xref: /qemu/include/exec/memory.h (revision 226419d6)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 #include "qemu/typedefs.h"
35 
36 #define MAX_PHYS_ADDR_SPACE_BITS 62
37 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
38 
39 #define TYPE_MEMORY_REGION "qemu:memory-region"
40 #define MEMORY_REGION(obj) \
41         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
42 
43 typedef struct MemoryRegionOps MemoryRegionOps;
44 typedef struct MemoryRegionMmio MemoryRegionMmio;
45 
46 struct MemoryRegionMmio {
47     CPUReadMemoryFunc *read[3];
48     CPUWriteMemoryFunc *write[3];
49 };
50 
51 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
52 
53 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
54 typedef enum {
55     IOMMU_NONE = 0,
56     IOMMU_RO   = 1,
57     IOMMU_WO   = 2,
58     IOMMU_RW   = 3,
59 } IOMMUAccessFlags;
60 
61 struct IOMMUTLBEntry {
62     AddressSpace    *target_as;
63     hwaddr           iova;
64     hwaddr           translated_addr;
65     hwaddr           addr_mask;  /* 0xfff = 4k translation */
66     IOMMUAccessFlags perm;
67 };
68 
69 /* New-style MMIO accessors can indicate that the transaction failed.
70  * A zero (MEMTX_OK) response means success; anything else is a failure
71  * of some kind. The memory subsystem will bitwise-OR together results
72  * if it is synthesizing an operation from multiple smaller accesses.
73  */
74 #define MEMTX_OK 0
75 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
76 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
77 typedef uint32_t MemTxResult;
78 
79 /*
80  * Memory region callbacks
81  */
82 struct MemoryRegionOps {
83     /* Read from the memory region. @addr is relative to @mr; @size is
84      * in bytes. */
85     uint64_t (*read)(void *opaque,
86                      hwaddr addr,
87                      unsigned size);
88     /* Write to the memory region. @addr is relative to @mr; @size is
89      * in bytes. */
90     void (*write)(void *opaque,
91                   hwaddr addr,
92                   uint64_t data,
93                   unsigned size);
94 
95     MemTxResult (*read_with_attrs)(void *opaque,
96                                    hwaddr addr,
97                                    uint64_t *data,
98                                    unsigned size,
99                                    MemTxAttrs attrs);
100     MemTxResult (*write_with_attrs)(void *opaque,
101                                     hwaddr addr,
102                                     uint64_t data,
103                                     unsigned size,
104                                     MemTxAttrs attrs);
105 
106     enum device_endian endianness;
107     /* Guest-visible constraints: */
108     struct {
109         /* If nonzero, specify bounds on access sizes beyond which a machine
110          * check is thrown.
111          */
112         unsigned min_access_size;
113         unsigned max_access_size;
114         /* If true, unaligned accesses are supported.  Otherwise unaligned
115          * accesses throw machine checks.
116          */
117          bool unaligned;
118         /*
119          * If present, and returns #false, the transaction is not accepted
120          * by the device (and results in machine dependent behaviour such
121          * as a machine check exception).
122          */
123         bool (*accepts)(void *opaque, hwaddr addr,
124                         unsigned size, bool is_write);
125     } valid;
126     /* Internal implementation constraints: */
127     struct {
128         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
129          * will be rounded upwards and a partial result will be returned.
130          */
131         unsigned min_access_size;
132         /* If nonzero, specifies the maximum size implemented.  Larger sizes
133          * will be done as a series of accesses with smaller sizes.
134          */
135         unsigned max_access_size;
136         /* If true, unaligned accesses are supported.  Otherwise all accesses
137          * are converted to (possibly multiple) naturally aligned accesses.
138          */
139         bool unaligned;
140     } impl;
141 
142     /* If .read and .write are not present, old_mmio may be used for
143      * backwards compatibility with old mmio registration
144      */
145     const MemoryRegionMmio old_mmio;
146 };
147 
148 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
149 
150 struct MemoryRegionIOMMUOps {
151     /* Return a TLB entry that contains a given address. */
152     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
153 };
154 
155 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
156 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
157 
158 struct MemoryRegion {
159     Object parent_obj;
160 
161     /* All fields are private - violators will be prosecuted */
162 
163     /* The following fields should fit in a cache line */
164     bool romd_mode;
165     bool ram;
166     bool subpage;
167     bool readonly; /* For RAM regions */
168     bool rom_device;
169     bool flush_coalesced_mmio;
170     bool global_locking;
171     uint8_t dirty_log_mask;
172     RAMBlock *ram_block;
173     Object *owner;
174     const MemoryRegionIOMMUOps *iommu_ops;
175 
176     const MemoryRegionOps *ops;
177     void *opaque;
178     MemoryRegion *container;
179     Int128 size;
180     hwaddr addr;
181     void (*destructor)(MemoryRegion *mr);
182     uint64_t align;
183     bool terminates;
184     bool skip_dump;
185     bool enabled;
186     bool warning_printed; /* For reservations */
187     uint8_t vga_logging_count;
188     MemoryRegion *alias;
189     hwaddr alias_offset;
190     int32_t priority;
191     bool may_overlap;
192     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
193     QTAILQ_ENTRY(MemoryRegion) subregions_link;
194     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
195     const char *name;
196     unsigned ioeventfd_nb;
197     MemoryRegionIoeventfd *ioeventfds;
198     NotifierList iommu_notify;
199 };
200 
201 /**
202  * MemoryListener: callbacks structure for updates to the physical memory map
203  *
204  * Allows a component to adjust to changes in the guest-visible memory map.
205  * Use with memory_listener_register() and memory_listener_unregister().
