xref: /qemu/include/exec/memory.h (revision 33848cee)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /*
71  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72  * register with one or multiple IOMMU Notifier capability bit(s).
73  */
74 typedef enum {
75     IOMMU_NOTIFIER_NONE = 0,
76     /* Notify cache invalidations */
77     IOMMU_NOTIFIER_UNMAP = 0x1,
78     /* Notify entry changes (newly created entries) */
79     IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81 
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83 
84 struct IOMMUNotifier {
85     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86     IOMMUNotifierFlag notifier_flags;
87     QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90 
91 /* New-style MMIO accessors can indicate that the transaction failed.
92  * A zero (MEMTX_OK) response means success; anything else is a failure
93  * of some kind. The memory subsystem will bitwise-OR together results
94  * if it is synthesizing an operation from multiple smaller accesses.
95  */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100 
101 /*
102  * Memory region callbacks
103  */
104 struct MemoryRegionOps {
105     /* Read from the memory region. @addr is relative to @mr; @size is
106      * in bytes. */
107     uint64_t (*read)(void *opaque,
108                      hwaddr addr,
109                      unsigned size);
110     /* Write to the memory region. @addr is relative to @mr; @size is
111      * in bytes. */
112     void (*write)(void *opaque,
113                   hwaddr addr,
114                   uint64_t data,
115                   unsigned size);
116 
117     MemTxResult (*read_with_attrs)(void *opaque,
118                                    hwaddr addr,
119                                    uint64_t *data,
120                                    unsigned size,
121                                    MemTxAttrs attrs);
122     MemTxResult (*write_with_attrs)(void *opaque,
123                                     hwaddr addr,
124                                     uint64_t data,
125                                     unsigned size,
126                                     MemTxAttrs attrs);
127 
128     enum device_endian endianness;
129     /* Guest-visible constraints: */
130     struct {
131         /* If nonzero, specify bounds on access sizes beyond which a machine
132          * check is thrown.
133          */
134         unsigned min_access_size;
135         unsigned max_access_size;
136         /* If true, unaligned accesses are supported.  Otherwise unaligned
137          * accesses throw machine checks.
138          */
139          bool unaligned;
140         /*
141          * If present, and returns #false, the transaction is not accepted
142          * by the device (and results in machine dependent behaviour such
143          * as a machine check exception).
144          */
145         bool (*accepts)(void *opaque, hwaddr addr,
146                         unsigned size, bool is_write);
147     } valid;
148     /* Internal implementation constraints: */
149     struct {
150         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
151          * will be rounded upwards and a partial result will be returned.
152          */
153         unsigned min_access_size;
154         /* If nonzero, specifies the maximum size implemented.  Larger sizes
155          * will be done as a series of accesses with smaller sizes.
156          */
157         unsigned max_access_size;
158         /* If true, unaligned accesses are supported.  Otherwise all accesses
159          * are converted to (possibly multiple) naturally aligned accesses.
160          */
161         bool unaligned;
162     } impl;
163 
164     /* If .read and .write are not present, old_mmio may be used for
165      * backwards compatibility with old mmio registration
166      */
167     const MemoryRegionMmio old_mmio;
168 };
169 
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171 
172 struct MemoryRegionIOMMUOps {
173     /* Return a TLB entry that contains a given address. */
174     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175     /* Returns minimum supported page size */
176     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177     /* Called when IOMMU Notifier flag changed */
178     void (*notify_flag_changed)(MemoryRegion *iommu,
179                                 IOMMUNotifierFlag old_flags,
180                                 IOMMUNotifierFlag new_flags);
181 };
182 
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185 
186 struct MemoryRegion {
187     Object parent_obj;
188 
189     /* All fields are private - violators will be prosecuted */
190 
191     /* The following fields should fit in a cache line */
192     bool romd_mode;
193     bool ram;
194     bool subpage;
195     bool readonly; /* For RAM regions */
196     bool rom_device;
197     bool flush_coalesced_mmio;
198     bool global_locking;
199     uint8_t dirty_log_mask;
200     RAMBlock *ram_block;
201     Object *owner;
202     const MemoryRegionIOMMUOps *iommu_ops;
203 
204     const MemoryRegionOps *ops;
205     void *opaque;
206     MemoryRegion *container;
207     Int128 size;
208     hwaddr addr;
209     void (*destructor)(MemoryRegion *mr);
210     uint64_t align;
211     bool terminates;
212     bool ram_device;
213     bool enabled;
214     bool warning_printed; /* For reservations */
215     uint8_t vga_logging_count;
216     MemoryRegion *alias;
217     hwaddr alias_offset;
218     int32_t priority;
219     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220     QTAILQ_ENTRY(MemoryRegion) subregions_link;
221     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222     const char *name;
223     unsigned ioeventfd_nb;
224     MemoryRegionIoeventfd *ioeventfds;
225     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226     IOMMUNotifierFlag iommu_notify_flags;
227 };
228 
229 /**
230  * MemoryListener: callbacks structure for updates to the physical memory map
231  *
232  * Allows a component to adjust to changes in the guest-visible memory map.
233  * Use with memory_listener_register() and memory_listener_unregister().
234  */
235 struct MemoryListener {
236     void (*begin)(MemoryListener *listener);
237     void (*commit)(MemoryListener *listener);
238     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242                       int old, int new);
243     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244                      int old, int new);
245     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246     void (*log_global_start)(MemoryListener *listener);
247     void (*log_global_stop)(MemoryListener *listener);
248     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249                         bool match_data, uint64_t data, EventNotifier *e);
250     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251                         bool match_data, uint64_t data, EventNotifier *e);
252     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253                                hwaddr addr, hwaddr len);
254     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255                                hwaddr addr, hwaddr len);
256     /* Lower = earlier (during add), later (during del) */
257     unsigned priority;
258     AddressSpace *address_space;
259     QTAILQ_ENTRY(MemoryListener) link;
260     QTAILQ_ENTRY(MemoryListener) link_as;
261 };
262 
263 /**
264  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265  */
266 struct AddressSpace {
267     /* All fields are private. */
268     struct rcu_head rcu;
269     char *name;
270     MemoryRegion *root;
271     int ref_count;
272     bool malloced;
273 
274     /* Accessed via RCU.  */
275     struct FlatView *current_map;
276 
277     int ioeventfd_nb;
278     struct MemoryRegionIoeventfd *ioeventfds;
279     struct AddressSpaceDispatch *dispatch;
280     struct AddressSpaceDispatch *next_dispatch;
281     MemoryListener dispatch_listener;
282     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
283     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
284 };
285 
286 /**
287  * MemoryRegionSection: describes a fragment of a #MemoryRegion
288  *
289  * @mr: the region, or %NULL if empty
290  * @address_space: the address space the region is mapped in
291  * @offset_within_region: the beginning of the section, relative to @mr's start
292  * @size: the size of the section; will not exceed @mr's boundaries
293  * @offset_within_address_space: the address of the first byte of the section
294  *     relative to the region's address space
295  * @readonly: writes to this section are ignored
296  */
297 struct MemoryRegionSection {
298     MemoryRegion *mr;
299     AddressSpace *address_space;
300     hwaddr offset_within_region;
301     Int128 size;
302     hwaddr offset_within_address_space;
303     bool readonly;
304 };
305 
306 /**
307  * memory_region_init: Initialize a memory region
308  *
309  * The region typically acts as a container for other memory regions.  Use
310  * memory_region_add_subregion() to add subregions.
