xref: /qemu/include/exec/memory.h (revision 20daa90a)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #ifndef CONFIG_USER_ONLY
21 #include "exec/hwaddr.h"
22 #endif
23 #include "exec/memattrs.h"
24 #include "exec/ramlist.h"
25 #include "qemu/queue.h"
26 #include "qemu/int128.h"
27 #include "qemu/notify.h"
28 #include "qom/object.h"
29 #include "qemu/rcu.h"
30 
31 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
32 
33 #define MAX_PHYS_ADDR_SPACE_BITS 62
34 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
35 
36 #define TYPE_MEMORY_REGION "qemu:memory-region"
37 #define MEMORY_REGION(obj) \
38         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
39 
40 typedef struct MemoryRegionOps MemoryRegionOps;
41 typedef struct MemoryRegionMmio MemoryRegionMmio;
42 
43 struct MemoryRegionMmio {
44     CPUReadMemoryFunc *read[3];
45     CPUWriteMemoryFunc *write[3];
46 };
47 
48 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
49 
50 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
51 typedef enum {
52     IOMMU_NONE = 0,
53     IOMMU_RO   = 1,
54     IOMMU_WO   = 2,
55     IOMMU_RW   = 3,
56 } IOMMUAccessFlags;
57 
58 struct IOMMUTLBEntry {
59     AddressSpace    *target_as;
60     hwaddr           iova;
61     hwaddr           translated_addr;
62     hwaddr           addr_mask;  /* 0xfff = 4k translation */
63     IOMMUAccessFlags perm;
64 };
65 
66 /*
67  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
68  * register with one or multiple IOMMU Notifier capability bit(s).
69  */
70 typedef enum {
71     IOMMU_NOTIFIER_NONE = 0,
72     /* Notify cache invalidations */
73     IOMMU_NOTIFIER_UNMAP = 0x1,
74     /* Notify entry changes (newly created entries) */
75     IOMMU_NOTIFIER_MAP = 0x2,
76 } IOMMUNotifierFlag;
77 
78 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
79 
80 struct IOMMUNotifier {
81     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
82     IOMMUNotifierFlag notifier_flags;
83     QLIST_ENTRY(IOMMUNotifier) node;
84 };
85 typedef struct IOMMUNotifier IOMMUNotifier;
86 
87 /* New-style MMIO accessors can indicate that the transaction failed.
88  * A zero (MEMTX_OK) response means success; anything else is a failure
89  * of some kind. The memory subsystem will bitwise-OR together results
90  * if it is synthesizing an operation from multiple smaller accesses.
91  */
92 #define MEMTX_OK 0
93 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
94 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
95 typedef uint32_t MemTxResult;
96 
97 /*
98  * Memory region callbacks
99  */
100 struct MemoryRegionOps {
101     /* Read from the memory region. @addr is relative to @mr; @size is
102      * in bytes. */
103     uint64_t (*read)(void *opaque,
104                      hwaddr addr,
105                      unsigned size);
106     /* Write to the memory region. @addr is relative to @mr; @size is
107      * in bytes. */
108     void (*write)(void *opaque,
109                   hwaddr addr,
110                   uint64_t data,
111                   unsigned size);
112 
113     MemTxResult (*read_with_attrs)(void *opaque,
114                                    hwaddr addr,
115                                    uint64_t *data,
116                                    unsigned size,
117                                    MemTxAttrs attrs);
118     MemTxResult (*write_with_attrs)(void *opaque,
119                                     hwaddr addr,
120                                     uint64_t data,
121                                     unsigned size,
122                                     MemTxAttrs attrs);
123 
124     enum device_endian endianness;
125     /* Guest-visible constraints: */
126     struct {
127         /* If nonzero, specify bounds on access sizes beyond which a machine
128          * check is thrown.
129          */
130         unsigned min_access_size;
131         unsigned max_access_size;
132         /* If true, unaligned accesses are supported.  Otherwise unaligned
133          * accesses throw machine checks.
134          */
135          bool unaligned;
136         /*
137          * If present, and returns #false, the transaction is not accepted
138          * by the device (and results in machine dependent behaviour such
139          * as a machine check exception).
140          */
141         bool (*accepts)(void *opaque, hwaddr addr,
142                         unsigned size, bool is_write);
143     } valid;
144     /* Internal implementation constraints: */
145     struct {
146         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
147          * will be rounded upwards and a partial result will be returned.
148          */
149         unsigned min_access_size;
150         /* If nonzero, specifies the maximum size implemented.  Larger sizes
151          * will be done as a series of accesses with smaller sizes.
152          */
153         unsigned max_access_size;
154         /* If true, unaligned accesses are supported.  Otherwise all accesses
155          * are converted to (possibly multiple) naturally aligned accesses.
156          */
157         bool unaligned;
158     } impl;
159 
160     /* If .read and .write are not present, old_mmio may be used for
161      * backwards compatibility with old mmio registration
162      */
163     const MemoryRegionMmio old_mmio;
164 };
165 
166 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
167 
168 struct MemoryRegionIOMMUOps {
169     /* Return a TLB entry that contains a given address. */
170     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
171     /* Returns minimum supported page size */
172     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
173     /* Called when IOMMU Notifier flag changed */
174     void (*notify_flag_changed)(MemoryRegion *iommu,
175                                 IOMMUNotifierFlag old_flags,
176                                 IOMMUNotifierFlag new_flags);
177 };
178 
179 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
180 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
181 
182 struct MemoryRegion {
183     Object parent_obj;
184 
185     /* All fields are private - violators will be prosecuted */
186 
187     /* The following fields should fit in a cache line */
188     bool romd_mode;
189     bool ram;
190     bool subpage;
191     bool readonly; /* For RAM regions */
192     bool rom_device;
193     bool flush_coalesced_mmio;
194     bool global_locking;
195     uint8_t dirty_log_mask;
196     RAMBlock *ram_block;
197     Object *owner;
198     const MemoryRegionIOMMUOps *iommu_ops;
199 
200     const MemoryRegionOps *ops;
201     void *opaque;
202     MemoryRegion *container;
203     Int128 size;
204     hwaddr addr;
205     void (*destructor)(MemoryRegion *mr);
206     uint64_t align;
207     bool terminates;
208     bool ram_device;
209     bool enabled;
210     bool warning_printed; /* For reservations */
211     uint8_t vga_logging_count;
212     MemoryRegion *alias;
213     hwaddr alias_offset;
214     int32_t priority;
215     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
216     QTAILQ_ENTRY(MemoryRegion) subregions_link;
217     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
218     const char *name;
219     unsigned ioeventfd_nb;
220     MemoryRegionIoeventfd *ioeventfds;
221     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
222     IOMMUNotifierFlag iommu_notify_flags;
223 };
224 
225 /**
226  * MemoryListener: callbacks structure for updates to the physical memory map
227  *
228  * Allows a component to adjust to changes in the guest-visible memory map.
229  * Use with memory_listener_register() and memory_listener_unregister().