206  */
207 struct MemoryListener {
208     void (*begin)(MemoryListener *listener);
209     void (*commit)(MemoryListener *listener);
210     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
211     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
212     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
213     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
214                       int old, int new);
215     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
216                      int old, int new);
217     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
218     void (*log_global_start)(MemoryListener *listener);
219     void (*log_global_stop)(MemoryListener *listener);
220     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
221                         bool match_data, uint64_t data, EventNotifier *e);
222     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
223                         bool match_data, uint64_t data, EventNotifier *e);
224     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
225                                hwaddr addr, hwaddr len);
226     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
227                                hwaddr addr, hwaddr len);
228     /* Lower = earlier (during add), later (during del) */
229     unsigned priority;
230     AddressSpace *address_space_filter;
231     QTAILQ_ENTRY(MemoryListener) link;
232 };
233 
234 /**
235  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
236  */
237 struct AddressSpace {
238     /* All fields are private. */
239     struct rcu_head rcu;
240     char *name;
241     MemoryRegion *root;
242     int ref_count;
243     bool malloced;
244 
245     /* Accessed via RCU.  */
246     struct FlatView *current_map;
247 
248     int ioeventfd_nb;
249     struct MemoryRegionIoeventfd *ioeventfds;
250     struct AddressSpaceDispatch *dispatch;
251     struct AddressSpaceDispatch *next_dispatch;
252     MemoryListener dispatch_listener;
253 
254     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
255 };
256 
257 /**
258  * MemoryRegionSection: describes a fragment of a #MemoryRegion
259  *
260  * @mr: the region, or %NULL if empty
261  * @address_space: the address space the region is mapped in
262  * @offset_within_region: the beginning of the section, relative to @mr's start
263  * @size: the size of the section; will not exceed @mr's boundaries
264  * @offset_within_address_space: the address of the first byte of the section
265  *     relative to the region's address space
266  * @readonly: writes to this section are ignored
267  */
268 struct MemoryRegionSection {
269     MemoryRegion *mr;
270     AddressSpace *address_space;
271     hwaddr offset_within_region;
272     Int128 size;
273     hwaddr offset_within_address_space;
274     bool readonly;
275 };
276 
277 /**
278  * memory_region_init: Initialize a memory region
279  *
280  * The region typically acts as a container for other memory regions.  Use
281  * memory_region_add_subregion() to add subregions.
282  *
283  * @mr: the #MemoryRegion to be initialized
284  * @owner: the object that tracks the region's reference count
285  * @name: used for debugging; not visible to the user or ABI
286  * @size: size of the region; any subregions beyond this size will be clipped
287  */
288 void memory_region_init(MemoryRegion *mr,
289                         struct Object *owner,
290                         const char *name,
291                         uint64_t size);
292 
293 /**
294  * memory_region_ref: Add 1 to a memory region's reference count
295  *
296  * Whenever memory regions are accessed outside the BQL, they need to be
297  * preserved against hot-unplug.  MemoryRegions actually do not have their
298  * own reference count; they piggyback on a QOM object, their "owner".
299  * This function adds a reference to the owner.
300  *
301  * All MemoryRegions must have an owner if they can disappear, even if the
302  * device they belong to operates exclusively under the BQL.  This is because
303  * the region could be returned at any time by memory_region_find, and this
304  * is usually under guest control.
305  *
306  * @mr: the #MemoryRegion
307  */
308 void memory_region_ref(MemoryRegion *mr);
309 
310 /**
311  * memory_region_unref: Remove 1 to a memory region's reference count
312  *
313  * Whenever memory regions are accessed outside the BQL, they need to be
314  * preserved against hot-unplug.  MemoryRegions actually do not have their
315  * own reference count; they piggyback on a QOM object, their "owner".
316  * This function removes a reference to the owner and possibly destroys it.
317  *
318  * @mr: the #MemoryRegion
319  */
320 void memory_region_unref(MemoryRegion *mr);
321 
322 /**
323  * memory_region_init_io: Initialize an I/O memory region.
324  *
325  * Accesses into the region will cause the callbacks in @ops to be called.
326  * if @size is nonzero, subregions will be clipped to @size.
327  *
328  * @mr: the #MemoryRegion to be initialized.
329  * @owner: the object that tracks the region's reference count
330  * @ops: a structure containing read and write callbacks to be used when
331  *       I/O is performed on the region.
332  * @opaque: passed to the read and write callbacks of the @ops structure.
333  * @name: used for debugging; not visible to the user or ABI
334  * @size: size of the region.
335  */
336 void memory_region_init_io(MemoryRegion *mr,
337                            struct Object *owner,
338                            const MemoryRegionOps *ops,
339                            void *opaque,
340                            const char *name,
341                            uint64_t size);
342 
343 /**
344  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
345  *                          region will modify memory directly.
346  *
347  * @mr: the #MemoryRegion to be initialized.
348  * @owner: the object that tracks the region's reference count
349  * @name: the name of the region.
350  * @size: size of the region.
351  * @errp: pointer to Error*, to store an error if it happens.
352  */
353 void memory_region_init_ram(MemoryRegion *mr,
354                             struct Object *owner,
355                             const char *name,
356                             uint64_t size,
357                             Error **errp);
358 
359 /**
360  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
361  *                                     RAM.  Accesses into the region will
362  *                                     modify memory directly.  Only an initial
363  *                                     portion of this RAM is actually used.
364  *                                     The used size can change across reboots.
365  *
366  * @mr: the #MemoryRegion to be initialized.
367  * @owner: the object that tracks the region's reference count
368  * @name: the name of the region.
369  * @size: used size of the region.
370  * @max_size: max size of the region.
371  * @resized: callback to notify owner about used size change.
372  * @errp: pointer to Error*, to store an error if it happens.
373  */
374 void memory_region_init_resizeable_ram(MemoryRegion *mr,
375                                        struct Object *owner,
376                                        const char *name,
377                                        uint64_t size,
378                                        uint64_t max_size,
379                                        void (*resized)(const char*,
380                                                        uint64_t length,
381                                                        void *host),
382                                        Error **errp);
383 #ifdef __linux__
384 /**
385  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
386  *                                    mmap-ed backend.
