void cpu_address_space_init(CPUState *cpu, AddressSpace *as, int asidx);
85 /* cputlb.c */
86 /**
87  * tlb_flush_page:
88  * @cpu: CPU whose TLB should be flushed
89  * @addr: virtual address of page to be flushed
90  *
91  * Flush one page from the TLB of the specified CPU, for all
92  * MMU indexes.
93  */
94 void tlb_flush_page(CPUState *cpu, target_ulong addr);
95 /**
96  * tlb_flush:
97  * @cpu: CPU whose TLB should be flushed
98  * @flush_global: ignored
99  *
100  * Flush the entire TLB for the specified CPU.
101  * The flush_global flag is in theory an indicator of whether the whole
102  * TLB should be flushed, or only those entries not marked global.
103  * In practice QEMU does not implement any global/not global flag for
104  * TLB entries, and the argument is ignored.
105  */
106 void tlb_flush(CPUState *cpu, int flush_global);
107 /**
108  * tlb_flush_page_by_mmuidx:
109  * @cpu: CPU whose TLB should be flushed
110  * @addr: virtual address of page to be flushed
111  * @...: list of MMU indexes to flush, terminated by a negative value
112  *
113  * Flush one page from the TLB of the specified CPU, for the specified
114  * MMU indexes.
115  */
116 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr, ...);
117 /**
118  * tlb_flush_by_mmuidx:
119  * @cpu: CPU whose TLB should be flushed
120  * @...: list of MMU indexes to flush, terminated by a negative value
121  *
122  * Flush all entries from the TLB of the specified CPU, for the specified
123  * MMU indexes.
124  */
125 void tlb_flush_by_mmuidx(CPUState *cpu, ...);
126 /**
127  * tlb_set_page_with_attrs:
128  * @cpu: CPU to add this TLB entry for
129  * @vaddr: virtual address of page to add entry for
130  * @paddr: physical address of the page
131  * @attrs: memory transaction attributes
132  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
133  * @mmu_idx: MMU index to insert TLB entry for
134  * @size: size of the page in bytes
135  *
136  * Add an entry to this CPU's TLB (a mapping from virtual address
137  * @vaddr to physical address @paddr) with the specified memory
138  * transaction attributes. This is generally called by the target CPU
139  * specific code after it has been called through the tlb_fill()
140  * entry point and performed a successful page table walk to find
141  * the physical address and attributes for the virtual address
142  * which provoked the TLB miss.
143  *
144  * At most one entry for a given virtual address is permitted. Only a
145  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
146  * used by tlb_flush_page.
147  */
148 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
149                              hwaddr paddr, MemTxAttrs attrs,
150                              int prot, int mmu_idx, target_ulong size);
151 /* tlb_set_page:
152  *
153  * This function is equivalent to calling tlb_set_page_with_attrs()
154  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
155  * as a convenience for CPUs which don't use memory transaction attributes.
156  */
157 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
158                   hwaddr paddr, int prot,
159                   int mmu_idx, target_ulong size);
160 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr);
161 void probe_write(CPUArchState *env, target_ulong addr, int mmu_idx,
162                  uintptr_t retaddr);
163 #else
164 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
165 {
166 }
167 
168 static inline void tlb_flush(CPUState *cpu, int flush_global)
169 {
170 }
171 
172 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
173                                             target_ulong addr, ...)
174 {
175 }
176 
177 static inline void tlb_flush_by_mmuidx(CPUState *cpu, ...)
178 {
179 }
180 #endif
181 
182 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
183 
184 /* Estimated block size for TB allocation.  */
185 /* ??? The following is based on a 2015 survey of x86_64 host output.