230  */
231 struct MemoryListener {
232     void (*begin)(MemoryListener *listener);
233     void (*commit)(MemoryListener *listener);
234     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
235     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
236     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
237     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
238                       int old, int new);
239     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
240                      int old, int new);
241     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
242     void (*log_global_start)(MemoryListener *listener);
243     void (*log_global_stop)(MemoryListener *listener);
244     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
245                         bool match_data, uint64_t data, EventNotifier *e);
246     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
247                         bool match_data, uint64_t data, EventNotifier *e);
248     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
249                                hwaddr addr, hwaddr len);
250     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
251                                hwaddr addr, hwaddr len);
252     /* Lower = earlier (during add), later (during del) */
253     unsigned priority;
254     AddressSpace *address_space;
255     QTAILQ_ENTRY(MemoryListener) link;
256     QTAILQ_ENTRY(MemoryListener) link_as;
257 };
258 
259 /**
260  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
261  */
262 struct AddressSpace {
263     /* All fields are private. */
264     struct rcu_head rcu;
265     char *name;
266     MemoryRegion *root;
267     int ref_count;
268     bool malloced;
269 
270     /* Accessed via RCU.  */
271     struct FlatView *current_map;
272 
273     int ioeventfd_nb;
274     struct MemoryRegionIoeventfd *ioeventfds;
275     struct AddressSpaceDispatch *dispatch;
276     struct AddressSpaceDispatch *next_dispatch;
277     MemoryListener dispatch_listener;
278     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
279     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
280 };
281 
282 /**
283  * MemoryRegionSection: describes a fragment of a #MemoryRegion
284  *
285  * @mr: the region, or %NULL if empty
286  * @address_space: the address space the region is mapped in
287  * @offset_within_region: the beginning of the section, relative to @mr's start
288  * @size: the size of the section; will not exceed @mr's boundaries
289  * @offset_within_address_space: the address of the first byte of the section
290  *     relative to the region's address space
291  * @readonly: writes to this section are ignored
292  */
293 struct MemoryRegionSection {
294     MemoryRegion *mr;
295     AddressSpace *address_space;
296     hwaddr offset_within_region;
297     Int128 size;
298     hwaddr offset_within_address_space;
299     bool readonly;
300 };
301 
302 /**
303  * memory_region_init: Initialize a memory region
304  *
305  * The region typically acts as a container for other memory regions.  Use
306  * memory_region_add_subregion() to add subregions.
307  *
308  * @mr: the #MemoryRegion to be initialized
309  * @owner: the object that tracks the region's reference count
310  * @name: used for debugging; not visible to the user or ABI
311  * @size: size of the region; any subregions beyond this size will be clipped
312  */
313 void memory_region_init(MemoryRegion *mr,
314                         struct Object *owner,
315                         const char *name,
316                         uint64_t size);
317 
318 /**
319  * memory_region_ref: Add 1 to a memory region's reference count
320  *
321  * Whenever memory regions are accessed outside the BQL, they need to be
322  * preserved against hot-unplug.  MemoryRegions actually do not have their
323  * own reference count; they piggyback on a QOM object, their "owner".
324  * This function adds a reference to the owner.
325  *
326  * All MemoryRegions must have an owner if they can disappear, even if the
327  * device they belong to operates exclusively under the BQL.  This is because
328  * the region could be returned at any time by memory_region_find, and this
329  * is usually under guest control.
330  *
331  * @mr: the #MemoryRegion
332  */
333 void memory_region_ref(MemoryRegion *mr);
334 
335 /**
336  * memory_region_unref: Remove 1 to a memory region's reference count
337  *
338  * Whenever memory regions are accessed outside the BQL, they need to be
339  * preserved against hot-unplug.  MemoryRegions actually do not have their
340  * own reference count; they piggyback on a QOM object, their "owner".
341  * This function removes a reference to the owner and possibly destroys it.
342  *
343  * @mr: the #MemoryRegion
344  */
345 void memory_region_unref(MemoryRegion *mr);
346 
347 /**
348  * memory_region_init_io: Initialize an I/O memory region.
349  *
350  * Accesses into the region will cause the callbacks in @ops to be called.
351  * if @size is nonzero, subregions will be clipped to @size.
352  *
353  * @mr: the #MemoryRegion to be initialized.
354  * @owner: the object that tracks the region's reference count
355  * @ops: a structure containing read and write callbacks to be used when
356  *       I/O is performed on the region.
357  * @opaque: passed to the read and write callbacks of the @ops structure.
358  * @name: used for debugging; not visible to the user or ABI
359  * @size: size of the region.
360  */
361 void memory_region_init_io(MemoryRegion *mr,
362                            struct Object *owner,
363                            const MemoryRegionOps *ops,
364                            void *opaque,
365                            const char *name,
366                            uint64_t size);
367 
368 /**
369  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
370  *                          region will modify memory directly.
371  *
372  * @mr: the #MemoryRegion to be initialized.
373  * @owner: the object that tracks the region's reference count
374  * @name: the name of the region.
375  * @size: size of the region.
376  * @errp: pointer to Error*, to store an error if it happens.
377  */
378 void memory_region_init_ram(MemoryRegion *mr,
379                             struct Object *owner,
380                             const char *name,
381                             uint64_t size,
382                             Error **errp);
383 
384 /**
385  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
386  *                                     RAM.  Accesses into the region will
387  *                                     modify memory directly.  Only an initial
388  *                                     portion of this RAM is actually used.
389  *                                     The used size can change across reboots.
390  *
391  * @mr: the #MemoryRegion to be initialized.
392  * @owner: the object that tracks the region's reference count
393  * @name: the name of the region.
394  * @size: used size of the region.
395  * @max_size: max size of the region.
396  * @resized: callback to notify owner about used size change.
397  * @errp: pointer to Error*, to store an error if it happens.
398  */
399 void memory_region_init_resizeable_ram(MemoryRegion *mr,
400                                        struct Object *owner,
401                                        const char *name,
402                                        uint64_t size,
403                                        uint64_t max_size,
404                                        void (*resized)(const char*,
405                                                        uint64_t length,
406                                                        void *host),
407                                        Error **errp);
408 #ifdef __linux__
409 /**
410  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
411  *                                    mmap-ed backend.
412  *
413  * @mr: the #MemoryRegion to be initialized.
414  * @owner: the object that tracks the region's reference count
415  * @name: the name of the region.
416  * @size: size of the region.
417  * @share: %true if memory must be mmaped with the MAP_SHARED flag
418  * @path: the path in which to allocate the RAM.
419  * @errp: pointer to Error*, to store an error if it happens.
420  */
421 void memory_region_init_ram_from_file(MemoryRegion *mr,
422                                       struct Object *owner,
423                                       const char *name,
424                                       uint64_t size,
425                                       bool share,
426                                       const char *path,
427                                       Error **errp);
428 #endif
429 
430 /**
431  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
432  *                              user-provided pointer.  Accesses into the
433  *                              region will modify memory directly.