387  *
388  * @mr: the #MemoryRegion to be initialized.
389  * @owner: the object that tracks the region's reference count
390  * @name: the name of the region.
391  * @size: size of the region.
392  * @share: %true if memory must be mmaped with the MAP_SHARED flag
393  * @path: the path in which to allocate the RAM.
394  * @errp: pointer to Error*, to store an error if it happens.
395  */
396 void memory_region_init_ram_from_file(MemoryRegion *mr,
397                                       struct Object *owner,
398                                       const char *name,
399                                       uint64_t size,
400                                       bool share,
401                                       const char *path,
402                                       Error **errp);
403 #endif
404 
405 /**
406  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
407  *                              user-provided pointer.  Accesses into the
408  *                              region will modify memory directly.
409  *
410  * @mr: the #MemoryRegion to be initialized.
411  * @owner: the object that tracks the region's reference count
412  * @name: the name of the region.
413  * @size: size of the region.
414  * @ptr: memory to be mapped; must contain at least @size bytes.
415  */
416 void memory_region_init_ram_ptr(MemoryRegion *mr,
417                                 struct Object *owner,
418                                 const char *name,
419                                 uint64_t size,
420                                 void *ptr);
421 
422 /**
423  * memory_region_init_alias: Initialize a memory region that aliases all or a
424  *                           part of another memory region.
425  *
426  * @mr: the #MemoryRegion to be initialized.
427  * @owner: the object that tracks the region's reference count
428  * @name: used for debugging; not visible to the user or ABI
429  * @orig: the region to be referenced; @mr will be equivalent to
430  *        @orig between @offset and @offset + @size - 1.
431  * @offset: start of the section in @orig to be referenced.
432  * @size: size of the region.
433  */
434 void memory_region_init_alias(MemoryRegion *mr,
435                               struct Object *owner,
436                               const char *name,
437                               MemoryRegion *orig,
438                               hwaddr offset,
439                               uint64_t size);
440 
441 /**
442  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
443  *                                 handled via callbacks.
444  *
445  * If NULL callbacks pointer is given, then I/O space is not supposed to be
446  * handled by QEMU itself. Any access via the memory API will cause an abort().
447  *
448  * @mr: the #MemoryRegion to be initialized.
449  * @owner: the object that tracks the region's reference count
450  * @ops: callbacks for write access handling.
451  * @name: the name of the region.
452  * @size: size of the region.
453  * @errp: pointer to Error*, to store an error if it happens.
454  */
455 void memory_region_init_rom_device(MemoryRegion *mr,
456                                    struct Object *owner,
457                                    const MemoryRegionOps *ops,
458                                    void *opaque,
459                                    const char *name,
460                                    uint64_t size,
461                                    Error **errp);
462 
463 /**
464  * memory_region_init_reservation: Initialize a memory region that reserves
465  *                                 I/O space.
466  *
467  * A reservation region primariy serves debugging purposes.  It claims I/O
468  * space that is not supposed to be handled by QEMU itself.  Any access via
469  * the memory API will cause an abort().
470  * This function is deprecated. Use memory_region_init_io() with NULL
471  * callbacks instead.
472  *
473  * @mr: the #MemoryRegion to be initialized
474  * @owner: the object that tracks the region's reference count
475  * @name: used for debugging; not visible to the user or ABI
476  * @size: size of the region.
477  */
478 static inline void memory_region_init_reservation(MemoryRegion *mr,
479                                     Object *owner,
480                                     const char *name,
481                                     uint64_t size)
482 {
483     memory_region_init_io(mr, owner, NULL, mr, name, size);
484 }
485 
486 /**
487  * memory_region_init_iommu: Initialize a memory region that translates
488  * addresses
489  *
490  * An IOMMU region translates addresses and forwards accesses to a target
491  * memory region.
492  *
493  * @mr: the #MemoryRegion to be initialized
494  * @owner: the object that tracks the region's reference count
495  * @ops: a function that translates addresses into the @target region
496  * @name: used for debugging; not visible to the user or ABI
497  * @size: size of the region.
498  */
499 void memory_region_init_iommu(MemoryRegion *mr,
500                               struct Object *owner,
501                               const MemoryRegionIOMMUOps *ops,
502                               const char *name,
503                               uint64_t size);
504 
505 /**
506  * memory_region_owner: get a memory region's owner.
507  *
508  * @mr: the memory region being queried.
509  */
510 struct Object *memory_region_owner(MemoryRegion *mr);
511 
512 /**
513  * memory_region_size: get a memory region's size.
514  *
515  * @mr: the memory region being queried.
516  */
517 uint64_t memory_region_size(MemoryRegion *mr);
518 
519 /**
520  * memory_region_is_ram: check whether a memory region is random access
521  *
522  * Returns %true is a memory region is random access.
523  *
524  * @mr: the memory region being queried
525  */
526 static inline bool memory_region_is_ram(MemoryRegion *mr)
527 {
528     return mr->ram;
529 }
530 
531 /**
532  * memory_region_is_skip_dump: check whether a memory region should not be
533  *                             dumped
534  *
535  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
536  *
537  * @mr: the memory region being queried
538  */
539 bool memory_region_is_skip_dump(MemoryRegion *mr);
540 
541 /**
542  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
543  *                              region
544  *
545  * @mr: the memory region being queried
546  */
547 void memory_region_set_skip_dump(MemoryRegion *mr);
548 
549 /**
550  * memory_region_is_romd: check whether a memory region is in ROMD mode
551  *
552  * Returns %true if a memory region is a ROM device and currently set to allow
553  * direct reads.
554  *
555  * @mr: the memory region being queried
556  */
557 static inline bool memory_region_is_romd(MemoryRegion *mr)
558 {
559     return mr->rom_device && mr->romd_mode;
560 }
561 
562 /**
563  * memory_region_is_iommu: check whether a memory region is an iommu
564  *
565  * Returns %true is a memory region is an iommu.