311  *
312  * @mr: the #MemoryRegion to be initialized
313  * @owner: the object that tracks the region's reference count
314  * @name: used for debugging; not visible to the user or ABI
315  * @size: size of the region; any subregions beyond this size will be clipped
316  */
317 void memory_region_init(MemoryRegion *mr,
318                         struct Object *owner,
319                         const char *name,
320                         uint64_t size);
321 
322 /**
323  * memory_region_ref: Add 1 to a memory region's reference count
324  *
325  * Whenever memory regions are accessed outside the BQL, they need to be
326  * preserved against hot-unplug.  MemoryRegions actually do not have their
327  * own reference count; they piggyback on a QOM object, their "owner".
328  * This function adds a reference to the owner.
329  *
330  * All MemoryRegions must have an owner if they can disappear, even if the
331  * device they belong to operates exclusively under the BQL.  This is because
332  * the region could be returned at any time by memory_region_find, and this
333  * is usually under guest control.
334  *
335  * @mr: the #MemoryRegion
336  */
337 void memory_region_ref(MemoryRegion *mr);
338 
339 /**
340  * memory_region_unref: Remove 1 to a memory region's reference count
341  *
342  * Whenever memory regions are accessed outside the BQL, they need to be
343  * preserved against hot-unplug.  MemoryRegions actually do not have their
344  * own reference count; they piggyback on a QOM object, their "owner".
345  * This function removes a reference to the owner and possibly destroys it.
346  *
347  * @mr: the #MemoryRegion
348  */
349 void memory_region_unref(MemoryRegion *mr);
350 
351 /**
352  * memory_region_init_io: Initialize an I/O memory region.
353  *
354  * Accesses into the region will cause the callbacks in @ops to be called.
355  * if @size is nonzero, subregions will be clipped to @size.
356  *
357  * @mr: the #MemoryRegion to be initialized.
358  * @owner: the object that tracks the region's reference count
359  * @ops: a structure containing read and write callbacks to be used when
360  *       I/O is performed on the region.
361  * @opaque: passed to the read and write callbacks of the @ops structure.
362  * @name: used for debugging; not visible to the user or ABI
363  * @size: size of the region.
364  */
365 void memory_region_init_io(MemoryRegion *mr,
366                            struct Object *owner,
367                            const MemoryRegionOps *ops,
368                            void *opaque,
369                            const char *name,
370                            uint64_t size);
371 
372 /**
373  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
374  *                          region will modify memory directly.
375  *
376  * @mr: the #MemoryRegion to be initialized.
377  * @owner: the object that tracks the region's reference count
378  * @name: the name of the region.
379  * @size: size of the region.
380  * @errp: pointer to Error*, to store an error if it happens.
381  */
382 void memory_region_init_ram(MemoryRegion *mr,
383                             struct Object *owner,
384                             const char *name,
385                             uint64_t size,
386                             Error **errp);
387 
388 /**
389  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
390  *                                     RAM.  Accesses into the region will
391  *                                     modify memory directly.  Only an initial
392  *                                     portion of this RAM is actually used.
393  *                                     The used size can change across reboots.
394  *
395  * @mr: the #MemoryRegion to be initialized.
396  * @owner: the object that tracks the region's reference count
397  * @name: the name of the region.
398  * @size: used size of the region.
399  * @max_size: max size of the region.
400  * @resized: callback to notify owner about used size change.
401  * @errp: pointer to Error*, to store an error if it happens.
402  */
403 void memory_region_init_resizeable_ram(MemoryRegion *mr,
404                                        struct Object *owner,
405                                        const char *name,
406                                        uint64_t size,
407                                        uint64_t max_size,
408                                        void (*resized)(const char*,
409                                                        uint64_t length,
410                                                        void *host),
411                                        Error **errp);
412 #ifdef __linux__
413 /**
414  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
415  *                                    mmap-ed backend.
416  *
417  * @mr: the #MemoryRegion to be initialized.
418  * @owner: the object that tracks the region's reference count
419  * @name: the name of the region.
420  * @size: size of the region.
421  * @share: %true if memory must be mmaped with the MAP_SHARED flag
422  * @path: the path in which to allocate the RAM.
423  * @errp: pointer to Error*, to store an error if it happens.
424  */
425 void memory_region_init_ram_from_file(MemoryRegion *mr,
426                                       struct Object *owner,
427                                       const char *name,
428                                       uint64_t size,
429                                       bool share,
430                                       const char *path,
431                                       Error **errp);
432 #endif
433 
434 /**
435  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
436  *                              user-provided pointer.  Accesses into the
437  *                              region will modify memory directly.
438  *
439  * @mr: the #MemoryRegion to be initialized.
440  * @owner: the object that tracks the region's reference count
441  * @name: the name of the region.
442  * @size: size of the region.
443  * @ptr: memory to be mapped; must contain at least @size bytes.
444  */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446                                 struct Object *owner,
447                                 const char *name,
448                                 uint64_t size,
449                                 void *ptr);
450 
451 /**
452  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
453  *                                     a user-provided pointer.
454  *
455  * A RAM device represents a mapping to a physical device, such as to a PCI
456  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
457  * into the VM address space and access to the region will modify memory
458  * directly.  However, the memory region should not be included in a memory
459  * dump (device may not be enabled/mapped at the time of the dump), and
460  * operations incompatible with manipulating MMIO should be avoided.  Replaces
461  * skip_dump flag.
462  *
463  * @mr: the #MemoryRegion to be initialized.
464  * @owner: the object that tracks the region's reference count
465  * @name: the name of the region.
466  * @size: size of the region.
467  * @ptr: memory to be mapped; must contain at least @size bytes.
468  */
469 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
470                                        struct Object *owner,
471                                        const char *name,
472                                        uint64_t size,
473                                        void *ptr);
474 
475 /**
476  * memory_region_init_alias: Initialize a memory region that aliases all or a
477  *                           part of another memory region.
478  *
479  * @mr: the #MemoryRegion to be initialized.
480  * @owner: the object that tracks the region's reference count
481  * @name: used for debugging; not visible to the user or ABI
482  * @orig: the region to be referenced; @mr will be equivalent to
483  *        @orig between @offset and @offset + @size - 1.
484  * @offset: start of the section in @orig to be referenced.
485  * @size: size of the region.
486  */
487 void memory_region_init_alias(MemoryRegion *mr,
488                               struct Object *owner,
489                               const char *name,
490                               MemoryRegion *orig,
491                               hwaddr offset,
492                               uint64_t size);
493 
494 /**
495  * memory_region_init_rom: Initialize a ROM memory region.