434  *
435  * @mr: the #MemoryRegion to be initialized.
436  * @owner: the object that tracks the region's reference count
437  * @name: the name of the region.
438  * @size: size of the region.
439  * @ptr: memory to be mapped; must contain at least @size bytes.
440  */
441 void memory_region_init_ram_ptr(MemoryRegion *mr,
442                                 struct Object *owner,
443                                 const char *name,
444                                 uint64_t size,
445                                 void *ptr);
446 
447 /**
448  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
449  *                                     a user-provided pointer.
450  *
451  * A RAM device represents a mapping to a physical device, such as to a PCI
452  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
453  * into the VM address space and access to the region will modify memory
454  * directly.  However, the memory region should not be included in a memory
455  * dump (device may not be enabled/mapped at the time of the dump), and
456  * operations incompatible with manipulating MMIO should be avoided.  Replaces
457  * skip_dump flag.
458  *
459  * @mr: the #MemoryRegion to be initialized.
460  * @owner: the object that tracks the region's reference count
461  * @name: the name of the region.
462  * @size: size of the region.
463  * @ptr: memory to be mapped; must contain at least @size bytes.
464  */
465 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
466                                        struct Object *owner,
467                                        const char *name,
468                                        uint64_t size,
469                                        void *ptr);
470 
471 /**
472  * memory_region_init_alias: Initialize a memory region that aliases all or a
473  *                           part of another memory region.
474  *
475  * @mr: the #MemoryRegion to be initialized.
476  * @owner: the object that tracks the region's reference count
477  * @name: used for debugging; not visible to the user or ABI
478  * @orig: the region to be referenced; @mr will be equivalent to
479  *        @orig between @offset and @offset + @size - 1.
480  * @offset: start of the section in @orig to be referenced.
481  * @size: size of the region.
482  */
483 void memory_region_init_alias(MemoryRegion *mr,
484                               struct Object *owner,
485                               const char *name,
486                               MemoryRegion *orig,
487                               hwaddr offset,
488                               uint64_t size);
489 
490 /**
491  * memory_region_init_rom: Initialize a ROM memory region.
492  *
493  * This has the same effect as calling memory_region_init_ram()
494  * and then marking the resulting region read-only with
495  * memory_region_set_readonly().
496  *
497  * @mr: the #MemoryRegion to be initialized.
498  * @owner: the object that tracks the region's reference count
499  * @name: the name of the region.
500  * @size: size of the region.
501  * @errp: pointer to Error*, to store an error if it happens.
502  */
503 void memory_region_init_rom(MemoryRegion *mr,
504                             struct Object *owner,
505                             const char *name,
506                             uint64_t size,
507                             Error **errp);
508 
509 /**
510  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
511  *                                 handled via callbacks.
512  *
513  * @mr: the #MemoryRegion to be initialized.
514  * @owner: the object that tracks the region's reference count
515  * @ops: callbacks for write access handling (must not be NULL).
516  * @name: the name of the region.
517  * @size: size of the region.
518  * @errp: pointer to Error*, to store an error if it happens.
519  */
520 void memory_region_init_rom_device(MemoryRegion *mr,
521                                    struct Object *owner,
522                                    const MemoryRegionOps *ops,
523                                    void *opaque,
524                                    const char *name,
525                                    uint64_t size,
526                                    Error **errp);
527 
528 /**
529  * memory_region_init_reservation: Initialize a memory region that reserves
530  *                                 I/O space.
531  *
532  * A reservation region primariy serves debugging purposes.  It claims I/O
533  * space that is not supposed to be handled by QEMU itself.  Any access via
534  * the memory API will cause an abort().
535  * This function is deprecated. Use memory_region_init_io() with NULL
536  * callbacks instead.
537  *
538  * @mr: the #MemoryRegion to be initialized
539  * @owner: the object that tracks the region's reference count
540  * @name: used for debugging; not visible to the user or ABI
541  * @size: size of the region.
542  */
543 static inline void memory_region_init_reservation(MemoryRegion *mr,
544                                     Object *owner,
545                                     const char *name,
546                                     uint64_t size)
547 {
548     memory_region_init_io(mr, owner, NULL, mr, name, size);
549 }
550 
551 /**
552  * memory_region_init_iommu: Initialize a memory region that translates
553  * addresses
554  *
555  * An IOMMU region translates addresses and forwards accesses to a target
556  * memory region.
557  *
558  * @mr: the #MemoryRegion to be initialized
559  * @owner: the object that tracks the region's reference count
560  * @ops: a function that translates addresses into the @target region
561  * @name: used for debugging; not visible to the user or ABI
562  * @size: size of the region.
563  */
564 void memory_region_init_iommu(MemoryRegion *mr,
565                               struct Object *owner,
566                               const MemoryRegionIOMMUOps *ops,
567                               const char *name,
568                               uint64_t size);
569 
570 /**
571  * memory_region_owner: get a memory region's owner.
572  *
573  * @mr: the memory region being queried.
574  */
575 struct Object *memory_region_owner(MemoryRegion *mr);
576 
577 /**
578  * memory_region_size: get a memory region's size.
579  *
580  * @mr: the memory region being queried.
581  */
582 uint64_t memory_region_size(MemoryRegion *mr);
583 
584 /**
585  * memory_region_is_ram: check whether a memory region is random access
586  *
587  * Returns %true is a memory region is random access.
588  *
589  * @mr: the memory region being queried
590  */
591 static inline bool memory_region_is_ram(MemoryRegion *mr)
592 {
593     return mr->ram;
594 }
595 
596 /**
597  * memory_region_is_ram_device: check whether a memory region is a ram device
598  *
599  * Returns %true is a memory region is a device backed ram region
600  *
601  * @mr: the memory region being queried
602  */
603 bool memory_region_is_ram_device(MemoryRegion *mr);
604 
605 /**
606  * memory_region_is_romd: check whether a memory region is in ROMD mode
607  *
608  * Returns %true if a memory region is a ROM device and currently set to allow
609  * direct reads.
610  *
611  * @mr: the memory region being queried
612  */
613 static inline bool memory_region_is_romd(MemoryRegion *mr)
614 {
615     return mr->rom_device && mr->romd_mode;
616 }
617 
618 /**
619  * memory_region_is_iommu: check whether a memory region is an iommu
620  *
621  * Returns %true is a memory region is an iommu.
622  *
623  * @mr: the memory region being queried
624  */
625 static inline bool memory_region_is_iommu(MemoryRegion *mr)
626 {
627     if (mr->alias) {
628         return memory_region_is_iommu(mr->alias);
629     }
630     return mr->iommu_ops;
631 }
632 
633 
634 /**
635  * memory_region_iommu_get_min_page_size: get minimum supported page size
636  * for an iommu
637  *
638  * Returns minimum supported page size for an iommu.
639  *
640  * @mr: the memory region being queried
641  */
642 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
643 
644 /**
645  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
646  *
647  * The notification type will be decided by entry.perm bits:
648  *
649  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
650  * - For MAP (newly added entry) notifies: set entry.perm to the
651  *   permission of the page (which is definitely !IOMMU_NONE).
