xref: /qemu/include/exec/exec-all.h (revision abff1abf)
1 /*
2  * internal execution defines for qemu
3  *
4  *  Copyright (c) 2003 Fabrice Bellard
5  *
6  * This library is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU Lesser General Public
8  * License as published by the Free Software Foundation; either
9  * version 2 of the License, or (at your option) any later version.
10  *
11  * This library is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the GNU
14  * Lesser General Public License for more details.
15  *
16  * You should have received a copy of the GNU Lesser General Public
17  * License along with this library; if not, see <http://www.gnu.org/licenses/>.
18  */
19 
20 #ifndef EXEC_ALL_H
21 #define EXEC_ALL_H
22 
23 #include "cpu.h"
24 #include "exec/tb-context.h"
25 #ifdef CONFIG_TCG
26 #include "exec/cpu_ldst.h"
27 #endif
28 #include "sysemu/cpus.h"
29 
30 /* allow to see translation results - the slowdown should be negligible, so we leave it */
31 #define DEBUG_DISAS
32 
33 /* Page tracking code uses ram addresses in system mode, and virtual
34    addresses in userspace mode.  Define tb_page_addr_t to be an appropriate
35    type.  */
36 #if defined(CONFIG_USER_ONLY)
37 typedef abi_ulong tb_page_addr_t;
38 #define TB_PAGE_ADDR_FMT TARGET_ABI_FMT_lx
39 #else
40 typedef ram_addr_t tb_page_addr_t;
41 #define TB_PAGE_ADDR_FMT RAM_ADDR_FMT
42 #endif
43 
44 #include "qemu/log.h"
45 
46 void gen_intermediate_code(CPUState *cpu, TranslationBlock *tb, int max_insns);
47 void restore_state_to_opc(CPUArchState *env, TranslationBlock *tb,
48                           target_ulong *data);
49 
50 void cpu_gen_init(void);
51 
52 /**
53  * cpu_restore_state:
54  * @cpu: the vCPU state is to be restore to
55  * @searched_pc: the host PC the fault occurred at
56  * @will_exit: true if the TB executed will be interrupted after some
57                cpu adjustments. Required for maintaining the correct
58                icount valus
59  * @return: true if state was restored, false otherwise
60  *
61  * Attempt to restore the state for a fault occurring in translated
62  * code. If the searched_pc is not in translated code no state is
63  * restored and the function returns false.
64  */
65 bool cpu_restore_state(CPUState *cpu, uintptr_t searched_pc, bool will_exit);
66 
67 void QEMU_NORETURN cpu_loop_exit_noexc(CPUState *cpu);
68 void QEMU_NORETURN cpu_io_recompile(CPUState *cpu, uintptr_t retaddr);
69 TranslationBlock *tb_gen_code(CPUState *cpu,
70                               target_ulong pc, target_ulong cs_base,
71                               uint32_t flags,
72                               int cflags);
73 
74 void QEMU_NORETURN cpu_loop_exit(CPUState *cpu);
75 void QEMU_NORETURN cpu_loop_exit_restore(CPUState *cpu, uintptr_t pc);
76 void QEMU_NORETURN cpu_loop_exit_atomic(CPUState *cpu, uintptr_t pc);
77 
78 /**
79  * cpu_loop_exit_requested:
80  * @cpu: The CPU state to be tested
81  *
82  * Indicate if somebody asked for a return of the CPU to the main loop
83  * (e.g., via cpu_exit() or cpu_interrupt()).
84  *
85  * This is helpful for architectures that support interruptible
86  * instructions. After writing back all state to registers/memory, this
87  * call can be used to check if it makes sense to return to the main loop
88  * or to continue executing the interruptible instruction.
89  */
90 static inline bool cpu_loop_exit_requested(CPUState *cpu)
91 {
92     return (int32_t)atomic_read(&cpu_neg(cpu)->icount_decr.u32) < 0;
93 }
94 
95 #if !defined(CONFIG_USER_ONLY)
96 void cpu_reloading_memory_map(void);
97 /**
98  * cpu_address_space_init:
99  * @cpu: CPU to add this address space to
100  * @asidx: integer index of this address space
101  * @prefix: prefix to be used as name of address space
102  * @mr: the root memory region of address space
103  *
104  * Add the specified address space to the CPU's cpu_ases list.
105  * The address space added with @asidx 0 is the one used for the
106  * convenience pointer cpu->as.
107  * The target-specific code which registers ASes is responsible
108  * for defining what semantics address space 0, 1, 2, etc have.
