xref: /qemu/include/exec/exec-all.h (revision ab9056ff)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #include "exec/tb-context.h"
25 #include "sysemu/cpus.h"
26 
27 /* allow to see translation results - the slowdown should be negligible, so we leave it */
28 #define DEBUG_DISAS
29 
30 /* Page tracking code uses ram addresses in system mode, and virtual
31    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
32    type.  */
33 #if defined(CONFIG_USER_ONLY)
34 typedef abi_ulong tb_page_addr_t;
35 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
36 #else
37 typedef ram_addr_t tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
39 #endif
40 
41 #include "qemu/log.h"
42 
43 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
44 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
45                           target_ulong *data);
46 
47 void cpu_gen_init(void);
48 
49 /**
50  * cpu_restore_state:
51  * @cpu: the vCPU state is to be restore to
52  * @searched_pc: the host PC the fault occurred at
53  * @will_exit: true if the TB executed will be interrupted after some
54                cpu adjustments. Required for maintaining the correct
55                icount valus
56  * @return: true if state was restored, false otherwise
57  *
58  * Attempt to restore the state for a fault occurring in translated
59  * code. If the searched_pc is not in translated code no state is
60  * restored and the function returns false.
61  */
62 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
63 
64 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
65 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
66 TranslationBlock *tb_gen_code(CPUState *cpu,
67                               target_ulong pc, target_ulong cs_base,
68                               uint32_t flags,
69                               int cflags);
70 
71 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
72 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
73 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
74 
75 /**
76  * cpu_loop_exit_requested:
77  * @cpu: The CPU state to be tested
78  *
79  * Indicate if somebody asked for a return of the CPU to the main loop
80  * (e.g., via cpu_exit() or cpu_interrupt()).
81  *
82  * This is helpful for architectures that support interruptible
83  * instructions. After writing back all state to registers/memory, this
84  * call can be used to check if it makes sense to return to the main loop
85  * or to continue executing the interruptible instruction.
86  */
87 static inline bool cpu_loop_exit_requested(CPUState *cpu)
88 {
89     return (int32_t)atomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
90 }
91 
92 #if !defined(CONFIG_USER_ONLY)
93 void cpu_reloading_memory_map(void);
94 /**
95  * cpu_address_space_init:
96  * @cpu: CPU to add this address space to
97  * @asidx: integer index of this address space
98  * @prefix: prefix to be used as name of address space
99  * @mr: the root memory region of address space
100  *
101  * Add the specified address space to the CPU's cpu_ases list.
102  * The address space added with @asidx 0 is the one used for the
103  * convenience pointer cpu->as.
104  * The target-specific code which registers ASes is responsible
105  * for defining what semantics address space 0, 1, 2, etc have.
106  *
107  * Before the first call to this function, the caller must set
108  * cpu->num_ases to the total number of address spaces it needs
109  * to support.
110  *
111  * Note that with KVM only one address space is supported.
112  */
113 void cpu_address_space_init(CPUState *cpu, int asidx,
114                             const char *prefix, MemoryRegion *mr);
115 #endif
116 
117 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
118 /* cputlb.c */
119 /**
120  * tlb_init - initialize a CPU's TLB
121  * @cpu: CPU whose TLB should be initialized
122  */
123 void tlb_init(CPUState *cpu);
124 /**
125  * tlb_flush_page:
126  * @cpu: CPU whose TLB should be flushed
127  * @addr: virtual address of page to be flushed
128  *
129  * Flush one page from the TLB of the specified CPU, for all
130  * MMU indexes.
131  */
132 void tlb_flush_page(CPUState *cpu, target_ulong addr);
133 /**
134  * tlb_flush_page_all_cpus:
135  * @cpu: src CPU of the flush
136  * @addr: virtual address of page to be flushed
137  *
138  * Flush one page from the TLB of the specified CPU, for all
139  * MMU indexes.
140  */
141 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
142 /**
143  * tlb_flush_page_all_cpus_synced:
144  * @cpu: src CPU of the flush
145  * @addr: virtual address of page to be flushed
146  *
147  * Flush one page from the TLB of the specified CPU, for all MMU
148  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
149  * is scheduled as safe work meaning all flushes will be complete once
150  * the source vCPUs safe work is complete. This will depend on when
151  * the guests translation ends the TB.