652  *
653  * Note: for any IOMMU implementation, an in-place mapping change
654  * should be notified with an UNMAP followed by a MAP.
655  *
656  * @mr: the memory region that was changed
657  * @entry: the new entry in the IOMMU translation table.  The entry
658  *         replaces all old entries for the same virtual I/O address range.
659  *         Deleted entries have .@perm == 0.
660  */
661 void memory_region_notify_iommu(MemoryRegion *mr,
662                                 IOMMUTLBEntry entry);
663 
664 /**
665  * memory_region_register_iommu_notifier: register a notifier for changes to
666  * IOMMU translation entries.
667  *
668  * @mr: the memory region to observe
669  * @n: the IOMMUNotifier to be added; the notify callback receives a
670  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
671  *     ceases to be valid on exit from the notifier.
672  */
673 void memory_region_register_iommu_notifier(MemoryRegion *mr,
674                                            IOMMUNotifier *n);
675 
676 /**
677  * memory_region_iommu_replay: replay existing IOMMU translations to
678  * a notifier with the minimum page granularity returned by
679  * mr->iommu_ops->get_page_size().
680  *
681  * @mr: the memory region to observe
682  * @n: the notifier to which to replay iommu mappings
683  * @is_write: Whether to treat the replay as a translate "write"
684  *     through the iommu
685  */
686 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
687                                 bool is_write);
688 
689 /**
690  * memory_region_unregister_iommu_notifier: unregister a notifier for
691  * changes to IOMMU translation entries.
692  *
693  * @mr: the memory region which was observed and for which notity_stopped()
694  *      needs to be called
695  * @n: the notifier to be removed.
696  */
697 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
698                                              IOMMUNotifier *n);
699 
700 /**
701  * memory_region_name: get a memory region's name
702  *
703  * Returns the string that was used to initialize the memory region.
704  *
705  * @mr: the memory region being queried
706  */
707 const char *memory_region_name(const MemoryRegion *mr);
708 
709 /**
710  * memory_region_is_logging: return whether a memory region is logging writes
711  *
712  * Returns %true if the memory region is logging writes for the given client
713  *
714  * @mr: the memory region being queried
715  * @client: the client being queried
716  */
717 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
718 
719 /**
720  * memory_region_get_dirty_log_mask: return the clients for which a
721  * memory region is logging writes.
722  *
723  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
724  * are the bit indices.
725  *
726  * @mr: the memory region being queried
727  */
728 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
729 
730 /**
731  * memory_region_is_rom: check whether a memory region is ROM
732  *
733  * Returns %true is a memory region is read-only memory.
734  *
735  * @mr: the memory region being queried
736  */
737 static inline bool memory_region_is_rom(MemoryRegion *mr)
738 {
739     return mr->ram && mr->readonly;
740 }
741 
742 
743 /**
744  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
745  *
746  * Returns a file descriptor backing a file-based RAM memory region,
747  * or -1 if the region is not a file-based RAM memory region.
748  *
749  * @mr: the RAM or alias memory region being queried.
750  */
751 int memory_region_get_fd(MemoryRegion *mr);
752 
753 /**
754  * memory_region_set_fd: Mark a RAM memory region as backed by a
755  * file descriptor.
756  *
757  * This function is typically used after memory_region_init_ram_ptr().
758  *
759  * @mr: the memory region being queried.
760  * @fd: the file descriptor that backs @mr.
761  */
762 void memory_region_set_fd(MemoryRegion *mr, int fd);
763 
764 /**
765  * memory_region_from_host: Convert a pointer into a RAM memory region
766  * and an offset within it.
767  *
768  * Given a host pointer inside a RAM memory region (created with
769  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
770  * the MemoryRegion and the offset within it.
771  *
772  * Use with care; by the time this function returns, the returned pointer is
773  * not protected by RCU anymore.  If the caller is not within an RCU critical
774  * section and does not hold the iothread lock, it must have other means of
775  * protecting the pointer, such as a reference to the region that includes
776  * the incoming ram_addr_t.
777  *
778  * @mr: the memory region being queried.
779  */
780 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
781 
782 /**
783  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
784  *
785  * Returns a host pointer to a RAM memory region (created with
786  * memory_region_init_ram() or memory_region_init_ram_ptr()).
787  *
788  * Use with care; by the time this function returns, the returned pointer is
789  * not protected by RCU anymore.  If the caller is not within an RCU critical
790  * section and does not hold the iothread lock, it must have other means of
791  * protecting the pointer, such as a reference to the region that includes
792  * the incoming ram_addr_t.
793  *
794  * @mr: the memory region being queried.
795  */
796 void *memory_region_get_ram_ptr(MemoryRegion *mr);
797 
798 /* memory_region_ram_resize: Resize a RAM region.
799  *
800  * Only legal before guest might have detected the memory size: e.g. on
801  * incoming migration, or right after reset.
802  *
803  * @mr: a memory region created with @memory_region_init_resizeable_ram.
804  * @newsize: the new size the region
805  * @errp: pointer to Error*, to store an error if it happens.
806  */
807 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
808                               Error **errp);
809 
810 /**
811  * memory_region_set_log: Turn dirty logging on or off for a region.
812  *
813  * Turns dirty logging on or off for a specified client (display, migration).
814  * Only meaningful for RAM regions.
815  *
816  * @mr: the memory region being updated.
817  * @log: whether dirty logging is to be enabled or disabled.
818  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
819  */
820 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
821 
822 /**
823  * memory_region_get_dirty: Check whether a range of bytes is dirty
824  *                          for a specified client.
825  *
826  * Checks whether a range of bytes has been written to since the last
827  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
828  * must be enabled.
829  *
830  * @mr: the memory region being queried.
831  * @addr: the address (relative to the start of the region) being queried.
832  * @size: the size of the range being queried.
833  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
834  *          %DIRTY_MEMORY_VGA.
835  */
836 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
837                              hwaddr size, unsigned client);
838 
839 /**
840  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
841  *
842  * Marks a range of bytes as dirty, after it has been dirtied outside
843  * guest code.
844  *
845  * @mr: the memory region being dirtied.
846  * @addr: the address (relative to the start of the region) being dirtied.
847  * @size: size of the range being dirtied.
848  */
849 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
850                              hwaddr size);
851 
852 /**
853  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
854  *                                     for a specified client. It clears them.
855  *
856  * Checks whether a range of bytes has been written to since the last
857  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
858  * must be enabled.
859  *
860  * @mr: the memory region being queried.
861  * @addr: the address (relative to the start of the region) being queried.
862  * @size: the size of the range being queried.
863  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
864  *          %DIRTY_MEMORY_VGA.
865  */
866 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
867                                         hwaddr size, unsigned client);
868 /**
869  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
870  *                                  any external TLBs (e.g. kvm)
871  *
872  * Flushes dirty information from accelerators such as kvm and vhost-net
873  * and makes it available to users of the memory API.