109  *
110  * Before the first call to this function, the caller must set
111  * cpu->num_ases to the total number of address spaces it needs
112  * to support.
113  *
114  * Note that with KVM only one address space is supported.
115  */
116 void cpu_address_space_init(CPUState *cpu, int asidx,
117                             const char *prefix, MemoryRegion *mr);
118 #endif
119 
120 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_TCG)
121 /* cputlb.c */
122 /**
123  * tlb_init - initialize a CPU's TLB
124  * @cpu: CPU whose TLB should be initialized
125  */
126 void tlb_init(CPUState *cpu);
127 /**
128  * tlb_destroy - destroy a CPU's TLB
129  * @cpu: CPU whose TLB should be destroyed
130  */
131 void tlb_destroy(CPUState *cpu);
132 /**
133  * tlb_flush_page:
134  * @cpu: CPU whose TLB should be flushed
135  * @addr: virtual address of page to be flushed
136  *
137  * Flush one page from the TLB of the specified CPU, for all
138  * MMU indexes.
139  */
140 void tlb_flush_page(CPUState *cpu, target_ulong addr);
141 /**
142  * tlb_flush_page_all_cpus:
143  * @cpu: src CPU of the flush
144  * @addr: virtual address of page to be flushed
145  *
146  * Flush one page from the TLB of the specified CPU, for all
147  * MMU indexes.
148  */
149 void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr);
150 /**
151  * tlb_flush_page_all_cpus_synced:
152  * @cpu: src CPU of the flush
153  * @addr: virtual address of page to be flushed
154  *
155  * Flush one page from the TLB of the specified CPU, for all MMU
156  * indexes like tlb_flush_page_all_cpus except the source vCPUs work
157  * is scheduled as safe work meaning all flushes will be complete once
158  * the source vCPUs safe work is complete. This will depend on when
159  * the guests translation ends the TB.
160  */
161 void tlb_flush_page_all_cpus_synced(CPUState *src, target_ulong addr);
162 /**
163  * tlb_flush:
164  * @cpu: CPU whose TLB should be flushed
165  *
166  * Flush the entire TLB for the specified CPU. Most CPU architectures
167  * allow the implementation to drop entries from the TLB at any time
168  * so this is generally safe. If more selective flushing is required
169  * use one of the other functions for efficiency.
170  */
171 void tlb_flush(CPUState *cpu);
172 /**
173  * tlb_flush_all_cpus:
174  * @cpu: src CPU of the flush
175  */
176 void tlb_flush_all_cpus(CPUState *src_cpu);
177 /**
178  * tlb_flush_all_cpus_synced:
179  * @cpu: src CPU of the flush
180  *
181  * Like tlb_flush_all_cpus except this except the source vCPUs work is
182  * scheduled as safe work meaning all flushes will be complete once
183  * the source vCPUs safe work is complete. This will depend on when
184  * the guests translation ends the TB.
185  */
186 void tlb_flush_all_cpus_synced(CPUState *src_cpu);
187 /**
188  * tlb_flush_page_by_mmuidx:
189  * @cpu: CPU whose TLB should be flushed
190  * @addr: virtual address of page to be flushed
191  * @idxmap: bitmap of MMU indexes to flush
192  *
193  * Flush one page from the TLB of the specified CPU, for the specified
194  * MMU indexes.
195  */
196 void tlb_flush_page_by_mmuidx(CPUState *cpu, target_ulong addr,
197                               uint16_t idxmap);
198 /**
199  * tlb_flush_page_by_mmuidx_all_cpus:
200  * @cpu: Originating CPU of the flush
201  * @addr: virtual address of page to be flushed
202  * @idxmap: bitmap of MMU indexes to flush
203  *
204  * Flush one page from the TLB of all CPUs, for the specified
205  * MMU indexes.
206  */
207 void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu, target_ulong addr,
208                                        uint16_t idxmap);
209 /**
210  * tlb_flush_page_by_mmuidx_all_cpus_synced:
211  * @cpu: Originating CPU of the flush
212  * @addr: virtual address of page to be flushed
213  * @idxmap: bitmap of MMU indexes to flush
214  *
215  * Flush one page from the TLB of all CPUs, for the specified MMU
216  * indexes like tlb_flush_page_by_mmuidx_all_cpus except the source
217  * vCPUs work is scheduled as safe work meaning all flushes will be
218  * complete once  the source vCPUs safe work is complete. This will
219  * depend on when the guests translation ends the TB.