152  */
153 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
154 /**
155  * tlb_flush:
156  * @cpu: CPU whose TLB should be flushed
157  *
158  * Flush the entire TLB for the specified CPU. Most CPU architectures
159  * allow the implementation to drop entries from the TLB at any time
160  * so this is generally safe. If more selective flushing is required
161  * use one of the other functions for efficiency.
162  */
163 void tlb_flush(CPUState *cpu);
164 /**
165  * tlb_flush_all_cpus:
166  * @cpu: src CPU of the flush
167  */
168 void tlb_flush_all_cpus(CPUState *src_cpu);
169 /**
170  * tlb_flush_all_cpus_synced:
171  * @cpu: src CPU of the flush
172  *
173  * Like tlb_flush_all_cpus except this except the source vCPUs work is
174  * scheduled as safe work meaning all flushes will be complete once
175  * the source vCPUs safe work is complete. This will depend on when
176  * the guests translation ends the TB.
177  */
178 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
179 /**
180  * tlb_flush_page_by_mmuidx:
181  * @cpu: CPU whose TLB should be flushed
182  * @addr: virtual address of page to be flushed
183  * @idxmap: bitmap of MMU indexes to flush
184  *
185  * Flush one page from the TLB of the specified CPU, for the specified
186  * MMU indexes.
187  */
188 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
189                               uint16_t idxmap);
190 /**
191  * tlb_flush_page_by_mmuidx_all_cpus:
192  * @cpu: Originating CPU of the flush
193  * @addr: virtual address of page to be flushed
194  * @idxmap: bitmap of MMU indexes to flush
195  *
196  * Flush one page from the TLB of all CPUs, for the specified
197  * MMU indexes.
198  */
199 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
200                                        uint16_t idxmap);
201 /**
202  * tlb_flush_page_by_mmuidx_all_cpus_synced:
203  * @cpu: Originating CPU of the flush
204  * @addr: virtual address of page to be flushed
205  * @idxmap: bitmap of MMU indexes to flush
206  *
207  * Flush one page from the TLB of all CPUs, for the specified MMU
208  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
209  * vCPUs work is scheduled as safe work meaning all flushes will be
210  * complete once  the source vCPUs safe work is complete. This will
211  * depend on when the guests translation ends the TB.
212  */
213 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
214                                               uint16_t idxmap);
215 /**
216  * tlb_flush_by_mmuidx:
217  * @cpu: CPU whose TLB should be flushed
218  * @wait: If true ensure synchronisation by exiting the cpu_loop
219  * @idxmap: bitmap of MMU indexes to flush
220  *
221  * Flush all entries from the TLB of the specified CPU, for the specified
222  * MMU indexes.
223  */
224 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
225 /**
226  * tlb_flush_by_mmuidx_all_cpus:
227  * @cpu: Originating CPU of the flush
228  * @idxmap: bitmap of MMU indexes to flush
229  *
230  * Flush all entries from all TLBs of all CPUs, for the specified
231  * MMU indexes.
232  */
233 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
234 /**
235  * tlb_flush_by_mmuidx_all_cpus_synced:
236  * @cpu: Originating CPU of the flush
237  * @idxmap: bitmap of MMU indexes to flush
238  *
239  * Flush all entries from all TLBs of all CPUs, for the specified
240  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
241  * vCPUs work is scheduled as safe work meaning all flushes will be
242  * complete once  the source vCPUs safe work is complete. This will
243  * depend on when the guests translation ends the TB.
244  */
245 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
246 /**
247  * tlb_set_page_with_attrs:
248  * @cpu: CPU to add this TLB entry for
249  * @vaddr: virtual address of page to add entry for
250  * @paddr: physical address of the page
251  * @attrs: memory transaction attributes
252  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
253  * @mmu_idx: MMU index to insert TLB entry for
254  * @size: size of the page in bytes
255  *
256  * Add an entry to this CPU's TLB (a mapping from virtual address
257  * @vaddr to physical address @paddr) with the specified memory
258  * transaction attributes. This is generally called by the target CPU
259  * specific code after it has been called through the tlb_fill()
260  * entry point and performed a successful page table walk to find
261  * the physical address and attributes for the virtual address
262  * which provoked the TLB miss.