496  *
497  * This has the same effect as calling memory_region_init_ram()
498  * and then marking the resulting region read-only with
499  * memory_region_set_readonly().
500  *
501  * @mr: the #MemoryRegion to be initialized.
502  * @owner: the object that tracks the region's reference count
503  * @name: the name of the region.
504  * @size: size of the region.
505  * @errp: pointer to Error*, to store an error if it happens.
506  */
507 void memory_region_init_rom(MemoryRegion *mr,
508                             struct Object *owner,
509                             const char *name,
510                             uint64_t size,
511                             Error **errp);
512 
513 /**
514  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
515  *                                 handled via callbacks.
516  *
517  * @mr: the #MemoryRegion to be initialized.
518  * @owner: the object that tracks the region's reference count
519  * @ops: callbacks for write access handling (must not be NULL).
520  * @name: the name of the region.
521  * @size: size of the region.
522  * @errp: pointer to Error*, to store an error if it happens.
523  */
524 void memory_region_init_rom_device(MemoryRegion *mr,
525                                    struct Object *owner,
526                                    const MemoryRegionOps *ops,
527                                    void *opaque,
528                                    const char *name,
529                                    uint64_t size,
530                                    Error **errp);
531 
532 /**
533  * memory_region_init_reservation: Initialize a memory region that reserves
534  *                                 I/O space.
535  *
536  * A reservation region primariy serves debugging purposes.  It claims I/O
537  * space that is not supposed to be handled by QEMU itself.  Any access via
538  * the memory API will cause an abort().
539  * This function is deprecated. Use memory_region_init_io() with NULL
540  * callbacks instead.
541  *
542  * @mr: the #MemoryRegion to be initialized
543  * @owner: the object that tracks the region's reference count
544  * @name: used for debugging; not visible to the user or ABI
545  * @size: size of the region.
546  */
547 static inline void memory_region_init_reservation(MemoryRegion *mr,
548                                     Object *owner,
549                                     const char *name,
550                                     uint64_t size)
551 {
552     memory_region_init_io(mr, owner, NULL, mr, name, size);
553 }
554 
555 /**
556  * memory_region_init_iommu: Initialize a memory region that translates
557  * addresses
558  *
559  * An IOMMU region translates addresses and forwards accesses to a target
560  * memory region.
561  *
562  * @mr: the #MemoryRegion to be initialized
563  * @owner: the object that tracks the region's reference count
564  * @ops: a function that translates addresses into the @target region
565  * @name: used for debugging; not visible to the user or ABI
566  * @size: size of the region.
567  */
568 void memory_region_init_iommu(MemoryRegion *mr,
569                               struct Object *owner,
570                               const MemoryRegionIOMMUOps *ops,
571                               const char *name,
572                               uint64_t size);
573 
574 /**
575  * memory_region_owner: get a memory region's owner.
576  *
577  * @mr: the memory region being queried.
578  */
579 struct Object *memory_region_owner(MemoryRegion *mr);
580 
581 /**
582  * memory_region_size: get a memory region's size.
583  *
584  * @mr: the memory region being queried.
585  */
586 uint64_t memory_region_size(MemoryRegion *mr);
587 
588 /**
589  * memory_region_is_ram: check whether a memory region is random access
590  *
591  * Returns %true is a memory region is random access.
592  *
593  * @mr: the memory region being queried
594  */
595 static inline bool memory_region_is_ram(MemoryRegion *mr)
596 {
597     return mr->ram;
598 }
599 
600 /**
601  * memory_region_is_ram_device: check whether a memory region is a ram device
602  *
603  * Returns %true is a memory region is a device backed ram region
604  *
605  * @mr: the memory region being queried
606  */
607 bool memory_region_is_ram_device(MemoryRegion *mr);
608 
609 /**
610  * memory_region_is_romd: check whether a memory region is in ROMD mode
611  *
612  * Returns %true if a memory region is a ROM device and currently set to allow
613  * direct reads.
614  *
615  * @mr: the memory region being queried
616  */
617 static inline bool memory_region_is_romd(MemoryRegion *mr)
618 {
619     return mr->rom_device && mr->romd_mode;
620 }
621 
622 /**
623  * memory_region_is_iommu: check whether a memory region is an iommu
624  *
625  * Returns %true is a memory region is an iommu.
626  *
627  * @mr: the memory region being queried
628  */
629 static inline bool memory_region_is_iommu(MemoryRegion *mr)
630 {
631     if (mr->alias) {
632         return memory_region_is_iommu(mr->alias);
633     }
634     return mr->iommu_ops;
635 }
636 
637 
638 /**
639  * memory_region_iommu_get_min_page_size: get minimum supported page size
640  * for an iommu
641  *
642  * Returns minimum supported page size for an iommu.
643  *
644  * @mr: the memory region being queried
645  */
646 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
647 
648 /**
649  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
650  *
651  * The notification type will be decided by entry.perm bits:
652  *
653  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
654  * - For MAP (newly added entry) notifies: set entry.perm to the
655  *   permission of the page (which is definitely !IOMMU_NONE).
656  *
657  * Note: for any IOMMU implementation, an in-place mapping change
658  * should be notified with an UNMAP followed by a MAP.
659  *
660  * @mr: the memory region that was changed
661  * @entry: the new entry in the IOMMU translation table.  The entry
662  *         replaces all old entries for the same virtual I/O address range.
663  *         Deleted entries have .@perm == 0.
664  */
665 void memory_region_notify_iommu(MemoryRegion *mr,
666                                 IOMMUTLBEntry entry);
667 
668 /**
669  * memory_region_register_iommu_notifier: register a notifier for changes to
670  * IOMMU translation entries.
671  *
672  * @mr: the memory region to observe
673  * @n: the IOMMUNotifier to be added; the notify callback receives a
674  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
675  *     ceases to be valid on exit from the notifier.
676  */
677 void memory_region_register_iommu_notifier(MemoryRegion *mr,
678                                            IOMMUNotifier *n);
679 
680 /**
681  * memory_region_iommu_replay: replay existing IOMMU translations to
682  * a notifier with the minimum page granularity returned by
683  * mr->iommu_ops->get_page_size().
684  *
685  * @mr: the memory region to observe
686  * @n: the notifier to which to replay iommu mappings
687  * @is_write: Whether to treat the replay as a translate "write"
688  *     through the iommu
689  */
690 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
691                                 bool is_write);
692 
693 /**
694  * memory_region_unregister_iommu_notifier: unregister a notifier for
695  * changes to IOMMU translation entries.
696  *
697  * @mr: the memory region which was observed and for which notity_stopped()
698  *      needs to be called
699  * @n: the notifier to be removed.
700  */
701 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
702                                              IOMMUNotifier *n);
703 
704 /**
705  * memory_region_name: get a memory region's name
706  *
707  * Returns the string that was used to initialize the memory region.