220  */
221 void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu, target_ulong addr,
222                                               uint16_t idxmap);
223 /**
224  * tlb_flush_by_mmuidx:
225  * @cpu: CPU whose TLB should be flushed
226  * @wait: If true ensure synchronisation by exiting the cpu_loop
227  * @idxmap: bitmap of MMU indexes to flush
228  *
229  * Flush all entries from the TLB of the specified CPU, for the specified
230  * MMU indexes.
231  */
232 void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap);
233 /**
234  * tlb_flush_by_mmuidx_all_cpus:
235  * @cpu: Originating CPU of the flush
236  * @idxmap: bitmap of MMU indexes to flush
237  *
238  * Flush all entries from all TLBs of all CPUs, for the specified
239  * MMU indexes.
240  */
241 void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap);
242 /**
243  * tlb_flush_by_mmuidx_all_cpus_synced:
244  * @cpu: Originating CPU of the flush
245  * @idxmap: bitmap of MMU indexes to flush
246  *
247  * Flush all entries from all TLBs of all CPUs, for the specified
248  * MMU indexes like tlb_flush_by_mmuidx_all_cpus except except the source
249  * vCPUs work is scheduled as safe work meaning all flushes will be
250  * complete once  the source vCPUs safe work is complete. This will
251  * depend on when the guests translation ends the TB.
252  */
253 void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu, uint16_t idxmap);
254 /**
255  * tlb_set_page_with_attrs:
256  * @cpu: CPU to add this TLB entry for
257  * @vaddr: virtual address of page to add entry for
258  * @paddr: physical address of the page
259  * @attrs: memory transaction attributes
260  * @prot: access permissions (PAGE_READ/PAGE_WRITE/PAGE_EXEC bits)
261  * @mmu_idx: MMU index to insert TLB entry for
262  * @size: size of the page in bytes
263  *
264  * Add an entry to this CPU's TLB (a mapping from virtual address
265  * @vaddr to physical address @paddr) with the specified memory
266  * transaction attributes. This is generally called by the target CPU
267  * specific code after it has been called through the tlb_fill()
268  * entry point and performed a successful page table walk to find
269  * the physical address and attributes for the virtual address
270  * which provoked the TLB miss.
271  *
272  * At most one entry for a given virtual address is permitted. Only a
273  * single TARGET_PAGE_SIZE region is mapped; the supplied @size is only
274  * used by tlb_flush_page.
275  */
276 void tlb_set_page_with_attrs(CPUState *cpu, target_ulong vaddr,
277                              hwaddr paddr, MemTxAttrs attrs,
278                              int prot, int mmu_idx, target_ulong size);
279 /* tlb_set_page:
280  *
281  * This function is equivalent to calling tlb_set_page_with_attrs()
282  * with an @attrs argument of MEMTXATTRS_UNSPECIFIED. It's provided
283  * as a convenience for CPUs which don't use memory transaction attributes.
284  */
285 void tlb_set_page(CPUState *cpu, target_ulong vaddr,
286                   hwaddr paddr, int prot,
287                   int mmu_idx, target_ulong size);
288 #else
289 static inline void tlb_init(CPUState *cpu)
290 {
291 }
292 static inline void tlb_destroy(CPUState *cpu)
293 {
294 }
295 static inline void tlb_flush_page(CPUState *cpu, target_ulong addr)
296 {
297 }
298 static inline void tlb_flush_page_all_cpus(CPUState *src, target_ulong addr)
299 {
300 }
301 static inline void tlb_flush_page_all_cpus_synced(CPUState *src,
302                                                   target_ulong addr)
303 {
304 }
305 static inline void tlb_flush(CPUState *cpu)
306 {
307 }
308 static inline void tlb_flush_all_cpus(CPUState *src_cpu)
309 {
310 }
311 static inline void tlb_flush_all_cpus_synced(CPUState *src_cpu)
312 {
313 }
314 static inline void tlb_flush_page_by_mmuidx(CPUState *cpu,
315                                             target_ulong addr, uint16_t idxmap)
316 {
317 }
318 
319 static inline void tlb_flush_by_mmuidx(CPUState *cpu, uint16_t idxmap)
320 {
321 }
322 static inline void tlb_flush_page_by_mmuidx_all_cpus(CPUState *cpu,
323                                                      target_ulong addr,
324                                                      uint16_t idxmap)
325 {
326 }
327 static inline void tlb_flush_page_by_mmuidx_all_cpus_synced(CPUState *cpu,
328                                                             target_ulong addr,
329                                                             uint16_t idxmap)
330 {
331 }
332 static inline void tlb_flush_by_mmuidx_all_cpus(CPUState *cpu, uint16_t idxmap)
333 {
334 }
335 
336 static inline void tlb_flush_by_mmuidx_all_cpus_synced(CPUState *cpu,
337                                                        uint16_t idxmap)
338 {
339 }
340 #endif
341 /**
342  * probe_access:
343  * @env: CPUArchState
344  * @addr: guest virtual address to look up
345  * @size: size of the access
346  * @access_type: read, write or execute permission
347  * @mmu_idx: MMU index to use for lookup
348  * @retaddr: return address for unwinding
349  *
350  * Look up the guest virtual address @addr.  Raise an exception if the
351  * page does not satisfy @access_type.  Raise an exception if the
352  * access (@addr, @size) hits a watchpoint.  For writes, mark a clean
353  * page as dirty.