263  *
264  * At most one entry for a given virtual address is permitted. Only a
265  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
266  * used by tlb_flush_page.
267  */
268 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
269                              hwaddr paddr, MemTxAttrs attrs,
270                              int prot, int mmu_idx, target_ulong size);
271 /* tlb_set_page:
272  *
273  * This function is equivalent to calling tlb_set_page_with_attrs()
274  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
275  * as a convenience for CPUs which don't use memory transaction attributes.
276  */
277 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
278                   hwaddr paddr, int prot,
279                   int mmu_idx, target_ulong size);
280 #else
281 static inline void tlb_init(CPUState *cpu)
282 {
283 }
284 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
285 {
286 }
287 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
288 {
289 }
290 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
291                                                   target_ulong addr)
292 {
293 }
294 static inline void tlb_flush(CPUState *cpu)
295 {
296 }
297 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
298 {
299 }
300 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
301 {
302 }
303 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
304                                             target_ulong addr, uint16_t idxmap)
305 {
306 }
307 
308 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
309 {
310 }
311 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
312                                                      target_ulong addr,
313                                                      uint16_t idxmap)
314 {
315 }
316 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
317                                                             target_ulong addr,
318                                                             uint16_t idxmap)
319 {
320 }
321 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
322 {
323 }
324 
325 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
326                                                        uint16_t idxmap)
327 {
328 }
329 #endif
330 void *probe_access(CPUArchState *env, target_ulong addr, int size,
331                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
332 
333 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
334                                 int mmu_idx, uintptr_t retaddr)
335 {
336     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
337 }
338 
339 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
340 
341 /* Estimated block size for TB allocation.  */
342 /* ??? The following is based on a 2015 survey of x86_64 host output.
343    Better would seem to be some sort of dynamically sized TB array,
344    adapting to the block sizes actually being produced.  */
345 #if defined(CONFIG_SOFTMMU)
346 #define CODE_GEN_AVG_BLOCK_SIZE 400
347 #else
348 #define CODE_GEN_AVG_BLOCK_SIZE 150
349 #endif
350 
351 /*
352  * Translation Cache-related fields of a TB.
353  * This struct exists just for convenience; we keep track of TB's in a binary
354  * search tree, and the only fields needed to compare TB's in the tree are
355  * @ptr and @size.
356  * Note: the address of search data can be obtained by adding @size to @ptr.
357  */
358 struct tb_tc {
359     void *ptr;    /* pointer to the translated code */
360     size_t size;
361 };
362 
363 struct TranslationBlock {
364     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
365     target_ulong cs_base; /* CS base for this block */
366     uint32_t flags; /* flags defining in which context the code was generated */
367     uint16_t size;      /* size of target code for this block (1 <=
368                            size <= TARGET_PAGE_SIZE) */
369     uint16_t icount;
370     uint32_t cflags;    /* compile flags */
371 #define CF_COUNT_MASK  0x00007fff
372 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
373 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
374 #define CF_USE_ICOUNT  0x00020000
375 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
376 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
377 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
378 #define CF_CLUSTER_SHIFT 24
379 /* cflags' mask for hashing/comparison */
380 #define CF_HASH_MASK   \
381     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
382 
383     /* Per-vCPU dynamic tracing state used to generate this TB */
384     uint32_t trace_vcpu_dstate;
385 
386     struct tb_tc tc;
387 
388     /* original tb when cflags has CF_NOCACHE */
389     struct TranslationBlock *orig_tb;
390     /* first and second physical page containing code. The lower bit
391        of the pointer tells the index in page_next[].
392        The list is protected by the TB's page('s) lock(s) */
393     uintptr_t page_next[2];
394     tb_page_addr_t page_addr[2];
395 
396     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
397     QemuSpin jmp_lock;
398 
399     /* The following data are used to directly call another TB from
400      * the code of this one. This can be done either by emitting direct or
401      * indirect native jump instructions. These jumps are reset so that the TB
402      * just continues its execution. The TB can be linked to another one by
403      * setting one of the jump targets (or patching the jump instruction). Only
404      * two of such jumps are supported.