566  *
567  * @mr: the memory region being queried
568  */
569 static inline bool memory_region_is_iommu(MemoryRegion *mr)
570 {
571     return mr->iommu_ops;
572 }
573 
574 
575 /**
576  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
577  *
578  * @mr: the memory region that was changed
579  * @entry: the new entry in the IOMMU translation table.  The entry
580  *         replaces all old entries for the same virtual I/O address range.
581  *         Deleted entries have .@perm == 0.
582  */
583 void memory_region_notify_iommu(MemoryRegion *mr,
584                                 IOMMUTLBEntry entry);
585 
586 /**
587  * memory_region_register_iommu_notifier: register a notifier for changes to
588  * IOMMU translation entries.
589  *
590  * @mr: the memory region to observe
591  * @n: the notifier to be added; the notifier receives a pointer to an
592  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
593  *     valid on exit from the notifier.
594  */
595 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
596 
597 /**
598  * memory_region_iommu_replay: replay existing IOMMU translations to
599  * a notifier
600  *
601  * @mr: the memory region to observe
602  * @n: the notifier to which to replay iommu mappings
603  * @granularity: Minimum page granularity to replay notifications for
604  * @is_write: Whether to treat the replay as a translate "write"
605  *     through the iommu
606  */
607 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
608                                 hwaddr granularity, bool is_write);
609 
610 /**
611  * memory_region_unregister_iommu_notifier: unregister a notifier for
612  * changes to IOMMU translation entries.
613  *
614  * @n: the notifier to be removed.
615  */
616 void memory_region_unregister_iommu_notifier(Notifier *n);
617 
618 /**
619  * memory_region_name: get a memory region's name
620  *
621  * Returns the string that was used to initialize the memory region.
622  *
623  * @mr: the memory region being queried
624  */
625 const char *memory_region_name(const MemoryRegion *mr);
626 
627 /**
628  * memory_region_is_logging: return whether a memory region is logging writes
629  *
630  * Returns %true if the memory region is logging writes for the given client
631  *
632  * @mr: the memory region being queried
633  * @client: the client being queried
634  */
635 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
636 
637 /**
638  * memory_region_get_dirty_log_mask: return the clients for which a
639  * memory region is logging writes.
640  *
641  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
642  * are the bit indices.
643  *
644  * @mr: the memory region being queried
645  */
646 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
647 
648 /**
649  * memory_region_is_rom: check whether a memory region is ROM
650  *
651  * Returns %true is a memory region is read-only memory.
652  *
653  * @mr: the memory region being queried
654  */
655 static inline bool memory_region_is_rom(MemoryRegion *mr)
656 {
657     return mr->ram && mr->readonly;
658 }
659 
660 
661 /**
662  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
663  *
664  * Returns a file descriptor backing a file-based RAM memory region,
665  * or -1 if the region is not a file-based RAM memory region.
666  *
667  * @mr: the RAM or alias memory region being queried.
668  */
669 int memory_region_get_fd(MemoryRegion *mr);
670 
671 /**
672  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
673  *
674  * Returns a host pointer to a RAM memory region (created with
675  * memory_region_init_ram() or memory_region_init_ram_ptr()).
676  *
677  * Use with care; by the time this function returns, the returned pointer is
678  * not protected by RCU anymore.  If the caller is not within an RCU critical
679  * section and does not hold the iothread lock, it must have other means of
680  * protecting the pointer, such as a reference to the region that includes
681  * the incoming ram_addr_t.
682  *
683  * @mr: the memory region being queried.
684  */
685 void *memory_region_get_ram_ptr(MemoryRegion *mr);
686 
687 /* memory_region_ram_resize: Resize a RAM region.
688  *
689  * Only legal before guest might have detected the memory size: e.g. on
690  * incoming migration, or right after reset.
691  *
692  * @mr: a memory region created with @memory_region_init_resizeable_ram.
693  * @newsize: the new size the region
694  * @errp: pointer to Error*, to store an error if it happens.
695  */
696 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
697                               Error **errp);
698 
699 /**
700  * memory_region_set_log: Turn dirty logging on or off for a region.
701  *
702  * Turns dirty logging on or off for a specified client (display, migration).
703  * Only meaningful for RAM regions.
704  *
705  * @mr: the memory region being updated.
706  * @log: whether dirty logging is to be enabled or disabled.
707  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
708  */
709 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
710 
711 /**
712  * memory_region_get_dirty: Check whether a range of bytes is dirty
713  *                          for a specified client.
714  *
715  * Checks whether a range of bytes has been written to since the last
716  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
717  * must be enabled.
718  *
719  * @mr: the memory region being queried.
720  * @addr: the address (relative to the start of the region) being queried.
721  * @size: the size of the range being queried.
722  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
723  *          %DIRTY_MEMORY_VGA.
724  */
725 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
726                              hwaddr size, unsigned client);
727 
728 /**
729  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
730  *
731  * Marks a range of bytes as dirty, after it has been dirtied outside
732  * guest code.
733  *
734  * @mr: the memory region being dirtied.
735  * @addr: the address (relative to the start of the region) being dirtied.
736  * @size: size of the range being dirtied.
737  */
738 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
739                              hwaddr size);
740 
741 /**
742  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
743  *                                     for a specified client. It clears them.
744  *
745  * Checks whether a range of bytes has been written to since the last
746  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
747  * must be enabled.
748  *
749  * @mr: the memory region being queried.
750  * @addr: the address (relative to the start of the region) being queried.
751  * @size: the size of the range being queried.
752  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
753  *          %DIRTY_MEMORY_VGA.
754  */
755 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
756                                         hwaddr size, unsigned client);
757 /**
758  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
759  *                                  any external TLBs (e.g. kvm)
760  *
761  * Flushes dirty information from accelerators such as kvm and vhost-net
762  * and makes it available to users of the memory API.
763  *
764  * @mr: the region being flushed.