708  *
709  * @mr: the memory region being queried
710  */
711 const char *memory_region_name(const MemoryRegion *mr);
712 
713 /**
714  * memory_region_is_logging: return whether a memory region is logging writes
715  *
716  * Returns %true if the memory region is logging writes for the given client
717  *
718  * @mr: the memory region being queried
719  * @client: the client being queried
720  */
721 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
722 
723 /**
724  * memory_region_get_dirty_log_mask: return the clients for which a
725  * memory region is logging writes.
726  *
727  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
728  * are the bit indices.
729  *
730  * @mr: the memory region being queried
731  */
732 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
733 
734 /**
735  * memory_region_is_rom: check whether a memory region is ROM
736  *
737  * Returns %true is a memory region is read-only memory.
738  *
739  * @mr: the memory region being queried
740  */
741 static inline bool memory_region_is_rom(MemoryRegion *mr)
742 {
743     return mr->ram && mr->readonly;
744 }
745 
746 
747 /**
748  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
749  *
750  * Returns a file descriptor backing a file-based RAM memory region,
751  * or -1 if the region is not a file-based RAM memory region.
752  *
753  * @mr: the RAM or alias memory region being queried.
754  */
755 int memory_region_get_fd(MemoryRegion *mr);
756 
757 /**
758  * memory_region_set_fd: Mark a RAM memory region as backed by a
759  * file descriptor.
760  *
761  * This function is typically used after memory_region_init_ram_ptr().
762  *
763  * @mr: the memory region being queried.
764  * @fd: the file descriptor that backs @mr.
765  */
766 void memory_region_set_fd(MemoryRegion *mr, int fd);
767 
768 /**
769  * memory_region_from_host: Convert a pointer into a RAM memory region
770  * and an offset within it.
771  *
772  * Given a host pointer inside a RAM memory region (created with
773  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
774  * the MemoryRegion and the offset within it.
775  *
776  * Use with care; by the time this function returns, the returned pointer is
777  * not protected by RCU anymore.  If the caller is not within an RCU critical
778  * section and does not hold the iothread lock, it must have other means of
779  * protecting the pointer, such as a reference to the region that includes
780  * the incoming ram_addr_t.
781  *
782  * @mr: the memory region being queried.
783  */
784 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
785 
786 /**
787  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
788  *
789  * Returns a host pointer to a RAM memory region (created with
790  * memory_region_init_ram() or memory_region_init_ram_ptr()).
791  *
792  * Use with care; by the time this function returns, the returned pointer is
793  * not protected by RCU anymore.  If the caller is not within an RCU critical
794  * section and does not hold the iothread lock, it must have other means of
795  * protecting the pointer, such as a reference to the region that includes
796  * the incoming ram_addr_t.
797  *
798  * @mr: the memory region being queried.
799  */
800 void *memory_region_get_ram_ptr(MemoryRegion *mr);
801 
802 /* memory_region_ram_resize: Resize a RAM region.
803  *
804  * Only legal before guest might have detected the memory size: e.g. on
805  * incoming migration, or right after reset.
806  *
807  * @mr: a memory region created with @memory_region_init_resizeable_ram.
808  * @newsize: the new size the region
809  * @errp: pointer to Error*, to store an error if it happens.
810  */
811 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
812                               Error **errp);
813 
814 /**
815  * memory_region_set_log: Turn dirty logging on or off for a region.
816  *
817  * Turns dirty logging on or off for a specified client (display, migration).
818  * Only meaningful for RAM regions.
819  *
820  * @mr: the memory region being updated.
821  * @log: whether dirty logging is to be enabled or disabled.
822  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
823  */
824 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
825 
826 /**
827  * memory_region_get_dirty: Check whether a range of bytes is dirty
828  *                          for a specified client.
829  *
830  * Checks whether a range of bytes has been written to since the last
831  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
832  * must be enabled.
833  *
834  * @mr: the memory region being queried.
835  * @addr: the address (relative to the start of the region) being queried.
836  * @size: the size of the range being queried.
837  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
838  *          %DIRTY_MEMORY_VGA.
839  */
840 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
841                              hwaddr size, unsigned client);
842 
843 /**
844  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
845  *
846  * Marks a range of bytes as dirty, after it has been dirtied outside
847  * guest code.
848  *
849  * @mr: the memory region being dirtied.
850  * @addr: the address (relative to the start of the region) being dirtied.
851  * @size: size of the range being dirtied.
852  */
853 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
854                              hwaddr size);
855 
856 /**
857  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
858  *                                     for a specified client. It clears them.
859  *
860  * Checks whether a range of bytes has been written to since the last
861  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
862  * must be enabled.
863  *
864  * @mr: the memory region being queried.
865  * @addr: the address (relative to the start of the region) being queried.
866  * @size: the size of the range being queried.
867  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
868  *          %DIRTY_MEMORY_VGA.
869  */
870 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
871                                         hwaddr size, unsigned client);
872 /**
873  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
874  *                                  any external TLBs (e.g. kvm)
875  *
876  * Flushes dirty information from accelerators such as kvm and vhost-net
877  * and makes it available to users of the memory API.
878  *
879  * @mr: the region being flushed.
880  */
881 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
882 
883 /**
884  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
885  *                            client.
886  *
887  * Marks a range of pages as no longer dirty.
888  *
889  * @mr: the region being updated.
890  * @addr: the start of the subrange being cleaned.
891  * @size: the size of the subrange being cleaned.
892  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
893  *          %DIRTY_MEMORY_VGA.
894  */
895 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
896                                hwaddr size, unsigned client);
897 
898 /**
899  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
900  *
901  * Allows a memory region to be marked as read-only (turning it into a ROM).
902  * only useful on RAM regions.
903  *
904  * @mr: the region being updated.
905  * @readonly: whether rhe region is to be ROM or RAM.
906  */
907 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
908 
909 /**
910  * memory_region_rom_device_set_romd: enable/disable ROMD mode
911  *
912  * Allows a ROM device (initialized with memory_region_init_rom_device() to
913  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
914  * device is mapped to guest memory and satisfies read access directly.
915  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
916  * Writes are always handled by the #MemoryRegion.write function.
917  *
918  * @mr: the memory region to be updated
919  * @romd_mode: %true to put the region into ROMD mode
920  */
921 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
922 
923 /**
924  * memory_region_set_coalescing: Enable memory coalescing for the region.
925  *
926  * Enabled writes to a region to be queued for later processing. MMIO ->write
927  * callbacks may be delayed until a non-coalesced MMIO is issued.
928  * Only useful for IO regions.  Roughly similar to write-combining hardware.
929  *
930  * @mr: the memory region to be write coalesced
931  */
932 void memory_region_set_coalescing(MemoryRegion *mr);
933 
934 /**
935  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
936  *                               a region.
937  *
938  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
939  * Multiple calls can be issued coalesced disjoint ranges.
940  *
941  * @mr: the memory region to be updated.
942  * @offset: the start of the range within the region to be coalesced.
943  * @size: the size of the subrange to be coalesced.