354  *
355  * Finally, return the host address for a page that is backed by RAM,
356  * or NULL if the page requires I/O.
357  */
358 void *probe_access(CPUArchState *env, target_ulong addr, int size,
359                    MMUAccessType access_type, int mmu_idx, uintptr_t retaddr);
360 
361 static inline void *probe_write(CPUArchState *env, target_ulong addr, int size,
362                                 int mmu_idx, uintptr_t retaddr)
363 {
364     return probe_access(env, addr, size, MMU_DATA_STORE, mmu_idx, retaddr);
365 }
366 
367 static inline void *probe_read(CPUArchState *env, target_ulong addr, int size,
368                                int mmu_idx, uintptr_t retaddr)
369 {
370     return probe_access(env, addr, size, MMU_DATA_LOAD, mmu_idx, retaddr);
371 }
372 
373 /**
374  * probe_access_flags:
375  * @env: CPUArchState
376  * @addr: guest virtual address to look up
377  * @access_type: read, write or execute permission
378  * @mmu_idx: MMU index to use for lookup
379  * @nonfault: suppress the fault
380  * @phost: return value for host address
381  * @retaddr: return address for unwinding
382  *
383  * Similar to probe_access, loosely returning the TLB_FLAGS_MASK for
384  * the page, and storing the host address for RAM in @phost.
385  *
386  * If @nonfault is set, do not raise an exception but return TLB_INVALID_MASK.
387  * Do not handle watchpoints, but include TLB_WATCHPOINT in the returned flags.
388  * Do handle clean pages, so exclude TLB_NOTDIRY from the returned flags.
389  * For simplicity, all "mmio-like" flags are folded to TLB_MMIO.
390  */
391 int probe_access_flags(CPUArchState *env, target_ulong addr,
392                        MMUAccessType access_type, int mmu_idx,
393                        bool nonfault, void **phost, uintptr_t retaddr);
394 
395 #define CODE_GEN_ALIGN           16 /* must be >= of the size of a icache line */
396 
397 /* Estimated block size for TB allocation.  */
398 /* ??? The following is based on a 2015 survey of x86_64 host output.
399    Better would seem to be some sort of dynamically sized TB array,
400    adapting to the block sizes actually being produced.  */
401 #if defined(CONFIG_SOFTMMU)
402 #define CODE_GEN_AVG_BLOCK_SIZE 400
403 #else
404 #define CODE_GEN_AVG_BLOCK_SIZE 150
405 #endif
406 
407 /*
408  * Translation Cache-related fields of a TB.
409  * This struct exists just for convenience; we keep track of TB's in a binary
410  * search tree, and the only fields needed to compare TB's in the tree are
411  * @ptr and @size.
412  * Note: the address of search data can be obtained by adding @size to @ptr.