874  *
875  * @mr: the region being flushed.
876  */
877 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
878 
879 /**
880  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
881  *                            client.
882  *
883  * Marks a range of pages as no longer dirty.
884  *
885  * @mr: the region being updated.
886  * @addr: the start of the subrange being cleaned.
887  * @size: the size of the subrange being cleaned.
888  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
889  *          %DIRTY_MEMORY_VGA.
890  */
891 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
892                                hwaddr size, unsigned client);
893 
894 /**
895  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
896  *
897  * Allows a memory region to be marked as read-only (turning it into a ROM).
898  * only useful on RAM regions.
899  *
900  * @mr: the region being updated.
901  * @readonly: whether rhe region is to be ROM or RAM.
902  */
903 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
904 
905 /**
906  * memory_region_rom_device_set_romd: enable/disable ROMD mode
907  *
908  * Allows a ROM device (initialized with memory_region_init_rom_device() to
909  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
910  * device is mapped to guest memory and satisfies read access directly.
911  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
912  * Writes are always handled by the #MemoryRegion.write function.
913  *
914  * @mr: the memory region to be updated
915  * @romd_mode: %true to put the region into ROMD mode
916  */
917 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
918 
919 /**
920  * memory_region_set_coalescing: Enable memory coalescing for the region.
921  *
922  * Enabled writes to a region to be queued for later processing. MMIO ->write
923  * callbacks may be delayed until a non-coalesced MMIO is issued.
924  * Only useful for IO regions.  Roughly similar to write-combining hardware.
925  *
926  * @mr: the memory region to be write coalesced
927  */
928 void memory_region_set_coalescing(MemoryRegion *mr);
929 
930 /**
931  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
932  *                               a region.
933  *
934  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
935  * Multiple calls can be issued coalesced disjoint ranges.
936  *
937  * @mr: the memory region to be updated.
938  * @offset: the start of the range within the region to be coalesced.
939  * @size: the size of the subrange to be coalesced.
940  */
941 void memory_region_add_coalescing(MemoryRegion *mr,
942                                   hwaddr offset,
943                                   uint64_t size);
944 
945 /**
946  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
947  *
948  * Disables any coalescing caused by memory_region_set_coalescing() or
949  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
950  * hardware.
951  *
952  * @mr: the memory region to be updated.
953  */
954 void memory_region_clear_coalescing(MemoryRegion *mr);
955 
956 /**
957  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
958  *                                    accesses.
959  *
960  * Ensure that pending coalesced MMIO request are flushed before the memory
961  * region is accessed. This property is automatically enabled for all regions
962  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
963  *
964  * @mr: the memory region to be updated.
965  */
966 void memory_region_set_flush_coalesced(MemoryRegion *mr);
967 
968 /**
969  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
970  *                                      accesses.
971  *
972  * Clear the automatic coalesced MMIO flushing enabled via
973  * memory_region_set_flush_coalesced. Note that this service has no effect on
974  * memory regions that have MMIO coalescing enabled for themselves. For them,
975  * automatic flushing will stop once coalescing is disabled.
976  *
977  * @mr: the memory region to be updated.
978  */
979 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
980 
981 /**
982  * memory_region_set_global_locking: Declares the access processing requires
983  *                                   QEMU's global lock.
984  *
985  * When this is invoked, accesses to the memory region will be processed while
986  * holding the global lock of QEMU. This is the default behavior of memory
987  * regions.
988  *
989  * @mr: the memory region to be updated.
990  */
991 void memory_region_set_global_locking(MemoryRegion *mr);
992 
993 /**
994  * memory_region_clear_global_locking: Declares that access processing does
995  *                                     not depend on the QEMU global lock.
996  *
997  * By clearing this property, accesses to the memory region will be processed
998  * outside of QEMU's global lock (unless the lock is held on when issuing the
999  * access request). In this case, the device model implementing the access
1000  * handlers is responsible for synchronization of concurrency.
1001  *
1002  * @mr: the memory region to be updated.
1003  */
1004 void memory_region_clear_global_locking(MemoryRegion *mr);
1005 
1006 /**
1007  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1008  *                            is written to a location.
1009  *
1010  * Marks a word in an IO region (initialized with memory_region_init_io())
1011  * as a trigger for an eventfd event.  The I/O callback will not be called.
1012  * The caller must be prepared to handle failure (that is, take the required
1013  * action if the callback _is_ called).
1014  *
1015  * @mr: the memory region being updated.
1016  * @addr: the address within @mr that is to be monitored
1017  * @size: the size of the access to trigger the eventfd
1018  * @match_data: whether to match against @data, instead of just @addr
1019  * @data: the data to match against the guest write
1020  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1021  **/
1022 void memory_region_add_eventfd(MemoryRegion *mr,
1023                                hwaddr addr,
1024                                unsigned size,
1025                                bool match_data,
1026                                uint64_t data,
1027                                EventNotifier *e);
1028 
1029 /**
1030  * memory_region_del_eventfd: Cancel an eventfd.
1031  *
1032  * Cancels an eventfd trigger requested by a previous
1033  * memory_region_add_eventfd() call.
1034  *
1035  * @mr: the memory region being updated.
1036  * @addr: the address within @mr that is to be monitored
1037  * @size: the size of the access to trigger the eventfd
1038  * @match_data: whether to match against @data, instead of just @addr
1039  * @data: the data to match against the guest write
1040  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1041  */
1042 void memory_region_del_eventfd(MemoryRegion *mr,
1043                                hwaddr addr,
1044                                unsigned size,
1045                                bool match_data,
1046                                uint64_t data,
1047                                EventNotifier *e);
1048 
1049 /**
1050  * memory_region_add_subregion: Add a subregion to a container.
1051  *
1052  * Adds a subregion at @offset.  The subregion may not overlap with other
1053  * subregions (except for those explicitly marked as overlapping).  A region
1054  * may only be added once as a subregion (unless removed with
1055  * memory_region_del_subregion()); use memory_region_init_alias() if you
1056  * want a region to be a subregion in multiple locations.
1057  *
1058  * @mr: the region to contain the new subregion; must be a container
1059  *      initialized with memory_region_init().
1060  * @offset: the offset relative to @mr where @subregion is added.
1061  * @subregion: the subregion to be added.
1062  */
1063 void memory_region_add_subregion(MemoryRegion *mr,
1064                                  hwaddr offset,
1065                                  MemoryRegion *subregion);
1066 /**
1067  * memory_region_add_subregion_overlap: Add a subregion to a container
1068  *                                      with overlap.
1069  *
1070  * Adds a subregion at @offset.  The subregion may overlap with other
1071  * subregions.  Conflicts are resolved by having a higher @priority hide a
1072  * lower @priority. Subregions without priority are taken as @priority 0.
1073  * A region may only be added once as a subregion (unless removed with
1074  * memory_region_del_subregion()); use memory_region_init_alias() if you
1075  * want a region to be a subregion in multiple locations.