944  */
945 void memory_region_add_coalescing(MemoryRegion *mr,
946                                   hwaddr offset,
947                                   uint64_t size);
948 
949 /**
950  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
951  *
952  * Disables any coalescing caused by memory_region_set_coalescing() or
953  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
954  * hardware.
955  *
956  * @mr: the memory region to be updated.
957  */
958 void memory_region_clear_coalescing(MemoryRegion *mr);
959 
960 /**
961  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
962  *                                    accesses.
963  *
964  * Ensure that pending coalesced MMIO request are flushed before the memory
965  * region is accessed. This property is automatically enabled for all regions
966  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
967  *
968  * @mr: the memory region to be updated.
969  */
970 void memory_region_set_flush_coalesced(MemoryRegion *mr);
971 
972 /**
973  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
974  *                                      accesses.
975  *
976  * Clear the automatic coalesced MMIO flushing enabled via
977  * memory_region_set_flush_coalesced. Note that this service has no effect on
978  * memory regions that have MMIO coalescing enabled for themselves. For them,
979  * automatic flushing will stop once coalescing is disabled.
980  *
981  * @mr: the memory region to be updated.
982  */
983 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
984 
985 /**
986  * memory_region_set_global_locking: Declares the access processing requires
987  *                                   QEMU's global lock.
988  *
989  * When this is invoked, accesses to the memory region will be processed while
990  * holding the global lock of QEMU. This is the default behavior of memory
991  * regions.
992  *
993  * @mr: the memory region to be updated.
994  */
995 void memory_region_set_global_locking(MemoryRegion *mr);
996 
997 /**
998  * memory_region_clear_global_locking: Declares that access processing does
999  *                                     not depend on the QEMU global lock.
1000  *
1001  * By clearing this property, accesses to the memory region will be processed
1002  * outside of QEMU's global lock (unless the lock is held on when issuing the
1003  * access request). In this case, the device model implementing the access
1004  * handlers is responsible for synchronization of concurrency.
1005  *
1006  * @mr: the memory region to be updated.
1007  */
1008 void memory_region_clear_global_locking(MemoryRegion *mr);
1009 
1010 /**
1011  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1012  *                            is written to a location.
1013  *
1014  * Marks a word in an IO region (initialized with memory_region_init_io())
1015  * as a trigger for an eventfd event.  The I/O callback will not be called.
1016  * The caller must be prepared to handle failure (that is, take the required
1017  * action if the callback _is_ called).
1018  *
1019  * @mr: the memory region being updated.
1020  * @addr: the address within @mr that is to be monitored
1021  * @size: the size of the access to trigger the eventfd
1022  * @match_data: whether to match against @data, instead of just @addr
1023  * @data: the data to match against the guest write
1024  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1025  **/
1026 void memory_region_add_eventfd(MemoryRegion *mr,
1027                                hwaddr addr,
1028                                unsigned size,
1029                                bool match_data,
1030                                uint64_t data,
1031                                EventNotifier *e);
1032 
1033 /**
1034  * memory_region_del_eventfd: Cancel an eventfd.
1035  *
1036  * Cancels an eventfd trigger requested by a previous
1037  * memory_region_add_eventfd() call.
1038  *
1039  * @mr: the memory region being updated.
1040  * @addr: the address within @mr that is to be monitored
1041  * @size: the size of the access to trigger the eventfd
1042  * @match_data: whether to match against @data, instead of just @addr
1043  * @data: the data to match against the guest write
1044  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1045  */
1046 void memory_region_del_eventfd(MemoryRegion *mr,
1047                                hwaddr addr,
1048                                unsigned size,
1049                                bool match_data,
1050                                uint64_t data,
1051                                EventNotifier *e);
1052 
1053 /**
1054  * memory_region_add_subregion: Add a subregion to a container.
1055  *
1056  * Adds a subregion at @offset.  The subregion may not overlap with other
1057  * subregions (except for those explicitly marked as overlapping).  A region
1058  * may only be added once as a subregion (unless removed with
1059  * memory_region_del_subregion()); use memory_region_init_alias() if you
1060  * want a region to be a subregion in multiple locations.
1061  *
1062  * @mr: the region to contain the new subregion; must be a container
1063  *      initialized with memory_region_init().
1064  * @offset: the offset relative to @mr where @subregion is added.
1065  * @subregion: the subregion to be added.
1066  */
1067 void memory_region_add_subregion(MemoryRegion *mr,
1068                                  hwaddr offset,
1069                                  MemoryRegion *subregion);
1070 /**
1071  * memory_region_add_subregion_overlap: Add a subregion to a container
1072  *                                      with overlap.
1073  *
1074  * Adds a subregion at @offset.  The subregion may overlap with other
1075  * subregions.  Conflicts are resolved by having a higher @priority hide a
1076  * lower @priority. Subregions without priority are taken as @priority 0.
1077  * A region may only be added once as a subregion (unless removed with
1078  * memory_region_del_subregion()); use memory_region_init_alias() if you
1079  * want a region to be a subregion in multiple locations.
1080  *
1081  * @mr: the region to contain the new subregion; must be a container
1082  *      initialized with memory_region_init().
1083  * @offset: the offset relative to @mr where @subregion is added.
1084  * @subregion: the subregion to be added.
1085  * @priority: used for resolving overlaps; highest priority wins.
1086  */
1087 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1088                                          hwaddr offset,
1089                                          MemoryRegion *subregion,
1090                                          int priority);
1091 
1092 /**
1093  * memory_region_get_ram_addr: Get the ram address associated with a memory
1094  *                             region
1095  */
1096 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1097 
1098 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1099 /**
1100  * memory_region_del_subregion: Remove a subregion.
1101  *
1102  * Removes a subregion from its container.
1103  *
1104  * @mr: the container to be updated.
1105  * @subregion: the region being removed; must be a current subregion of @mr.
1106  */
1107 void memory_region_del_subregion(MemoryRegion *mr,
1108                                  MemoryRegion *subregion);
1109 
1110 /*
1111  * memory_region_set_enabled: dynamically enable or disable a region
1112  *
1113  * Enables or disables a memory region.  A disabled memory region
1114  * ignores all accesses to itself and its subregions.  It does not
1115  * obscure sibling subregions with lower priority - it simply behaves as
1116  * if it was removed from the hierarchy.
1117  *
1118  * Regions default to being enabled.
1119  *
1120  * @mr: the region to be updated
1121  * @enabled: whether to enable or disable the region
1122  */
1123 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1124 
1125 /*
1126  * memory_region_set_address: dynamically update the address of a region
1127  *
1128  * Dynamically updates the address of a region, relative to its container.
1129  * May be used on regions are currently part of a memory hierarchy.
1130  *
1131  * @mr: the region to be updated
1132  * @addr: new address, relative to container region
1133  */
1134 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1135 
1136 /*
1137  * memory_region_set_size: dynamically update the size of a region.
1138  *
1139  * Dynamically updates the size of a region.
1140  *
1141  * @mr: the region to be updated
1142  * @size: used size of the region.