413  */
414 struct tb_tc {
415     void *ptr;    /* pointer to the translated code */
416     size_t size;
417 };
418 
419 struct TranslationBlock {
420     target_ulong pc;   /* simulated PC corresponding to this block (EIP + CS base) */
421     target_ulong cs_base; /* CS base for this block */
422     uint32_t flags; /* flags defining in which context the code was generated */
423     uint16_t size;      /* size of target code for this block (1 <=
424                            size <= TARGET_PAGE_SIZE) */
425     uint16_t icount;
426     uint32_t cflags;    /* compile flags */
427 #define CF_COUNT_MASK  0x00007fff
428 #define CF_LAST_IO     0x00008000 /* Last insn may be an IO access.  */
429 #define CF_NOCACHE     0x00010000 /* To be freed after execution */
430 #define CF_USE_ICOUNT  0x00020000
431 #define CF_INVALID     0x00040000 /* TB is stale. Set with @jmp_lock held */
432 #define CF_PARALLEL    0x00080000 /* Generate code for a parallel context */
433 #define CF_CLUSTER_MASK 0xff000000 /* Top 8 bits are cluster ID */
434 #define CF_CLUSTER_SHIFT 24
435 /* cflags' mask for hashing/comparison */
436 #define CF_HASH_MASK   \
437     (CF_COUNT_MASK | CF_LAST_IO | CF_USE_ICOUNT | CF_PARALLEL | CF_CLUSTER_MASK)
438 
439     /* Per-vCPU dynamic tracing state used to generate this TB */
440     uint32_t trace_vcpu_dstate;
441 
442     struct tb_tc tc;
443 
444     /* original tb when cflags has CF_NOCACHE */
445     struct TranslationBlock *orig_tb;
446     /* first and second physical page containing code. The lower bit
447        of the pointer tells the index in page_next[].
448        The list is protected by the TB's page('s) lock(s) */
449     uintptr_t page_next[2];
450     tb_page_addr_t page_addr[2];
451 
452     /* jmp_lock placed here to fill a 4-byte hole. Its documentation is below */
453     QemuSpin jmp_lock;
454 
455     /* The following data are used to directly call another TB from
456      * the code of this one. This can be done either by emitting direct or
457      * indirect native jump instructions. These jumps are reset so that the TB
458      * just continues its execution. The TB can be linked to another one by
459      * setting one of the jump targets (or patching the jump instruction). Only
460      * two of such jumps are supported.
461      */
462     uint16_t jmp_reset_offset[2]; /* offset of original jump target */
463 #define TB_JMP_RESET_OFFSET_INVALID 0xffff /* indicates no jump generated */
464     uintptr_t jmp_target_arg[2];  /* target address or offset */
465 
466     /*
467      * Each TB has a NULL-terminated list (jmp_list_head) of incoming jumps.
468      * Each TB can have two outgoing jumps, and therefore can participate
469      * in two lists. The list entries are kept in jmp_list_next[2]. The least
470      * significant bit (LSB) of the pointers in these lists is used to encode
471      * which of the two list entries is to be used in the pointed TB.
472      *
473      * List traversals are protected by jmp_lock. The destination TB of each
474      * outgoing jump is kept in jmp_dest[] so that the appropriate jmp_lock
475      * can be acquired from any origin TB.
476      *
477      * jmp_dest[] are tagged pointers as well. The LSB is set when the TB is
478      * being invalidated, so that no further outgoing jumps from it can be set.
479      *
480      * jmp_lock also protects the CF_INVALID cflag; a jump must not be chained
481      * to a destination TB that has CF_INVALID set.
482      */
483     uintptr_t jmp_list_head;
484     uintptr_t jmp_list_next[2];
485     uintptr_t jmp_dest[2];
486 };
487 
488 extern bool parallel_cpus;
489 
490 /* Hide the atomic_read to make code a little easier on the eyes */
491 static inline uint32_t tb_cflags(const TranslationBlock *tb)
492 {
493     return atomic_read(&tb->cflags);
494 }
495 
496 /* current cflags for hashing/comparison */
497 static inline uint32_t curr_cflags(void)
498 {
499     return (parallel_cpus ? CF_PARALLEL : 0)
500          | (use_icount ? CF_USE_ICOUNT : 0);
501 }
502 
503 /* TranslationBlock invalidate API */
504 #if defined(CONFIG_USER_ONLY)
505 void tb_invalidate_phys_addr(target_ulong addr);
506 void tb_invalidate_phys_range(target_ulong start, target_ulong end);
507 #else
508 void tb_invalidate_phys_addr(AddressSpace *as, hwaddr addr, MemTxAttrs attrs);
509 #endif
510 void tb_flush(CPUState *cpu);
511 void tb_phys_invalidate(TranslationBlock *tb, tb_page_addr_t page_addr);
512 TranslationBlock *tb_htable_lookup(CPUState *cpu, target_ulong pc,
513                                    target_ulong cs_base, uint32_t flags,
514                                    uint32_t cf_mask);
515 void tb_set_jmp_target(TranslationBlock *tb, int n, uintptr_t addr);
516 
517 /* GETPC is the true target of the return instruction that we'll execute.  */
518 #if defined(CONFIG_TCG_INTERPRETER)
519 extern uintptr_t tci_tb_ptr;
520 # define GETPC() tci_tb_ptr
521 #else
522 # define GETPC() \
523     ((uintptr_t)__builtin_extract_return_addr(__builtin_return_address(0)))
524 #endif
525 
526 /* The true return address will often point to a host insn that is part of
527    the next translated guest insn.  Adjust the address backward to point to
528    the middle of the call insn.  Subtracting one would do the job except for
529    several compressed mode architectures (arm, mips) which set the low bit
530    to indicate the compressed mode; subtracting two works around that.  It
531    is also the case that there are no host isas that contain a call insn
532    smaller than 4 bytes, so we don't worry about special-casing this.  */
533 #define GETPC_ADJ   2
534 
535 #if !defined(CONFIG_USER_ONLY) && defined(CONFIG_DEBUG_TCG)
536 void assert_no_pages_locked(void);
537 #else
538 static inline void assert_no_pages_locked(void)
539 {
540 }
541 #endif
542 
543 #if !defined(CONFIG_USER_ONLY)
544 
545 /**
546  * iotlb_to_section:
547  * @cpu: CPU performing the access
548  * @index: TCG CPU IOTLB entry
549  *
550  * Given a TCG CPU IOTLB entry, return the MemoryRegionSection that
551  * it refers to. @index will have been initially created and returned
552  * by memory_region_section_get_iotlb().