1076  *
1077  * @mr: the region to contain the new subregion; must be a container
1078  *      initialized with memory_region_init().
1079  * @offset: the offset relative to @mr where @subregion is added.
1080  * @subregion: the subregion to be added.
1081  * @priority: used for resolving overlaps; highest priority wins.
1082  */
1083 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1084                                          hwaddr offset,
1085                                          MemoryRegion *subregion,
1086                                          int priority);
1087 
1088 /**
1089  * memory_region_get_ram_addr: Get the ram address associated with a memory
1090  *                             region
1091  */
1092 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1093 
1094 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1095 /**
1096  * memory_region_del_subregion: Remove a subregion.
1097  *
1098  * Removes a subregion from its container.
1099  *
1100  * @mr: the container to be updated.
1101  * @subregion: the region being removed; must be a current subregion of @mr.
1102  */
1103 void memory_region_del_subregion(MemoryRegion *mr,
1104                                  MemoryRegion *subregion);
1105 
1106 /*
1107  * memory_region_set_enabled: dynamically enable or disable a region
1108  *
1109  * Enables or disables a memory region.  A disabled memory region
1110  * ignores all accesses to itself and its subregions.  It does not
1111  * obscure sibling subregions with lower priority - it simply behaves as
1112  * if it was removed from the hierarchy.
1113  *
1114  * Regions default to being enabled.
1115  *
1116  * @mr: the region to be updated
1117  * @enabled: whether to enable or disable the region
1118  */
1119 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1120 
1121 /*
1122  * memory_region_set_address: dynamically update the address of a region
1123  *
1124  * Dynamically updates the address of a region, relative to its container.
1125  * May be used on regions are currently part of a memory hierarchy.
1126  *
1127  * @mr: the region to be updated
1128  * @addr: new address, relative to container region
1129  */
1130 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1131 
1132 /*
1133  * memory_region_set_size: dynamically update the size of a region.
1134  *
1135  * Dynamically updates the size of a region.
1136  *
1137  * @mr: the region to be updated
1138  * @size: used size of the region.
1139  */
1140 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1141 
1142 /*
1143  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1144  *
1145  * Dynamically updates the offset into the target region that an alias points
1146  * to, as if the fourth argument to memory_region_init_alias() has changed.
1147  *
1148  * @mr: the #MemoryRegion to be updated; should be an alias.
1149  * @offset: the new offset into the target memory region
1150  */
1151 void memory_region_set_alias_offset(MemoryRegion *mr,
1152                                     hwaddr offset);
1153 
1154 /**
1155  * memory_region_present: checks if an address relative to a @container
1156  * translates into #MemoryRegion within @container
1157  *
1158  * Answer whether a #MemoryRegion within @container covers the address
1159  * @addr.
1160  *
1161  * @container: a #MemoryRegion within which @addr is a relative address
1162  * @addr: the area within @container to be searched
1163  */
1164 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1165 
1166 /**
1167  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1168  * into any address space.
1169  *
1170  * @mr: a #MemoryRegion which should be checked if it's mapped
1171  */
1172 bool memory_region_is_mapped(MemoryRegion *mr);
1173 
1174 /**
1175  * memory_region_find: translate an address/size relative to a
1176  * MemoryRegion into a #MemoryRegionSection.
1177  *
1178  * Locates the first #MemoryRegion within @mr that overlaps the range
1179  * given by @addr and @size.
1180  *
1181  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1182  * It will have the following characteristics:
1183  *    .@size = 0 iff no overlap was found
1184  *    .@mr is non-%NULL iff an overlap was found
1185  *
1186  * Remember that in the return value the @offset_within_region is
1187  * relative to the returned region (in the .@mr field), not to the
1188  * @mr argument.
1189  *
1190  * Similarly, the .@offset_within_address_space is relative to the
1191  * address space that contains both regions, the passed and the
1192  * returned one.  However, in the special case where the @mr argument
1193  * has no container (and thus is the root of the address space), the
1194  * following will hold:
1195  *    .@offset_within_address_space >= @addr
1196  *    .@offset_within_address_space + .@size <= @addr + @size
1197  *
1198  * @mr: a MemoryRegion within which @addr is a relative address
1199  * @addr: start of the area within @as to be searched
1200  * @size: size of the area to be searched
1201  */
1202 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1203                                        hwaddr addr, uint64_t size);
1204 
1205 /**
1206  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1207  *
1208  * Synchronizes the dirty page log for all address spaces.
1209  */
1210 void memory_global_dirty_log_sync(void);
1211 
1212 /**
1213  * memory_region_transaction_begin: Start a transaction.
1214  *
1215  * During a transaction, changes will be accumulated and made visible
1216  * only when the transaction ends (is committed).
1217  */
1218 void memory_region_transaction_begin(void);
1219 
1220 /**
1221  * memory_region_transaction_commit: Commit a transaction and make changes
1222  *                                   visible to the guest.
1223  */
1224 void memory_region_transaction_commit(void);
1225 
1226 /**
1227  * memory_listener_register: register callbacks to be called when memory
1228  *                           sections are mapped or unmapped into an address
1229  *                           space
1230  *
1231  * @listener: an object containing the callbacks to be called
1232  * @filter: if non-%NULL, only regions in this address space will be observed
1233  */
1234 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1235 
1236 /**
1237  * memory_listener_unregister: undo the effect of memory_listener_register()
1238  *
1239  * @listener: an object containing the callbacks to be removed
1240  */
1241 void memory_listener_unregister(MemoryListener *listener);
1242 
1243 /**
1244  * memory_global_dirty_log_start: begin dirty logging for all regions
1245  */
1246 void memory_global_dirty_log_start(void);
1247 
1248 /**
1249  * memory_global_dirty_log_stop: end dirty logging for all regions
1250  */
1251 void memory_global_dirty_log_stop(void);
1252 
1253 void mtree_info(fprintf_function mon_printf, void *f);
1254 
1255 /**
1256  * memory_region_dispatch_read: perform a read directly to the specified
1257  * MemoryRegion.
1258  *
1259  * @mr: #MemoryRegion to access
1260  * @addr: address within that region
1261  * @pval: pointer to uint64_t which the data is written to
1262  * @size: size of the access in bytes
1263  * @attrs: memory transaction attributes to use for the access
1264  */
1265 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1266                                         hwaddr addr,
1267                                         uint64_t *pval,
1268                                         unsigned size,
1269                                         MemTxAttrs attrs);
1270 /**
1271  * memory_region_dispatch_write: perform a write directly to the specified
1272  * MemoryRegion.
1273  *
1274  * @mr: #MemoryRegion to access
1275  * @addr: address within that region
1276  * @data: data to write
1277  * @size: size of the access in bytes
1278  * @attrs: memory transaction attributes to use for the access
1279  */
1280 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1281                                          hwaddr addr,
1282                                          uint64_t data,
1283                                          unsigned size,
1284                                          MemTxAttrs attrs);
1285 
1286 /**
1287  * address_space_init: initializes an address space
1288  *
1289  * @as: an uninitialized #AddressSpace
1290  * @root: a #MemoryRegion that routes addresses for the address space
1291  * @name: an address space name.  The name is only used for debugging
1292  *        output.