1143  */
1144 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1145 
1146 /*
1147  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1148  *
1149  * Dynamically updates the offset into the target region that an alias points
1150  * to, as if the fourth argument to memory_region_init_alias() has changed.
1151  *
1152  * @mr: the #MemoryRegion to be updated; should be an alias.
1153  * @offset: the new offset into the target memory region
1154  */
1155 void memory_region_set_alias_offset(MemoryRegion *mr,
1156                                     hwaddr offset);
1157 
1158 /**
1159  * memory_region_present: checks if an address relative to a @container
1160  * translates into #MemoryRegion within @container
1161  *
1162  * Answer whether a #MemoryRegion within @container covers the address
1163  * @addr.
1164  *
1165  * @container: a #MemoryRegion within which @addr is a relative address
1166  * @addr: the area within @container to be searched
1167  */
1168 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1169 
1170 /**
1171  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1172  * into any address space.
1173  *
1174  * @mr: a #MemoryRegion which should be checked if it's mapped
1175  */
1176 bool memory_region_is_mapped(MemoryRegion *mr);
1177 
1178 /**
1179  * memory_region_find: translate an address/size relative to a
1180  * MemoryRegion into a #MemoryRegionSection.
1181  *
1182  * Locates the first #MemoryRegion within @mr that overlaps the range
1183  * given by @addr and @size.
1184  *
1185  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1186  * It will have the following characteristics:
1187  *    .@size = 0 iff no overlap was found
1188  *    .@mr is non-%NULL iff an overlap was found
1189  *
1190  * Remember that in the return value the @offset_within_region is
1191  * relative to the returned region (in the .@mr field), not to the
1192  * @mr argument.
1193  *
1194  * Similarly, the .@offset_within_address_space is relative to the
1195  * address space that contains both regions, the passed and the
1196  * returned one.  However, in the special case where the @mr argument
1197  * has no container (and thus is the root of the address space), the
1198  * following will hold:
1199  *    .@offset_within_address_space >= @addr
1200  *    .@offset_within_address_space + .@size <= @addr + @size
1201  *
1202  * @mr: a MemoryRegion within which @addr is a relative address
1203  * @addr: start of the area within @as to be searched
1204  * @size: size of the area to be searched
1205  */
1206 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1207                                        hwaddr addr, uint64_t size);
1208 
1209 /**
1210  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1211  *
1212  * Synchronizes the dirty page log for all address spaces.
1213  */
1214 void memory_global_dirty_log_sync(void);
1215 
1216 /**
1217  * memory_region_transaction_begin: Start a transaction.
1218  *
1219  * During a transaction, changes will be accumulated and made visible
1220  * only when the transaction ends (is committed).
1221  */
1222 void memory_region_transaction_begin(void);
1223 
1224 /**
1225  * memory_region_transaction_commit: Commit a transaction and make changes
1226  *                                   visible to the guest.
1227  */
1228 void memory_region_transaction_commit(void);
1229 
1230 /**
1231  * memory_listener_register: register callbacks to be called when memory
1232  *                           sections are mapped or unmapped into an address
1233  *                           space
1234  *
1235  * @listener: an object containing the callbacks to be called
1236  * @filter: if non-%NULL, only regions in this address space will be observed
1237  */
1238 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1239 
1240 /**
1241  * memory_listener_unregister: undo the effect of memory_listener_register()
1242  *
1243  * @listener: an object containing the callbacks to be removed
1244  */
1245 void memory_listener_unregister(MemoryListener *listener);
1246 
1247 /**
1248  * memory_global_dirty_log_start: begin dirty logging for all regions
1249  */
1250 void memory_global_dirty_log_start(void);
1251 
1252 /**
1253  * memory_global_dirty_log_stop: end dirty logging for all regions
1254  */
1255 void memory_global_dirty_log_stop(void);
1256 
1257 void mtree_info(fprintf_function mon_printf, void *f);
1258 
1259 /**
1260  * memory_region_dispatch_read: perform a read directly to the specified
1261  * MemoryRegion.
1262  *
1263  * @mr: #MemoryRegion to access
1264  * @addr: address within that region
1265  * @pval: pointer to uint64_t which the data is written to
1266  * @size: size of the access in bytes
1267  * @attrs: memory transaction attributes to use for the access
1268  */
1269 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1270                                         hwaddr addr,
1271                                         uint64_t *pval,
1272                                         unsigned size,
1273                                         MemTxAttrs attrs);
1274 /**
1275  * memory_region_dispatch_write: perform a write directly to the specified
1276  * MemoryRegion.
1277  *
1278  * @mr: #MemoryRegion to access
1279  * @addr: address within that region
1280  * @data: data to write
1281  * @size: size of the access in bytes
1282  * @attrs: memory transaction attributes to use for the access
1283  */
1284 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1285                                          hwaddr addr,
1286                                          uint64_t data,
1287                                          unsigned size,
1288                                          MemTxAttrs attrs);
1289 
1290 /**
1291  * address_space_init: initializes an address space
1292  *
1293  * @as: an uninitialized #AddressSpace
1294  * @root: a #MemoryRegion that routes addresses for the address space
1295  * @name: an address space name.  The name is only used for debugging
1296  *        output.
1297  */
1298 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1299 
1300 /**
1301  * address_space_init_shareable: return an address space for a memory region,
1302  *                               creating it if it does not already exist
1303  *
1304  * @root: a #MemoryRegion that routes addresses for the address space
1305  * @name: an address space name.  The name is only used for debugging
1306  *        output.
1307  *
1308  * This function will return a pointer to an existing AddressSpace
1309  * which was initialized with the specified MemoryRegion, or it will
1310  * create and initialize one if it does not already exist. The ASes
1311  * are reference-counted, so the memory will be freed automatically
1312  * when the AddressSpace is destroyed via address_space_destroy.
1313  */
1314 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1315                                            const char *name);
1316 
1317 /**
1318  * address_space_destroy: destroy an address space
1319  *
1320  * Releases all resources associated with an address space.  After an address space
1321  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1322  * as well.
1323  *
1324  * @as: address space to be destroyed
1325  */
1326 void address_space_destroy(AddressSpace *as);
1327 
1328 /**
1329  * address_space_rw: read from or write to an address space.
1330  *
1331  * Return a MemTxResult indicating whether the operation succeeded
1332  * or failed (eg unassigned memory, device rejected the transaction,
1333  * IOMMU fault).
1334  *
1335  * @as: #AddressSpace to be accessed
1336  * @addr: address within that address space
1337  * @attrs: memory transaction attributes
1338  * @buf: buffer with the data transferred
1339  * @is_write: indicates the transfer direction
1340  */
1341 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1342                              MemTxAttrs attrs, uint8_t *buf,
1343                              int len, bool is_write);
1344 
1345 /**
1346  * address_space_write: write to address space.
1347  *
1348  * Return a MemTxResult indicating whether the operation succeeded
1349  * or failed (eg unassigned memory, device rejected the transaction,
1350  * IOMMU fault).