186    Better would seem to be some sort of dynamically sized TB array,
187    adapting to the block sizes actually being produced.  */
188 #if defined(CONFIG_SOFTMMU)
189 #define CODE_GEN_AVG_BLOCK_SIZE 400
190 #else
191 #define CODE_GEN_AVG_BLOCK_SIZE 150
192 #endif
193 
194 #if defined(__arm__) || defined(_ARCH_PPC) \
195     || defined(__x86_64__) || defined(__i386__) \
196     || defined(__sparc__) || defined(__aarch64__) \
197     || defined(__s390x__) || defined(__mips__) \
198     || defined(CONFIG_TCG_INTERPRETER)
199 /* NOTE: Direct jump patching must be atomic to be thread-safe. */
200 #define USE_DIRECT_JUMP
201 #endif
202 
203 struct TranslationBlock {
204     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
205     target_ulong cs_base; /* CS base for this block */
206     uint32_t flags; /* flags defining in which context the code was generated */
207     uint16_t size;      /* size of target code for this block (1 <=
208                            size <= TARGET_PAGE_SIZE) */
209     uint16_t icount;
210     uint32_t cflags;    /* compile flags */
211 #define CF_COUNT_MASK  0x7fff
212 #define CF_LAST_IO     0x8000 /* Last insn may be an IO access.  */
213 #define CF_NOCACHE     0x10000 /* To be freed after execution */
214 #define CF_USE_ICOUNT  0x20000
215 #define CF_IGNORE_ICOUNT 0x40000 /* Do not generate icount code */
216 
217     uint16_t invalid;
218 
219     void *tc_ptr;    /* pointer to the translated code */
220     uint8_t *tc_search;  /* pointer to search data */
221     /* original tb when cflags has CF_NOCACHE */
222     struct TranslationBlock *orig_tb;
223     /* first and second physical page containing code. The lower bit
224        of the pointer tells the index in page_next[] */
225     struct TranslationBlock *page_next[2];
226     tb_page_addr_t page_addr[2];
227 
228     /* The following data are used to directly call another TB from
229      * the code of this one. This can be done either by emitting direct or
230      * indirect native jump instructions. These jumps are reset so that the TB
231      * just continue its execution. The TB can be linked to another one by
232      * setting one of the jump targets (or patching the jump instruction). Only
233      * two of such jumps are supported.
234      */
235     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
236 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
237 #ifdef USE_DIRECT_JUMP
238     uint16_t jmp_insn_offset[2]; /* offset of native jump instruction */
239 #else
240     uintptr_t jmp_target_addr[2]; /* target address for indirect jump */
241 #endif
242     /* Each TB has an assosiated circular list of TBs jumping to this one.
243      * jmp_list_first points to the first TB jumping to this one.
244      * jmp_list_next is used to point to the next TB in a list.
245      * Since each TB can have two jumps, it can participate in two lists.
246      * jmp_list_first and jmp_list_next are 4-byte aligned pointers to a
247      * TranslationBlock structure, but the two least significant bits of
248      * them are used to encode which data field of the pointed TB should
249      * be used to traverse the list further from that TB:
250      * 0 => jmp_list_next[0], 1 => jmp_list_next[1], 2 => jmp_list_first.
251      * In other words, 0/1 tells which jump is used in the pointed TB,
252      * and 2 means that this is a pointer back to the target TB of this list.
253      */
254     uintptr_t jmp_list_next[2];
255     uintptr_t jmp_list_first;
256 };
257 
258 void tb_free(TranslationBlock *tb);
259 void tb_flush(CPUState *cpu);
260 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
261 
262 #if defined(USE_DIRECT_JUMP)
263 
264 #if defined(CONFIG_TCG_INTERPRETER)
265 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
266 {
267     /* patch the branch destination */
268     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
269     /* no need to flush icache explicitly */
270 }
271 #elif defined(_ARCH_PPC)
272 void ppc_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
273 #define tb_set_jmp_target1 ppc_tb_set_jmp_target
274 #elif defined(__i386__) || defined(__x86_64__)
275 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
276 {
277     /* patch the branch destination */
278     atomic_set((int32_t *)jmp_addr, addr - (jmp_addr + 4));
279     /* no need to flush icache explicitly */
280 }
281 #elif defined(__s390x__)
282 static inline void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr)
283 {
284     /* patch the branch destination */
285     intptr_t disp = addr - (jmp_addr - 2);
286     atomic_set((int32_t *)jmp_addr, disp / 2);