1293  */
1294 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1295 
1296 /**
1297  * address_space_init_shareable: return an address space for a memory region,
1298  *                               creating it if it does not already exist
1299  *
1300  * @root: a #MemoryRegion that routes addresses for the address space
1301  * @name: an address space name.  The name is only used for debugging
1302  *        output.
1303  *
1304  * This function will return a pointer to an existing AddressSpace
1305  * which was initialized with the specified MemoryRegion, or it will
1306  * create and initialize one if it does not already exist. The ASes
1307  * are reference-counted, so the memory will be freed automatically
1308  * when the AddressSpace is destroyed via address_space_destroy.
1309  */
1310 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1311                                            const char *name);
1312 
1313 /**
1314  * address_space_destroy: destroy an address space
1315  *
1316  * Releases all resources associated with an address space.  After an address space
1317  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1318  * as well.
1319  *
1320  * @as: address space to be destroyed
1321  */
1322 void address_space_destroy(AddressSpace *as);
1323 
1324 /**
1325  * address_space_rw: read from or write to an address space.
1326  *
1327  * Return a MemTxResult indicating whether the operation succeeded
1328  * or failed (eg unassigned memory, device rejected the transaction,
1329  * IOMMU fault).
1330  *
1331  * @as: #AddressSpace to be accessed
1332  * @addr: address within that address space
1333  * @attrs: memory transaction attributes
1334  * @buf: buffer with the data transferred
1335  * @is_write: indicates the transfer direction
1336  */
1337 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1338                              MemTxAttrs attrs, uint8_t *buf,
1339                              int len, bool is_write);
1340 
1341 /**
1342  * address_space_write: write to address space.
1343  *
1344  * Return a MemTxResult indicating whether the operation succeeded
1345  * or failed (eg unassigned memory, device rejected the transaction,
1346  * IOMMU fault).
1347  *
1348  * @as: #AddressSpace to be accessed
1349  * @addr: address within that address space
1350  * @attrs: memory transaction attributes
1351  * @buf: buffer with the data transferred
1352  */
1353 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1354                                 MemTxAttrs attrs,
1355                                 const uint8_t *buf, int len);
1356 
1357 /* address_space_ld*: load from an address space
1358  * address_space_st*: store to an address space
1359  *
1360  * These functions perform a load or store of the byte, word,
1361  * longword or quad to the specified address within the AddressSpace.
1362  * The _le suffixed functions treat the data as little endian;
1363  * _be indicates big endian; no suffix indicates "same endianness
1364  * as guest CPU".
1365  *
1366  * The "guest CPU endianness" accessors are deprecated for use outside
1367  * target-* code; devices should be CPU-agnostic and use either the LE
1368  * or the BE accessors.
1369  *
1370  * @as #AddressSpace to be accessed
1371  * @addr: address within that address space
1372  * @val: data value, for stores
1373  * @attrs: memory transaction attributes
1374  * @result: location to write the success/failure of the transaction;
1375  *   if NULL, this information is discarded
1376  */
1377 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1378                             MemTxAttrs attrs, MemTxResult *result);
1379 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1380                             MemTxAttrs attrs, MemTxResult *result);
1381 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1382                             MemTxAttrs attrs, MemTxResult *result);
1383 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1384                             MemTxAttrs attrs, MemTxResult *result);
1385 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1386                             MemTxAttrs attrs, MemTxResult *result);
1387 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1388                             MemTxAttrs attrs, MemTxResult *result);
1389 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1390                             MemTxAttrs attrs, MemTxResult *result);
1391 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1392                             MemTxAttrs attrs, MemTxResult *result);
1393 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1394                             MemTxAttrs attrs, MemTxResult *result);
1395 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1396                             MemTxAttrs attrs, MemTxResult *result);
1397 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1398                             MemTxAttrs attrs, MemTxResult *result);
1399 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1400                             MemTxAttrs attrs, MemTxResult *result);
1401 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1402                             MemTxAttrs attrs, MemTxResult *result);
1403 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1404                             MemTxAttrs attrs, MemTxResult *result);
1405 
1406 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1407 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1408 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1409 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1410 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1411 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1412 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1413 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1414 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1415 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1416 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1417 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1418 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1419 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1420 
1421 struct MemoryRegionCache {
1422     hwaddr xlat;
1423     void *ptr;
1424     hwaddr len;
1425     MemoryRegion *mr;
1426     bool is_write;
1427 };
1428 
1429 /* address_space_cache_init: prepare for repeated access to a physical
1430  * memory region
1431  *
1432  * @cache: #MemoryRegionCache to be filled
1433  * @as: #AddressSpace to be accessed
1434  * @addr: address within that address space
1435  * @len: length of buffer
1436  * @is_write: indicates the transfer direction
1437  *
1438  * Will only work with RAM, and may map a subset of the requested range by
1439  * returning a value that is less than @len.  On failure, return a negative
1440  * errno value.
1441  *
1442  * Because it only works with RAM, this function can be used for
1443  * read-modify-write operations.  In this case, is_write should be %true.
1444  *
1445  * Note that addresses passed to the address_space_*_cached functions
1446  * are relative to @addr.
1447  */
1448 int64_t address_space_cache_init(MemoryRegionCache *cache,
1449                                  AddressSpace *as,
1450                                  hwaddr addr,
1451                                  hwaddr len,
1452                                  bool is_write);
1453 
1454 /**
1455  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1456  *
1457  * @cache: The #MemoryRegionCache to operate on.
1458  * @addr: The first physical address that was written, relative to the
1459  * address that was passed to @address_space_cache_init.
1460  * @access_len: The number of bytes that were written starting at @addr.
1461  */
1462 void address_space_cache_invalidate(MemoryRegionCache *cache,
1463                                     hwaddr addr,
1464                                     hwaddr access_len);
1465 
1466 /**
1467  * address_space_cache_destroy: free a #MemoryRegionCache
1468  *
1469  * @cache: The #MemoryRegionCache whose memory should be released.
1470  */
1471 void address_space_cache_destroy(MemoryRegionCache *cache);
1472 
1473 /* address_space_ld*_cached: load from a cached #MemoryRegion
1474  * address_space_st*_cached: store into a cached #MemoryRegion
1475  *
1476  * These functions perform a load or store of the byte, word,
1477  * longword or quad to the specified address.  The address is
1478  * a physical address in the AddressSpace, but it must lie within
1479  * a #MemoryRegion that was mapped with address_space_cache_init.
1480  *
1481  * The _le suffixed functions treat the data as little endian;
1482  * _be indicates big endian; no suffix indicates "same endianness
1483  * as guest CPU".
1484  *
1485  * The "guest CPU endianness" accessors are deprecated for use outside
1486  * target-* code; devices should be CPU-agnostic and use either the LE
1487  * or the BE accessors.