1351  *
1352  * @as: #AddressSpace to be accessed
1353  * @addr: address within that address space
1354  * @attrs: memory transaction attributes
1355  * @buf: buffer with the data transferred
1356  */
1357 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1358                                 MemTxAttrs attrs,
1359                                 const uint8_t *buf, int len);
1360 
1361 /* address_space_ld*: load from an address space
1362  * address_space_st*: store to an address space
1363  *
1364  * These functions perform a load or store of the byte, word,
1365  * longword or quad to the specified address within the AddressSpace.
1366  * The _le suffixed functions treat the data as little endian;
1367  * _be indicates big endian; no suffix indicates "same endianness
1368  * as guest CPU".
1369  *
1370  * The "guest CPU endianness" accessors are deprecated for use outside
1371  * target-* code; devices should be CPU-agnostic and use either the LE
1372  * or the BE accessors.
1373  *
1374  * @as #AddressSpace to be accessed
1375  * @addr: address within that address space
1376  * @val: data value, for stores
1377  * @attrs: memory transaction attributes
1378  * @result: location to write the success/failure of the transaction;
1379  *   if NULL, this information is discarded
1380  */
1381 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1382                             MemTxAttrs attrs, MemTxResult *result);
1383 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1384                             MemTxAttrs attrs, MemTxResult *result);
1385 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1386                             MemTxAttrs attrs, MemTxResult *result);
1387 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1388                             MemTxAttrs attrs, MemTxResult *result);
1389 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1390                             MemTxAttrs attrs, MemTxResult *result);
1391 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1392                             MemTxAttrs attrs, MemTxResult *result);
1393 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1394                             MemTxAttrs attrs, MemTxResult *result);
1395 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1396                             MemTxAttrs attrs, MemTxResult *result);
1397 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1398                             MemTxAttrs attrs, MemTxResult *result);
1399 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1400                             MemTxAttrs attrs, MemTxResult *result);
1401 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1402                             MemTxAttrs attrs, MemTxResult *result);
1403 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1404                             MemTxAttrs attrs, MemTxResult *result);
1405 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1406                             MemTxAttrs attrs, MemTxResult *result);
1407 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1408                             MemTxAttrs attrs, MemTxResult *result);
1409 
1410 uint32_t ldub_phys(AddressSpace *as, hwaddr addr);
1411 uint32_t lduw_le_phys(AddressSpace *as, hwaddr addr);
1412 uint32_t lduw_be_phys(AddressSpace *as, hwaddr addr);
1413 uint32_t ldl_le_phys(AddressSpace *as, hwaddr addr);
1414 uint32_t ldl_be_phys(AddressSpace *as, hwaddr addr);
1415 uint64_t ldq_le_phys(AddressSpace *as, hwaddr addr);
1416 uint64_t ldq_be_phys(AddressSpace *as, hwaddr addr);
1417 void stb_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1418 void stw_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1419 void stw_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1420 void stl_le_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1421 void stl_be_phys(AddressSpace *as, hwaddr addr, uint32_t val);
1422 void stq_le_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1423 void stq_be_phys(AddressSpace *as, hwaddr addr, uint64_t val);
1424 
1425 struct MemoryRegionCache {
1426     hwaddr xlat;
1427     void *ptr;
1428     hwaddr len;
1429     MemoryRegion *mr;
1430     bool is_write;
1431 };
1432 
1433 /* address_space_cache_init: prepare for repeated access to a physical
1434  * memory region
1435  *
1436  * @cache: #MemoryRegionCache to be filled
1437  * @as: #AddressSpace to be accessed
1438  * @addr: address within that address space
1439  * @len: length of buffer
1440  * @is_write: indicates the transfer direction
1441  *
1442  * Will only work with RAM, and may map a subset of the requested range by
1443  * returning a value that is less than @len.  On failure, return a negative
1444  * errno value.
1445  *
1446  * Because it only works with RAM, this function can be used for
1447  * read-modify-write operations.  In this case, is_write should be %true.
1448  *
1449  * Note that addresses passed to the address_space_*_cached functions
1450  * are relative to @addr.
1451  */
1452 int64_t address_space_cache_init(MemoryRegionCache *cache,
1453                                  AddressSpace *as,
1454                                  hwaddr addr,
1455                                  hwaddr len,
1456                                  bool is_write);
1457 
1458 /**
1459  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1460  *
1461  * @cache: The #MemoryRegionCache to operate on.
1462  * @addr: The first physical address that was written, relative to the
1463  * address that was passed to @address_space_cache_init.
1464  * @access_len: The number of bytes that were written starting at @addr.
1465  */
1466 void address_space_cache_invalidate(MemoryRegionCache *cache,
1467                                     hwaddr addr,
1468                                     hwaddr access_len);
1469 
1470 /**
1471  * address_space_cache_destroy: free a #MemoryRegionCache
1472  *
1473  * @cache: The #MemoryRegionCache whose memory should be released.
1474  */
1475 void address_space_cache_destroy(MemoryRegionCache *cache);
1476 
1477 /* address_space_ld*_cached: load from a cached #MemoryRegion
1478  * address_space_st*_cached: store into a cached #MemoryRegion
1479  *
1480  * These functions perform a load or store of the byte, word,
1481  * longword or quad to the specified address.  The address is
1482  * a physical address in the AddressSpace, but it must lie within
1483  * a #MemoryRegion that was mapped with address_space_cache_init.
1484  *
1485  * The _le suffixed functions treat the data as little endian;
1486  * _be indicates big endian; no suffix indicates "same endianness
1487  * as guest CPU".
1488  *
1489  * The "guest CPU endianness" accessors are deprecated for use outside
1490  * target-* code; devices should be CPU-agnostic and use either the LE
1491  * or the BE accessors.