765  */
766 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
767 
768 /**
769  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
770  *                            client.
771  *
772  * Marks a range of pages as no longer dirty.
773  *
774  * @mr: the region being updated.
775  * @addr: the start of the subrange being cleaned.
776  * @size: the size of the subrange being cleaned.
777  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
778  *          %DIRTY_MEMORY_VGA.
779  */
780 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
781                                hwaddr size, unsigned client);
782 
783 /**
784  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
785  *
786  * Allows a memory region to be marked as read-only (turning it into a ROM).
787  * only useful on RAM regions.
788  *
789  * @mr: the region being updated.
790  * @readonly: whether rhe region is to be ROM or RAM.
791  */
792 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
793 
794 /**
795  * memory_region_rom_device_set_romd: enable/disable ROMD mode
796  *
797  * Allows a ROM device (initialized with memory_region_init_rom_device() to
798  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
799  * device is mapped to guest memory and satisfies read access directly.
800  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
801  * Writes are always handled by the #MemoryRegion.write function.
802  *
803  * @mr: the memory region to be updated
804  * @romd_mode: %true to put the region into ROMD mode
805  */
806 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
807 
808 /**
809  * memory_region_set_coalescing: Enable memory coalescing for the region.
810  *
811  * Enabled writes to a region to be queued for later processing. MMIO ->write
812  * callbacks may be delayed until a non-coalesced MMIO is issued.
813  * Only useful for IO regions.  Roughly similar to write-combining hardware.
814  *
815  * @mr: the memory region to be write coalesced
816  */
817 void memory_region_set_coalescing(MemoryRegion *mr);
818 
819 /**
820  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
821  *                               a region.
822  *
823  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
824  * Multiple calls can be issued coalesced disjoint ranges.
825  *
826  * @mr: the memory region to be updated.
827  * @offset: the start of the range within the region to be coalesced.
828  * @size: the size of the subrange to be coalesced.
829  */
830 void memory_region_add_coalescing(MemoryRegion *mr,
831                                   hwaddr offset,
832                                   uint64_t size);
833 
834 /**
835  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
836  *
837  * Disables any coalescing caused by memory_region_set_coalescing() or
838  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
839  * hardware.
840  *
841  * @mr: the memory region to be updated.
842  */
843 void memory_region_clear_coalescing(MemoryRegion *mr);
844 
845 /**
846  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
847  *                                    accesses.
848  *
849  * Ensure that pending coalesced MMIO request are flushed before the memory
850  * region is accessed. This property is automatically enabled for all regions
851  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
852  *
853  * @mr: the memory region to be updated.
854  */
855 void memory_region_set_flush_coalesced(MemoryRegion *mr);
856 
857 /**
858  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
859  *                                      accesses.
860  *
861  * Clear the automatic coalesced MMIO flushing enabled via
862  * memory_region_set_flush_coalesced. Note that this service has no effect on
863  * memory regions that have MMIO coalescing enabled for themselves. For them,
864  * automatic flushing will stop once coalescing is disabled.
865  *
866  * @mr: the memory region to be updated.
867  */
868 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
869 
870 /**
871  * memory_region_set_global_locking: Declares the access processing requires
872  *                                   QEMU's global lock.
873  *
874  * When this is invoked, accesses to the memory region will be processed while
875  * holding the global lock of QEMU. This is the default behavior of memory
876  * regions.
877  *
878  * @mr: the memory region to be updated.
879  */
880 void memory_region_set_global_locking(MemoryRegion *mr);
881 
882 /**
883  * memory_region_clear_global_locking: Declares that access processing does
884  *                                     not depend on the QEMU global lock.
885  *
886  * By clearing this property, accesses to the memory region will be processed
887  * outside of QEMU's global lock (unless the lock is held on when issuing the
888  * access request). In this case, the device model implementing the access
889  * handlers is responsible for synchronization of concurrency.
890  *
891  * @mr: the memory region to be updated.
892  */
893 void memory_region_clear_global_locking(MemoryRegion *mr);
894 
895 /**
896  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
897  *                            is written to a location.
898  *
899  * Marks a word in an IO region (initialized with memory_region_init_io())
900  * as a trigger for an eventfd event.  The I/O callback will not be called.
901  * The caller must be prepared to handle failure (that is, take the required
902  * action if the callback _is_ called).
903  *
904  * @mr: the memory region being updated.
905  * @addr: the address within @mr that is to be monitored
906  * @size: the size of the access to trigger the eventfd
907  * @match_data: whether to match against @data, instead of just @addr
908  * @data: the data to match against the guest write
909  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
910  **/
911 void memory_region_add_eventfd(MemoryRegion *mr,
912                                hwaddr addr,
913                                unsigned size,
914                                bool match_data,
915                                uint64_t data,
916                                EventNotifier *e);
917 
918 /**
919  * memory_region_del_eventfd: Cancel an eventfd.
920  *
921  * Cancels an eventfd trigger requested by a previous
922  * memory_region_add_eventfd() call.
923  *
924  * @mr: the memory region being updated.
925  * @addr: the address within @mr that is to be monitored
926  * @size: the size of the access to trigger the eventfd
927  * @match_data: whether to match against @data, instead of just @addr
928  * @data: the data to match against the guest write
929  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
930  */
931 void memory_region_del_eventfd(MemoryRegion *mr,
932                                hwaddr addr,
933                                unsigned size,
934                                bool match_data,
935                                uint64_t data,
936                                EventNotifier *e);
937 
938 /**
939  * memory_region_add_subregion: Add a subregion to a container.
940  *
941  * Adds a subregion at @offset.  The subregion may not overlap with other
942  * subregions (except for those explicitly marked as overlapping).  A region
943  * may only be added once as a subregion (unless removed with
944  * memory_region_del_subregion()); use memory_region_init_alias() if you
945  * want a region to be a subregion in multiple locations.
946  *
947  * @mr: the region to contain the new subregion; must be a container
948  *      initialized with memory_region_init().
