xref: /qemu/include/exec/memop.h (revision 7c1f51bf)
1 /*
2  * Constants for memory operations
3  *
4  * Authors:
5  *  Richard Henderson <rth@twiddle.net>
6  *
7  * This work is licensed under the terms of the GNU GPL, version 2 or later.
8  * See the COPYING file in the top-level directory.
9  *
10  */
11 
12 #ifndef MEMOP_H
13 #define MEMOP_H
14 
15 #include "qemu/host-utils.h"
16 
17 typedef enum MemOp {
18     MO_8     = 0,
19     MO_16    = 1,
20     MO_32    = 2,
21     MO_64    = 3,
22     MO_128   = 4,
23     MO_256   = 5,
24     MO_512   = 6,
25     MO_1024  = 7,
26     MO_SIZE  = 0x07,   /* Mask for the above.  */
27 
28     MO_SIGN  = 0x08,   /* Sign-extended, otherwise zero-extended.  */
29 
30     MO_BSWAP = 0x10,   /* Host reverse endian.  */
31 #if HOST_BIG_ENDIAN
32     MO_LE    = MO_BSWAP,
33     MO_BE    = 0,
34 #else
35     MO_LE    = 0,
36     MO_BE    = MO_BSWAP,
37 #endif
38 #ifdef NEED_CPU_H
39 #if TARGET_BIG_ENDIAN
40     MO_TE    = MO_BE,
41 #else
42     MO_TE    = MO_LE,
43 #endif
44 #endif
45 
46     /*
47      * MO_UNALN accesses are never checked for alignment.
48      * MO_ALIGN accesses will result in a call to the CPU's
49      * do_unaligned_access hook if the guest address is not aligned.
50      *
51      * Some architectures (e.g. ARMv8) need the address which is aligned
52      * to a size more than the size of the memory access.
53      * Some architectures (e.g. SPARCv9) need an address which is aligned,
54      * but less strictly than the natural alignment.
55      *
56      * MO_ALIGN supposes the alignment size is the size of a memory access.
57      *
58      * There are three options:
59      * - unaligned access permitted (MO_UNALN).
60      * - an alignment to the size of an access (MO_ALIGN);
61      * - an alignment to a specified size, which may be more or less than
62      *   the access size (MO_ALIGN_x where 'x' is a size in bytes);
63      */
64     MO_ASHIFT = 5,
65     MO_AMASK = 0x7 << MO_ASHIFT,
66     MO_UNALN    = 0,
67     MO_ALIGN_2  = 1 << MO_ASHIFT,
68     MO_ALIGN_4  = 2 << MO_ASHIFT,
69     MO_ALIGN_8  = 3 << MO_ASHIFT,
70     MO_ALIGN_16 = 4 << MO_ASHIFT,
71     MO_ALIGN_32 = 5 << MO_ASHIFT,
72     MO_ALIGN_64 = 6 << MO_ASHIFT,
73     MO_ALIGN    = MO_AMASK,
74 
75     /*
76      * MO_ATOM_* describes the atomicity requirements of the operation:
77      * MO_ATOM_IFALIGN: the operation must be single-copy atomic if it
78      *    is aligned; if unaligned there is no atomicity.
79      * MO_ATOM_IFALIGN_PAIR: the entire operation may be considered to
80      *    be a pair of half-sized operations which are packed together
81      *    for convenience, with single-copy atomicity on each half if
82      *    the half is aligned.
83      *    This is the atomicity e.g. of Arm pre-FEAT_LSE2 LDP.
84      * MO_ATOM_WITHIN16: the operation is single-copy atomic, even if it
85      *    is unaligned, so long as it does not cross a 16-byte boundary;
86      *    if it crosses a 16-byte boundary there is no atomicity.
87      *    This is the atomicity e.g. of Arm FEAT_LSE2 LDR.
88      * MO_ATOM_WITHIN16_PAIR: the entire operation is single-copy atomic,
89      *    if it happens to be within a 16-byte boundary, otherwise it
90      *    devolves to a pair of half-sized MO_ATOM_WITHIN16 operations.