1492  *
1493  * @cache: previously initialized #MemoryRegionCache to be accessed
1494  * @addr: address within the address space
1495  * @val: data value, for stores
1496  * @attrs: memory transaction attributes
1497  * @result: location to write the success/failure of the transaction;
1498  *   if NULL, this information is discarded
1499  */
1500 uint32_t address_space_ldub_cached(MemoryRegionCache *cache, hwaddr addr,
1501                             MemTxAttrs attrs, MemTxResult *result);
1502 uint32_t address_space_lduw_le_cached(MemoryRegionCache *cache, hwaddr addr,
1503                             MemTxAttrs attrs, MemTxResult *result);
1504 uint32_t address_space_lduw_be_cached(MemoryRegionCache *cache, hwaddr addr,
1505                             MemTxAttrs attrs, MemTxResult *result);
1506 uint32_t address_space_ldl_le_cached(MemoryRegionCache *cache, hwaddr addr,
1507                             MemTxAttrs attrs, MemTxResult *result);
1508 uint32_t address_space_ldl_be_cached(MemoryRegionCache *cache, hwaddr addr,
1509                             MemTxAttrs attrs, MemTxResult *result);
1510 uint64_t address_space_ldq_le_cached(MemoryRegionCache *cache, hwaddr addr,
1511                             MemTxAttrs attrs, MemTxResult *result);
1512 uint64_t address_space_ldq_be_cached(MemoryRegionCache *cache, hwaddr addr,
1513                             MemTxAttrs attrs, MemTxResult *result);
1514 void address_space_stb_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1515                             MemTxAttrs attrs, MemTxResult *result);
1516 void address_space_stw_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1517                             MemTxAttrs attrs, MemTxResult *result);
1518 void address_space_stw_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1519                             MemTxAttrs attrs, MemTxResult *result);
1520 void address_space_stl_le_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1521                             MemTxAttrs attrs, MemTxResult *result);
1522 void address_space_stl_be_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val,
1523                             MemTxAttrs attrs, MemTxResult *result);
1524 void address_space_stq_le_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1525                             MemTxAttrs attrs, MemTxResult *result);
1526 void address_space_stq_be_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val,
1527                             MemTxAttrs attrs, MemTxResult *result);
1528 
1529 uint32_t ldub_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1530 uint32_t lduw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1531 uint32_t lduw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1532 uint32_t ldl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1533 uint32_t ldl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1534 uint64_t ldq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1535 uint64_t ldq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr);
1536 void stb_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1537 void stw_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1538 void stw_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1539 void stl_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1540 void stl_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint32_t val);
1541 void stq_le_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1542 void stq_be_phys_cached(MemoryRegionCache *cache, hwaddr addr, uint64_t val);
1543 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1544  * entry. Should be called from an RCU critical section.
1545  */
1546 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1547                                             bool is_write);
1548 
1549 /* address_space_translate: translate an address range into an address space
1550  * into a MemoryRegion and an address range into that section.  Should be
1551  * called from an RCU critical section, to avoid that the last reference
1552  * to the returned region disappears after address_space_translate returns.
1553  *
1554  * @as: #AddressSpace to be accessed
1555  * @addr: address within that address space
1556  * @xlat: pointer to address within the returned memory region section's
1557  * #MemoryRegion.
1558  * @len: pointer to length
1559  * @is_write: indicates the transfer direction
1560  */
1561 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1562                                       hwaddr *xlat, hwaddr *len,
1563                                       bool is_write);
1564 
1565 /* address_space_access_valid: check for validity of accessing an address
1566  * space range
1567  *
1568  * Check whether memory is assigned to the given address space range, and
1569  * access is permitted by any IOMMU regions that are active for the address
1570  * space.
1571  *
1572  * For now, addr and len should be aligned to a page size.  This limitation
1573  * will be lifted in the future.
1574  *
1575  * @as: #AddressSpace to be accessed
1576  * @addr: address within that address space
1577  * @len: length of the area to be checked
1578  * @is_write: indicates the transfer direction
1579  */
1580 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1581 
1582 /* address_space_map: map a physical memory region into a host virtual address
1583  *
1584  * May map a subset of the requested range, given by and returned in @plen.
1585  * May return %NULL if resources needed to perform the mapping are exhausted.
1586  * Use only for reads OR writes - not for read-modify-write operations.
1587  * Use cpu_register_map_client() to know when retrying the map operation is
1588  * likely to succeed.
1589  *
1590  * @as: #AddressSpace to be accessed
1591  * @addr: address within that address space
1592  * @plen: pointer to length of buffer; updated on return
1593  * @is_write: indicates the transfer direction
1594  */
1595 void *address_space_map(AddressSpace *as, hwaddr addr,
1596                         hwaddr *plen, bool is_write);
1597 
1598 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1599  *
1600  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1601  * the amount of memory that was actually read or written by the caller.
1602  *
1603  * @as: #AddressSpace used
1604  * @addr: address within that address space
1605  * @len: buffer length as returned by address_space_map()
1606  * @access_len: amount of data actually transferred
1607  * @is_write: indicates the transfer direction
1608  */
1609 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1610                          int is_write, hwaddr access_len);
1611 
1612 
1613 /* Internal functions, part of the implementation of address_space_read.  */
1614 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1615                                         MemTxAttrs attrs, uint8_t *buf,
1616                                         int len, hwaddr addr1, hwaddr l,
1617 					MemoryRegion *mr);
1618 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1619                                     MemTxAttrs attrs, uint8_t *buf, int len);
1620 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1621 
1622 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1623 {
1624     if (is_write) {
1625         return memory_region_is_ram(mr) &&
1626                !mr->readonly && !memory_region_is_ram_device(mr);
1627     } else {
1628         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
1629                memory_region_is_romd(mr);
1630     }
1631 }
1632 
1633 /**
1634  * address_space_read: read from an address space.
1635  *
1636  * Return a MemTxResult indicating whether the operation succeeded
1637  * or failed (eg unassigned memory, device rejected the transaction,
1638  * IOMMU fault).
1639  *
1640  * @as: #AddressSpace to be accessed
1641  * @addr: address within that address space
1642  * @attrs: memory transaction attributes
1643  * @buf: buffer with the data transferred
1644  */
1645 static inline __attribute__((__always_inline__))
1646 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1647                                uint8_t *buf, int len)
1648 {
1649     MemTxResult result = MEMTX_OK;
1650     hwaddr l, addr1;
1651     void *ptr;
1652     MemoryRegion *mr;
1653 
1654     if (__builtin_constant_p(len)) {
1655         if (len) {
1656             rcu_read_lock();
1657             l = len;
1658             mr = address_space_translate(as, addr, &addr1, &l, false);
1659             if (len == l && memory_access_is_direct(mr, false)) {
1660                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1661                 memcpy(buf, ptr, len);
1662             } else {
1663                 result = address_space_read_continue(as, addr, attrs, buf, len,
1664                                                      addr1, l, mr);
1665             }
1666             rcu_read_unlock();
1667         }
1668     } else {
1669         result = address_space_read_full(as, addr, attrs, buf, len);
1670     }
1671     return result;
1672 }
1673 
1674 /**
1675  * address_space_read_cached: read from a cached RAM region
1676  *
1677  * @cache: Cached region to be addressed
1678  * @addr: address relative to the base of the RAM region
1679  * @buf: buffer with the data transferred
1680  * @len: length of the data transferred
1681  */
1682 static inline void
1683 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
1684                           void *buf, int len)
1685 {
1686     assert(addr < cache->len && len <= cache->len - addr);
1687     memcpy(buf, cache->ptr + addr, len);
1688 }
1689 
1690 /**
1691  * address_space_write_cached: write to a cached RAM region
1692  *
1693  * @cache: Cached region to be addressed
1694  * @addr: address relative to the base of the RAM region
1695  * @buf: buffer with the data transferred
1696  * @len: length of the data transferred
1697  */
1698 static inline void
1699 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
1700                            void *buf, int len)
1701 {
1702     assert(addr < cache->len && len <= cache->len - addr);
1703     memcpy(cache->ptr + addr, buf, len);
1704 }
1705 
1706 #endif
1707 
1708 #endif
1709