553  */
554 struct MemoryRegionSection *iotlb_to_section(CPUState *cpu,
555                                              hwaddr index, MemTxAttrs attrs);
556 #endif
557 
558 #if defined(CONFIG_USER_ONLY)
559 void mmap_lock(void);
560 void mmap_unlock(void);
561 bool have_mmap_lock(void);
562 
563 /**
564  * get_page_addr_code() - user-mode version
565  * @env: CPUArchState
566  * @addr: guest virtual address of guest code
567  *
568  * Returns @addr.
569  */
570 static inline tb_page_addr_t get_page_addr_code(CPUArchState *env,
571                                                 target_ulong addr)
572 {
573     return addr;
574 }
575 
576 /**
577  * get_page_addr_code_hostp() - user-mode version
578  * @env: CPUArchState
579  * @addr: guest virtual address of guest code
580  *
581  * Returns @addr.
582  *
583  * If @hostp is non-NULL, sets *@hostp to the host address where @addr's content
584  * is kept.
585  */
586 static inline tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env,
587                                                       target_ulong addr,
588                                                       void **hostp)
589 {
590     if (hostp) {
591         *hostp = g2h(addr);
592     }
593     return addr;
594 }
595 #else
596 static inline void mmap_lock(void) {}
597 static inline void mmap_unlock(void) {}
598 
599 /**
600  * get_page_addr_code() - full-system version
601  * @env: CPUArchState
602  * @addr: guest virtual address of guest code
603  *
604  * If we cannot translate and execute from the entire RAM page, or if
605  * the region is not backed by RAM, returns -1. Otherwise, returns the
606  * ram_addr_t corresponding to the guest code at @addr.
607  *
608  * Note: this function can trigger an exception.
609  */
610 tb_page_addr_t get_page_addr_code(CPUArchState *env, target_ulong addr);
611 
612 /**
613  * get_page_addr_code_hostp() - full-system version
614  * @env: CPUArchState
615  * @addr: guest virtual address of guest code
616  *
617  * See get_page_addr_code() (full-system version) for documentation on the
618  * return value.
619  *
620  * Sets *@hostp (when @hostp is non-NULL) as follows.
621  * If the return value is -1, sets *@hostp to NULL. Otherwise, sets *@hostp
622  * to the host address where @addr's content is kept.
623  *
624  * Note: this function can trigger an exception.
625  */
626 tb_page_addr_t get_page_addr_code_hostp(CPUArchState *env, target_ulong addr,
627                                         void **hostp);
628 
629 void tlb_reset_dirty(CPUState *cpu, ram_addr_t start1, ram_addr_t length);
630 void tlb_set_dirty(CPUState *cpu, target_ulong vaddr);
631 
632 /* exec.c */
633 void tb_flush_jmp_cache(CPUState *cpu, target_ulong addr);
634 
635 MemoryRegionSection *
636 address_space_translate_for_iotlb(CPUState *cpu, int asidx, hwaddr addr,
637                                   hwaddr *xlat, hwaddr *plen,
638                                   MemTxAttrs attrs, int *prot);
639 hwaddr memory_region_section_get_iotlb(CPUState *cpu,
640                                        MemoryRegionSection *section);
641 #endif
642 
643 /* vl.c */
644 extern int singlestep;
645 
646 #endif
647