949  * @offset: the offset relative to @mr where @subregion is added.
950  * @subregion: the subregion to be added.
951  */
952 void memory_region_add_subregion(MemoryRegion *mr,
953                                  hwaddr offset,
954                                  MemoryRegion *subregion);
955 /**
956  * memory_region_add_subregion_overlap: Add a subregion to a container
957  *                                      with overlap.
958  *
959  * Adds a subregion at @offset.  The subregion may overlap with other
960  * subregions.  Conflicts are resolved by having a higher @priority hide a
961  * lower @priority. Subregions without priority are taken as @priority 0.
962  * A region may only be added once as a subregion (unless removed with
963  * memory_region_del_subregion()); use memory_region_init_alias() if you
964  * want a region to be a subregion in multiple locations.
965  *
966  * @mr: the region to contain the new subregion; must be a container
967  *      initialized with memory_region_init().
968  * @offset: the offset relative to @mr where @subregion is added.
969  * @subregion: the subregion to be added.
970  * @priority: used for resolving overlaps; highest priority wins.
971  */
972 void memory_region_add_subregion_overlap(MemoryRegion *mr,
973                                          hwaddr offset,
974                                          MemoryRegion *subregion,
975                                          int priority);
976 
977 /**
978  * memory_region_get_ram_addr: Get the ram address associated with a memory
979  *                             region
980  */
981 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
982 
983 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
984 /**
985  * memory_region_del_subregion: Remove a subregion.
986  *
987  * Removes a subregion from its container.
988  *
989  * @mr: the container to be updated.
990  * @subregion: the region being removed; must be a current subregion of @mr.
991  */
992 void memory_region_del_subregion(MemoryRegion *mr,
993                                  MemoryRegion *subregion);
994 
995 /*
996  * memory_region_set_enabled: dynamically enable or disable a region
997  *
998  * Enables or disables a memory region.  A disabled memory region
999  * ignores all accesses to itself and its subregions.  It does not
1000  * obscure sibling subregions with lower priority - it simply behaves as
1001  * if it was removed from the hierarchy.
1002  *
1003  * Regions default to being enabled.
1004  *
1005  * @mr: the region to be updated
1006  * @enabled: whether to enable or disable the region
1007  */
1008 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1009 
1010 /*
1011  * memory_region_set_address: dynamically update the address of a region
1012  *
1013  * Dynamically updates the address of a region, relative to its container.
1014  * May be used on regions are currently part of a memory hierarchy.
1015  *
1016  * @mr: the region to be updated
1017  * @addr: new address, relative to container region
1018  */
1019 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1020 
1021 /*
1022  * memory_region_set_size: dynamically update the size of a region.
1023  *
1024  * Dynamically updates the size of a region.
1025  *
1026  * @mr: the region to be updated
1027  * @size: used size of the region.
1028  */
1029 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1030 
1031 /*
1032  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1033  *
1034  * Dynamically updates the offset into the target region that an alias points
1035  * to, as if the fourth argument to memory_region_init_alias() has changed.
1036  *
1037  * @mr: the #MemoryRegion to be updated; should be an alias.
1038  * @offset: the new offset into the target memory region
1039  */
1040 void memory_region_set_alias_offset(MemoryRegion *mr,
1041                                     hwaddr offset);
1042 
1043 /**
1044  * memory_region_present: checks if an address relative to a @container
1045  * translates into #MemoryRegion within @container
1046  *
1047  * Answer whether a #MemoryRegion within @container covers the address
1048  * @addr.
1049  *
1050  * @container: a #MemoryRegion within which @addr is a relative address
1051  * @addr: the area within @container to be searched
1052  */
1053 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1054 
1055 /**
1056  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1057  * into any address space.
1058  *
1059  * @mr: a #MemoryRegion which should be checked if it's mapped
1060  */
1061 bool memory_region_is_mapped(MemoryRegion *mr);
1062 
1063 /**
1064  * memory_region_find: translate an address/size relative to a
1065  * MemoryRegion into a #MemoryRegionSection.
1066  *
1067  * Locates the first #MemoryRegion within @mr that overlaps the range
1068  * given by @addr and @size.
1069  *
1070  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1071  * It will have the following characteristics:
1072  *    .@size = 0 iff no overlap was found
1073  *    .@mr is non-%NULL iff an overlap was found
1074  *
1075  * Remember that in the return value the @offset_within_region is
1076  * relative to the returned region (in the .@mr field), not to the
1077  * @mr argument.
1078  *
1079  * Similarly, the .@offset_within_address_space is relative to the
1080  * address space that contains both regions, the passed and the
1081  * returned one.  However, in the special case where the @mr argument
1082  * has no container (and thus is the root of the address space), the
1083  * following will hold:
1084  *    .@offset_within_address_space >= @addr
1085  *    .@offset_within_address_space + .@size <= @addr + @size
1086  *
1087  * @mr: a MemoryRegion within which @addr is a relative address
1088  * @addr: start of the area within @as to be searched
1089  * @size: size of the area to be searched
1090  */
1091 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1092                                        hwaddr addr, uint64_t size);
1093 
1094 /**
1095  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1096  *
1097  * Synchronizes the dirty page log for an entire address space.
1098  * @as: the address space that contains the memory being synchronized
1099  */
1100 void address_space_sync_dirty_bitmap(AddressSpace *as);
1101 
1102 /**
1103  * memory_region_transaction_begin: Start a transaction.
1104  *
1105  * During a transaction, changes will be accumulated and made visible
1106  * only when the transaction ends (is committed).
1107  */
1108 void memory_region_transaction_begin(void);
1109 
1110 /**
1111  * memory_region_transaction_commit: Commit a transaction and make changes
1112  *                                   visible to the guest.