287     /* no need to flush icache explicitly */
288 }
289 #elif defined(__aarch64__)
290 void aarch64_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
291 #define tb_set_jmp_target1 aarch64_tb_set_jmp_target
292 #elif defined(__arm__)
293 void arm_tb_set_jmp_target(uintptr_t jmp_addr, uintptr_t addr);
294 #define tb_set_jmp_target1 arm_tb_set_jmp_target
295 #elif defined(__sparc__) || defined(__mips__)
296 void tb_set_jmp_target1(uintptr_t jmp_addr, uintptr_t addr);
297 #else
298 #error tb_set_jmp_target1 is missing
299 #endif
300 
301 static inline void tb_set_jmp_target(TranslationBlock *tb,
302                                      int n, uintptr_t addr)
303 {
304     uint16_t offset = tb->jmp_insn_offset[n];
305     tb_set_jmp_target1((uintptr_t)(tb->tc_ptr + offset), addr);
306 }
307 
308 #else
309 
310 /* set the jump target */
311 static inline void tb_set_jmp_target(TranslationBlock *tb,
312                                      int n, uintptr_t addr)
313 {
314     tb->jmp_target_addr[n] = addr;
315 }
316 
317 #endif
318 
319 /* Called with tb_lock held.  */
320 static inline void tb_add_jump(TranslationBlock *tb, int n,
321                                TranslationBlock *tb_next)
322 {
323     if (tb->jmp_list_next[n]) {
324         /* Another thread has already done this while we were
325          * outside of the lock; nothing to do in this case */
326         return;
327     }
328     qemu_log_mask_and_addr(CPU_LOG_EXEC, tb->pc,
329                            "Linking TBs %p [" TARGET_FMT_lx
330                            "] index %d -> %p [" TARGET_FMT_lx "]\n",
331                            tb->tc_ptr, tb->pc, n,
332                            tb_next->tc_ptr, tb_next->pc);
333 
334     /* patch the native jump address */
335     tb_set_jmp_target(tb, n, (uintptr_t)tb_next->tc_ptr);
336 
337     /* add in TB jmp circular list */
338     tb->jmp_list_next[n] = tb_next->jmp_list_first;
339     tb_next->jmp_list_first = (uintptr_t)tb | n;
340 }
341 
342 /* GETPC is the true target of the return instruction that we'll execute.  */
343 #if defined(CONFIG_TCG_INTERPRETER)
344 extern uintptr_t tci_tb_ptr;
345 # define GETPC() tci_tb_ptr
346 #else
347 # define GETPC() \
348     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
349 #endif
350 
351 /* The true return address will often point to a host insn that is part of
352    the next translated guest insn.  Adjust the address backward to point to
353    the middle of the call insn.  Subtracting one would do the job except for
354    several compressed mode architectures (arm, mips) which set the low bit
355    to indicate the compressed mode; subtracting two works around that.  It
356    is also the case that there are no host isas that contain a call insn
357    smaller than 4 bytes, so we don't worry about special-casing this.  */
358 #define GETPC_ADJ   2
359 
360 #if !defined(CONFIG_USER_ONLY)
361 
362 struct MemoryRegion *iotlb_to_region(CPUState *cpu,
363                                      hwaddr index, MemTxAttrs attrs);
364 
365 void tlb_fill(CPUState *cpu, target_ulong addr, MMUAccessType access_type,
366               int mmu_idx, uintptr_t retaddr);
367 
368 #endif
369 
370 #if defined(CONFIG_USER_ONLY)
371 void mmap_lock(void);
372 void mmap_unlock(void);
373 bool have_mmap_lock(void);
374 
375 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
376 {
377     return addr;
378 }
379 #else
380 static inline void mmap_lock(void) {}
381 static inline void mmap_unlock(void) {}
382 
383 /* cputlb.c */
384 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
385 
386 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
387 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
388 
389 /* exec.c */
390 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
391 
392 MemoryRegionSection *
393 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
394                                   hwaddr *xlat, hwaddr *plen);
395 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
396                                        MemoryRegionSection *section,
397                                        target_ulong vaddr,
398                                        hwaddr paddr, hwaddr xlat,
399                                        int prot,
400                                        target_ulong *address);
401 bool memory_region_is_unassigned(MemoryRegion *mr);
402 
403 #endif
404 
405 /* vl.c */
406 extern int singlestep;
407 
408 /* cpu-exec.c, accessed with atomic_mb_read/atomic_mb_set */
409 extern CPUState *tcg_current_cpu;
410 extern bool exit_request;
411 
412 #endif
413