405      */
406     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
407 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
408     uintptr_t jmp_target_arg[2];  /* target address or offset */
409 
410     /*
411      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
412      * Each TB can have two outgoing jumps, and therefore can participate
413      * in two lists. The list entries are kept in jmp_list_next[2]. The least
414      * significant bit (LSB) of the pointers in these lists is used to encode
415      * which of the two list entries is to be used in the pointed TB.
416      *
417      * List traversals are protected by jmp_lock. The destination TB of each
418      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
419      * can be acquired from any origin TB.
420      *
421      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
422      * being invalidated, so that no further outgoing jumps from it can be set.
423      *
424      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
425      * to a destination TB that has CF_INVALID set.
426      */
427     uintptr_t jmp_list_head;
428     uintptr_t jmp_list_next[2];
429     uintptr_t jmp_dest[2];
430 };
431 
432 extern bool parallel_cpus;
433 
434 /* Hide the atomic_read to make code a little easier on the eyes */
435 static inline uint32_t tb_cflags(const TranslationBlock *tb)
436 {
437     return atomic_read(&tb->cflags);
438 }
439 
440 /* current cflags for hashing/comparison */
441 static inline uint32_t curr_cflags(void)
442 {
443     return (parallel_cpus ? CF_PARALLEL : 0)
444          | (use_icount ? CF_USE_ICOUNT : 0);
445 }
446 
447 /* TranslationBlock invalidate API */
448 #if defined(CONFIG_USER_ONLY)
449 void tb_invalidate_phys_addr(target_ulong addr);
450 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
451 #else
452 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
453 #endif
454 void tb_flush(CPUState *cpu);
455 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
456 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
457                                    target_ulong cs_base, uint32_t flags,
458                                    uint32_t cf_mask);
459 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
460 
461 /* GETPC is the true target of the return instruction that we'll execute.  */
462 #if defined(CONFIG_TCG_INTERPRETER)
463 extern uintptr_t tci_tb_ptr;
464 # define GETPC() tci_tb_ptr
465 #else
466 # define GETPC() \
467     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
468 #endif
469 
470 /* The true return address will often point to a host insn that is part of
471    the next translated guest insn.  Adjust the address backward to point to
472    the middle of the call insn.  Subtracting one would do the job except for
473    several compressed mode architectures (arm, mips) which set the low bit
474    to indicate the compressed mode; subtracting two works around that.  It
475    is also the case that there are no host isas that contain a call insn
476    smaller than 4 bytes, so we don't worry about special-casing this.  */
477 #define GETPC_ADJ   2
478 
479 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
480 void assert_no_pages_locked(void);
481 #else
482 static inline void assert_no_pages_locked(void)
483 {
484 }
485 #endif
486 
487 #if !defined(CONFIG_USER_ONLY)
488 
489 /**
490  * iotlb_to_section:
491  * @cpu: CPU performing the access
492  * @index: TCG CPU IOTLB entry
493  *
494  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
495  * it refers to. @index will have been initially created and returned
496  * by memory_region_section_get_iotlb().
497  */
498 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
499                                              hwaddr index, MemTxAttrs attrs);
500 #endif
501 
502 #if defined(CONFIG_USER_ONLY)
503 void mmap_lock(void);
504 void mmap_unlock(void);
505 bool have_mmap_lock(void);
506 
507 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr)
508 {
509     return addr;
510 }
511 #else
512 static inline void mmap_lock(void) {}
513 static inline void mmap_unlock(void) {}
514 
515 /* cputlb.c */
516 tb_page_addr_t get_page_addr_code(CPUArchState *env1, target_ulong addr);
517 
518 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
519 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
520 
521 /* exec.c */
522 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
523 
524 MemoryRegionSection *
525 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
526                                   hwaddr *xlat, hwaddr *plen,
527                                   MemTxAttrs attrs, int *prot);
528 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
529                                        MemoryRegionSection *section);
530 #endif
531 
532 /* vl.c */
533 extern int singlestep;
534 
535 #endif
536