1113  */
1114 void memory_region_transaction_commit(void);
1115 
1116 /**
1117  * memory_listener_register: register callbacks to be called when memory
1118  *                           sections are mapped or unmapped into an address
1119  *                           space
1120  *
1121  * @listener: an object containing the callbacks to be called
1122  * @filter: if non-%NULL, only regions in this address space will be observed
1123  */
1124 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1125 
1126 /**
1127  * memory_listener_unregister: undo the effect of memory_listener_register()
1128  *
1129  * @listener: an object containing the callbacks to be removed
1130  */
1131 void memory_listener_unregister(MemoryListener *listener);
1132 
1133 /**
1134  * memory_global_dirty_log_start: begin dirty logging for all regions
1135  */
1136 void memory_global_dirty_log_start(void);
1137 
1138 /**
1139  * memory_global_dirty_log_stop: end dirty logging for all regions
1140  */
1141 void memory_global_dirty_log_stop(void);
1142 
1143 void mtree_info(fprintf_function mon_printf, void *f);
1144 
1145 /**
1146  * memory_region_dispatch_read: perform a read directly to the specified
1147  * MemoryRegion.
1148  *
1149  * @mr: #MemoryRegion to access
1150  * @addr: address within that region
1151  * @pval: pointer to uint64_t which the data is written to
1152  * @size: size of the access in bytes
1153  * @attrs: memory transaction attributes to use for the access
1154  */
1155 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1156                                         hwaddr addr,
1157                                         uint64_t *pval,
1158                                         unsigned size,
1159                                         MemTxAttrs attrs);
1160 /**
1161  * memory_region_dispatch_write: perform a write directly to the specified
1162  * MemoryRegion.
1163  *
1164  * @mr: #MemoryRegion to access
1165  * @addr: address within that region
1166  * @data: data to write
1167  * @size: size of the access in bytes
1168  * @attrs: memory transaction attributes to use for the access
1169  */
1170 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1171                                          hwaddr addr,
1172                                          uint64_t data,
1173                                          unsigned size,
1174                                          MemTxAttrs attrs);
1175 
1176 /**
1177  * address_space_init: initializes an address space
1178  *
1179  * @as: an uninitialized #AddressSpace
1180  * @root: a #MemoryRegion that routes addresses for the address space
1181  * @name: an address space name.  The name is only used for debugging
1182  *        output.
1183  */
1184 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1185 
1186 /**
1187  * address_space_init_shareable: return an address space for a memory region,
1188  *                               creating it if it does not already exist
1189  *
1190  * @root: a #MemoryRegion that routes addresses for the address space
1191  * @name: an address space name.  The name is only used for debugging
1192  *        output.
1193  *
1194  * This function will return a pointer to an existing AddressSpace
1195  * which was initialized with the specified MemoryRegion, or it will
1196  * create and initialize one if it does not already exist. The ASes
1197  * are reference-counted, so the memory will be freed automatically
1198  * when the AddressSpace is destroyed via address_space_destroy.
1199  */
1200 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1201                                            const char *name);
1202 
1203 /**
1204  * address_space_destroy: destroy an address space
1205  *
1206  * Releases all resources associated with an address space.  After an address space
1207  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1208  * as well.
1209  *
1210  * @as: address space to be destroyed
1211  */
1212 void address_space_destroy(AddressSpace *as);
1213 
1214 /**
1215  * address_space_rw: read from or write to an address space.
1216  *
1217  * Return a MemTxResult indicating whether the operation succeeded
1218  * or failed (eg unassigned memory, device rejected the transaction,
1219  * IOMMU fault).
1220  *
1221  * @as: #AddressSpace to be accessed
1222  * @addr: address within that address space
1223  * @attrs: memory transaction attributes
1224  * @buf: buffer with the data transferred
1225  * @is_write: indicates the transfer direction
1226  */
1227 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1228                              MemTxAttrs attrs, uint8_t *buf,
1229                              int len, bool is_write);
1230 
1231 /**
1232  * address_space_write: write to address space.
1233  *
1234  * Return a MemTxResult indicating whether the operation succeeded
1235  * or failed (eg unassigned memory, device rejected the transaction,
1236  * IOMMU fault).
1237  *
1238  * @as: #AddressSpace to be accessed
1239  * @addr: address within that address space
1240  * @attrs: memory transaction attributes
1241  * @buf: buffer with the data transferred
1242  */
1243 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1244                                 MemTxAttrs attrs,
1245                                 const uint8_t *buf, int len);
1246 
1247 /* address_space_ld*: load from an address space
1248  * address_space_st*: store to an address space
1249  *
1250  * These functions perform a load or store of the byte, word,
1251  * longword or quad to the specified address within the AddressSpace.
1252  * The _le suffixed functions treat the data as little endian;
1253  * _be indicates big endian; no suffix indicates "same endianness
1254  * as guest CPU".
1255  *
1256  * The "guest CPU endianness" accessors are deprecated for use outside
1257  * target-* code; devices should be CPU-agnostic and use either the LE
1258  * or the BE accessors.