91      *    Depending on alignment, one or both will be single-copy atomic.
92      *    This is the atomicity e.g. of Arm FEAT_LSE2 LDP.
93      * MO_ATOM_SUBALIGN: the operation is single-copy atomic by parts
94      *    by the alignment.  E.g. if the address is 0 mod 4, then each
95      *    4-byte subobject is single-copy atomic.
96      *    This is the atomicity e.g. of IBM Power.
97      * MO_ATOM_NONE: the operation has no atomicity requirements.
98      *
99      * Note the default (i.e. 0) value is single-copy atomic to the
100      * size of the operation, if aligned.  This retains the behaviour
101      * from before this field was introduced.
102      */
103     MO_ATOM_SHIFT         = 8,
104     MO_ATOM_IFALIGN       = 0 << MO_ATOM_SHIFT,
105     MO_ATOM_IFALIGN_PAIR  = 1 << MO_ATOM_SHIFT,
106     MO_ATOM_WITHIN16      = 2 << MO_ATOM_SHIFT,
107     MO_ATOM_WITHIN16_PAIR = 3 << MO_ATOM_SHIFT,
108     MO_ATOM_SUBALIGN      = 4 << MO_ATOM_SHIFT,
109     MO_ATOM_NONE          = 5 << MO_ATOM_SHIFT,
110     MO_ATOM_MASK          = 7 << MO_ATOM_SHIFT,
111 
112     /* Combinations of the above, for ease of use.  */
113     MO_UB    = MO_8,
114     MO_UW    = MO_16,
115     MO_UL    = MO_32,
116     MO_UQ    = MO_64,
117     MO_UO    = MO_128,
118     MO_SB    = MO_SIGN | MO_8,
119     MO_SW    = MO_SIGN | MO_16,
120     MO_SL    = MO_SIGN | MO_32,
121     MO_SQ    = MO_SIGN | MO_64,
122     MO_SO    = MO_SIGN | MO_128,
123 
124     MO_LEUW  = MO_LE | MO_UW,
125     MO_LEUL  = MO_LE | MO_UL,
126     MO_LEUQ  = MO_LE | MO_UQ,
127     MO_LESW  = MO_LE | MO_SW,
128     MO_LESL  = MO_LE | MO_SL,
129     MO_LESQ  = MO_LE | MO_SQ,
130 
131     MO_BEUW  = MO_BE | MO_UW,
132     MO_BEUL  = MO_BE | MO_UL,
133     MO_BEUQ  = MO_BE | MO_UQ,
134     MO_BESW  = MO_BE | MO_SW,
135     MO_BESL  = MO_BE | MO_SL,
136     MO_BESQ  = MO_BE | MO_SQ,
137 
138 #ifdef NEED_CPU_H
139     MO_TEUW  = MO_TE | MO_UW,
140     MO_TEUL  = MO_TE | MO_UL,
141     MO_TEUQ  = MO_TE | MO_UQ,
142     MO_TEUO  = MO_TE | MO_UO,
143     MO_TESW  = MO_TE | MO_SW,
144     MO_TESL  = MO_TE | MO_SL,
145     MO_TESQ  = MO_TE | MO_SQ,
146 #endif
147 
148     MO_SSIZE = MO_SIZE | MO_SIGN,
149 } MemOp;
150 
151 /* MemOp to size in bytes.  */
152 static inline unsigned memop_size(MemOp op)
153 {
154     return 1 << (op & MO_SIZE);
155 }
156 
157 /* Size in bytes to MemOp.  */
158 static inline MemOp size_memop(unsigned size)
159 {
160 #ifdef CONFIG_DEBUG_TCG
161     /* Power of 2 up to 8.  */
162     assert((size & (size - 1)) == 0 && size >= 1 && size <= 8);
163 #endif
164     return ctz32(size);
165 }
166 
167 /* Big endianness from MemOp.  */
168 static inline bool memop_big_endian(MemOp op)
169 {
170     return (op & MO_BSWAP) == MO_BE;
171 }
172 
173 #endif
174