1488  *
1489  * @cache: previously initialized #MemoryRegionCache to be accessed
1490  * @addr: address within the address space
1491  * @val: data value, for stores
1492  * @attrs: memory transaction attributes
1493  * @result: location to write the success/failure of the transaction;
1494  *   if NULL, this information is discarded
1495  */
1496 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1497                             MemTxAttrs attrs, MemTxResult *result);
1498 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1499                             MemTxAttrs attrs, MemTxResult *result);
1500 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1501                             MemTxAttrs attrs, MemTxResult *result);
1502 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1503                             MemTxAttrs attrs, MemTxResult *result);
1504 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1505                             MemTxAttrs attrs, MemTxResult *result);
1506 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1507                             MemTxAttrs attrs, MemTxResult *result);
1508 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1509                             MemTxAttrs attrs, MemTxResult *result);
1510 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1511                             MemTxAttrs attrs, MemTxResult *result);
1512 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1513                             MemTxAttrs attrs, MemTxResult *result);
1514 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1515                             MemTxAttrs attrs, MemTxResult *result);
1516 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1517                             MemTxAttrs attrs, MemTxResult *result);
1518 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1519                             MemTxAttrs attrs, MemTxResult *result);
1520 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1521                             MemTxAttrs attrs, MemTxResult *result);
1522 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1523                             MemTxAttrs attrs, MemTxResult *result);
1524 
1525 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1526 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1527 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1528 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1529 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1530 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1531 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1533 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1534 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1535 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1536 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1537 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1538 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1539 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1540  * entry. Should be called from an RCU critical section.
1541  */
1542 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1543                                             bool is_write);
1544 
1545 /* address_space_translate: translate an address range into an address space
1546  * into a MemoryRegion and an address range into that section.  Should be
1547  * called from an RCU critical section, to avoid that the last reference
1548  * to the returned region disappears after address_space_translate returns.
1549  *
1550  * @as: #AddressSpace to be accessed
1551  * @addr: address within that address space
1552  * @xlat: pointer to address within the returned memory region section's
1553  * #MemoryRegion.
1554  * @len: pointer to length
1555  * @is_write: indicates the transfer direction
1556  */
1557 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1558                                       hwaddr *xlat, hwaddr *len,
1559                                       bool is_write);
1560 
1561 /* address_space_access_valid: check for validity of accessing an address
1562  * space range
1563  *
1564  * Check whether memory is assigned to the given address space range, and
1565  * access is permitted by any IOMMU regions that are active for the address
1566  * space.
1567  *
1568  * For now, addr and len should be aligned to a page size.  This limitation
1569  * will be lifted in the future.
1570  *
1571  * @as: #AddressSpace to be accessed
1572  * @addr: address within that address space
1573  * @len: length of the area to be checked
1574  * @is_write: indicates the transfer direction
1575  */
1576 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1577 
1578 /* address_space_map: map a physical memory region into a host virtual address
1579  *
1580  * May map a subset of the requested range, given by and returned in @plen.
1581  * May return %NULL if resources needed to perform the mapping are exhausted.
1582  * Use only for reads OR writes - not for read-modify-write operations.
1583  * Use cpu_register_map_client() to know when retrying the map operation is
1584  * likely to succeed.
1585  *
1586  * @as: #AddressSpace to be accessed
1587  * @addr: address within that address space
1588  * @plen: pointer to length of buffer; updated on return
1589  * @is_write: indicates the transfer direction
1590  */
1591 void *address_space_map(AddressSpace *as, hwaddr addr,
1592                         hwaddr *plen, bool is_write);
1593 
1594 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1595  *
1596  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1597  * the amount of memory that was actually read or written by the caller.
1598  *
1599  * @as: #AddressSpace used
1600  * @addr: address within that address space
1601  * @len: buffer length as returned by address_space_map()
1602  * @access_len: amount of data actually transferred
1603  * @is_write: indicates the transfer direction
1604  */
1605 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1606                          int is_write, hwaddr access_len);
1607 
1608 
1609 /* Internal functions, part of the implementation of address_space_read.  */
1610 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1611                                         MemTxAttrs attrs, uint8_t *buf,
1612                                         int len, hwaddr addr1, hwaddr l,
1613 					MemoryRegion *mr);
1614 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1615                                     MemTxAttrs attrs, uint8_t *buf, int len);
1616 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1617 
1618 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1619 {
1620     if (is_write) {
1621         return memory_region_is_ram(mr) &&
1622                !mr->readonly && !memory_region_is_ram_device(mr);
1623     } else {
1624         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1625                memory_region_is_romd(mr);
1626     }
1627 }
1628 
1629 /**
1630  * address_space_read: read from an address space.
1631  *
1632  * Return a MemTxResult indicating whether the operation succeeded
1633  * or failed (eg unassigned memory, device rejected the transaction,
1634  * IOMMU fault).
1635  *
1636  * @as: #AddressSpace to be accessed
1637  * @addr: address within that address space
1638  * @attrs: memory transaction attributes
1639  * @buf: buffer with the data transferred
1640  */
1641 static inline __attribute__((__always_inline__))
1642 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1643                                uint8_t *buf, int len)
1644 {
1645     MemTxResult result = MEMTX_OK;
1646     hwaddr l, addr1;
1647     void *ptr;
1648     MemoryRegion *mr;
1649 
1650     if (__builtin_constant_p(len)) {
1651         if (len) {
1652             rcu_read_lock();
1653             l = len;
1654             mr = address_space_translate(as, addr, &addr1, &l, false);
1655             if (len == l && memory_access_is_direct(mr, false)) {
1656                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1657                 memcpy(buf, ptr, len);
1658             } else {
1659                 result = address_space_read_continue(as, addr, attrs, buf, len,
1660                                                      addr1, l, mr);
1661             }
1662             rcu_read_unlock();
1663         }
1664     } else {
1665         result = address_space_read_full(as, addr, attrs, buf, len);
1666     }
1667     return result;
1668 }
1669 
1670 /**
1671  * address_space_read_cached: read from a cached RAM region
1672  *
1673  * @cache: Cached region to be addressed
1674  * @addr: address relative to the base of the RAM region
1675  * @buf: buffer with the data transferred
1676  * @len: length of the data transferred
1677  */
1678 static inline void
1679 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1680                           void *buf, int len)
1681 {
1682     assert(addr < cache->len && len <= cache->len - addr);
1683     memcpy(buf, cache->ptr + addr, len);
1684 }
1685 
1686 /**
1687  * address_space_write_cached: write to a cached RAM region
1688  *
1689  * @cache: Cached region to be addressed
1690  * @addr: address relative to the base of the RAM region
1691  * @buf: buffer with the data transferred
1692  * @len: length of the data transferred
1693  */
1694 static inline void
1695 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1696                            void *buf, int len)
1697 {
1698     assert(addr < cache->len && len <= cache->len - addr);
1699     memcpy(cache->ptr + addr, buf, len);
1700 }
1701 
1702 #endif
1703 
1704 #endif
1705