1259  *
1260  * @as #AddressSpace to be accessed
1261  * @addr: address within that address space
1262  * @val: data value, for stores
1263  * @attrs: memory transaction attributes
1264  * @result: location to write the success/failure of the transaction;
1265  *   if NULL, this information is discarded
1266  */
1267 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1268                             MemTxAttrs attrs, MemTxResult *result);
1269 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1270                             MemTxAttrs attrs, MemTxResult *result);
1271 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1272                             MemTxAttrs attrs, MemTxResult *result);
1273 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1274                             MemTxAttrs attrs, MemTxResult *result);
1275 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1276                             MemTxAttrs attrs, MemTxResult *result);
1277 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1278                             MemTxAttrs attrs, MemTxResult *result);
1279 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1280                             MemTxAttrs attrs, MemTxResult *result);
1281 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1282                             MemTxAttrs attrs, MemTxResult *result);
1283 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1284                             MemTxAttrs attrs, MemTxResult *result);
1285 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1286                             MemTxAttrs attrs, MemTxResult *result);
1287 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1288                             MemTxAttrs attrs, MemTxResult *result);
1289 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1290                             MemTxAttrs attrs, MemTxResult *result);
1291 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1292                             MemTxAttrs attrs, MemTxResult *result);
1293 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1294                             MemTxAttrs attrs, MemTxResult *result);
1295 
1296 #ifdef NEED_CPU_H
1297 uint32_t address_space_lduw(AddressSpace *as, hwaddr addr,
1298                             MemTxAttrs attrs, MemTxResult *result);
1299 uint32_t address_space_ldl(AddressSpace *as, hwaddr addr,
1300                             MemTxAttrs attrs, MemTxResult *result);
1301 uint64_t address_space_ldq(AddressSpace *as, hwaddr addr,
1302                             MemTxAttrs attrs, MemTxResult *result);
1303 void address_space_stl_notdirty(AddressSpace *as, hwaddr addr, uint32_t val,
1304                             MemTxAttrs attrs, MemTxResult *result);
1305 void address_space_stw(AddressSpace *as, hwaddr addr, uint32_t val,
1306                             MemTxAttrs attrs, MemTxResult *result);
1307 void address_space_stl(AddressSpace *as, hwaddr addr, uint32_t val,
1308                             MemTxAttrs attrs, MemTxResult *result);
1309 void address_space_stq(AddressSpace *as, hwaddr addr, uint64_t val,
1310                             MemTxAttrs attrs, MemTxResult *result);
1311 #endif
1312 
1313 /* address_space_translate: translate an address range into an address space
1314  * into a MemoryRegion and an address range into that section.  Should be
1315  * called from an RCU critical section, to avoid that the last reference
1316  * to the returned region disappears after address_space_translate returns.
1317  *
1318  * @as: #AddressSpace to be accessed
1319  * @addr: address within that address space
1320  * @xlat: pointer to address within the returned memory region section's
1321  * #MemoryRegion.
1322  * @len: pointer to length
1323  * @is_write: indicates the transfer direction
1324  */
1325 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1326                                       hwaddr *xlat, hwaddr *len,
1327                                       bool is_write);
1328 
1329 /* address_space_access_valid: check for validity of accessing an address
1330  * space range
1331  *
1332  * Check whether memory is assigned to the given address space range, and
1333  * access is permitted by any IOMMU regions that are active for the address
1334  * space.
1335  *
1336  * For now, addr and len should be aligned to a page size.  This limitation
1337  * will be lifted in the future.
1338  *
1339  * @as: #AddressSpace to be accessed
1340  * @addr: address within that address space
1341  * @len: length of the area to be checked
1342  * @is_write: indicates the transfer direction
1343  */
1344 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1345 
1346 /* address_space_map: map a physical memory region into a host virtual address
1347  *
1348  * May map a subset of the requested range, given by and returned in @plen.
1349  * May return %NULL if resources needed to perform the mapping are exhausted.
1350  * Use only for reads OR writes - not for read-modify-write operations.
1351  * Use cpu_register_map_client() to know when retrying the map operation is
1352  * likely to succeed.
1353  *
1354  * @as: #AddressSpace to be accessed
1355  * @addr: address within that address space
1356  * @plen: pointer to length of buffer; updated on return
1357  * @is_write: indicates the transfer direction
1358  */
1359 void *address_space_map(AddressSpace *as, hwaddr addr,
1360                         hwaddr *plen, bool is_write);
1361 
1362 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1363  *
1364  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1365  * the amount of memory that was actually read or written by the caller.
1366  *
1367  * @as: #AddressSpace used
1368  * @addr: address within that address space
1369  * @len: buffer length as returned by address_space_map()
1370  * @access_len: amount of data actually transferred
1371  * @is_write: indicates the transfer direction
1372  */
1373 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1374                          int is_write, hwaddr access_len);
1375 
1376 
1377 /* Internal functions, part of the implementation of address_space_read.  */
1378 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1379                                         MemTxAttrs attrs, uint8_t *buf,
1380                                         int len, hwaddr addr1, hwaddr l,
1381 					MemoryRegion *mr);
1382 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1383                                     MemTxAttrs attrs, uint8_t *buf, int len);
1384 void *qemu_get_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1385 
1386 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1387 {
1388     if (is_write) {
1389         return memory_region_is_ram(mr) && !mr->readonly;
1390     } else {
1391         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1392     }
1393 }
1394 
1395 /**
1396  * address_space_read: read from an address space.
1397  *
1398  * Return a MemTxResult indicating whether the operation succeeded
1399  * or failed (eg unassigned memory, device rejected the transaction,
1400  * IOMMU fault).
1401  *
1402  * @as: #AddressSpace to be accessed
1403  * @addr: address within that address space
1404  * @attrs: memory transaction attributes
1405  * @buf: buffer with the data transferred
1406  */
1407 static inline __attribute__((__always_inline__))
1408 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1409                                uint8_t *buf, int len)
1410 {
1411     MemTxResult result = MEMTX_OK;
1412     hwaddr l, addr1;
1413     void *ptr;
1414     MemoryRegion *mr;
1415 
1416     if (__builtin_constant_p(len)) {
1417         if (len) {
1418             rcu_read_lock();
1419             l = len;
1420             mr = address_space_translate(as, addr, &addr1, &l, false);
1421             if (len == l && memory_access_is_direct(mr, false)) {
1422                 addr1 += memory_region_get_ram_addr(mr);
1423                 ptr = qemu_get_ram_ptr(mr->ram_block, addr1);
1424                 memcpy(buf, ptr, len);
1425             } else {
1426                 result = address_space_read_continue(as, addr, attrs, buf, len,
1427                                                      addr1, l, mr);
1428             }
1429             rcu_read_unlock();
1430         }
1431     } else {
1432         result = address_space_read_full(as, addr, attrs, buf, len);
1433     }
1434     return result;
1435 }
1436 
1437 #endif
1438 
1439 #endif
1440