xref: /qemu/include/exec/memory.h (revision 603476c2)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /*
71  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
72  * register with one or multiple IOMMU Notifier capability bit(s).
73  */
74 typedef enum {
75     IOMMU_NOTIFIER_NONE = 0,
76     /* Notify cache invalidations */
77     IOMMU_NOTIFIER_UNMAP = 0x1,
78     /* Notify entry changes (newly created entries) */
79     IOMMU_NOTIFIER_MAP = 0x2,
80 } IOMMUNotifierFlag;
81 
82 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
83 
84 struct IOMMUNotifier {
85     void (*notify)(struct IOMMUNotifier *notifier, IOMMUTLBEntry *data);
86     IOMMUNotifierFlag notifier_flags;
87     QLIST_ENTRY(IOMMUNotifier) node;
88 };
89 typedef struct IOMMUNotifier IOMMUNotifier;
90 
91 /* New-style MMIO accessors can indicate that the transaction failed.
92  * A zero (MEMTX_OK) response means success; anything else is a failure
93  * of some kind. The memory subsystem will bitwise-OR together results
94  * if it is synthesizing an operation from multiple smaller accesses.
95  */
96 #define MEMTX_OK 0
97 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
98 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
99 typedef uint32_t MemTxResult;
100 
101 /*
102  * Memory region callbacks
103  */
104 struct MemoryRegionOps {
105     /* Read from the memory region. @addr is relative to @mr; @size is
106      * in bytes. */
107     uint64_t (*read)(void *opaque,
108                      hwaddr addr,
109                      unsigned size);
110     /* Write to the memory region. @addr is relative to @mr; @size is
111      * in bytes. */
112     void (*write)(void *opaque,
113                   hwaddr addr,
114                   uint64_t data,
115                   unsigned size);
116 
117     MemTxResult (*read_with_attrs)(void *opaque,
118                                    hwaddr addr,
119                                    uint64_t *data,
120                                    unsigned size,
121                                    MemTxAttrs attrs);
122     MemTxResult (*write_with_attrs)(void *opaque,
123                                     hwaddr addr,
124                                     uint64_t data,
125                                     unsigned size,
126                                     MemTxAttrs attrs);
127 
128     enum device_endian endianness;
129     /* Guest-visible constraints: */
130     struct {
131         /* If nonzero, specify bounds on access sizes beyond which a machine
132          * check is thrown.
133          */
134         unsigned min_access_size;
135         unsigned max_access_size;
136         /* If true, unaligned accesses are supported.  Otherwise unaligned
137          * accesses throw machine checks.
138          */
139          bool unaligned;
140         /*
141          * If present, and returns #false, the transaction is not accepted
142          * by the device (and results in machine dependent behaviour such
143          * as a machine check exception).
144          */
145         bool (*accepts)(void *opaque, hwaddr addr,
146                         unsigned size, bool is_write);
147     } valid;
148     /* Internal implementation constraints: */
149     struct {
150         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
151          * will be rounded upwards and a partial result will be returned.
152          */
153         unsigned min_access_size;
154         /* If nonzero, specifies the maximum size implemented.  Larger sizes
155          * will be done as a series of accesses with smaller sizes.
156          */
157         unsigned max_access_size;
158         /* If true, unaligned accesses are supported.  Otherwise all accesses
159          * are converted to (possibly multiple) naturally aligned accesses.
160          */
161         bool unaligned;
162     } impl;
163 
164     /* If .read and .write are not present, old_mmio may be used for
165      * backwards compatibility with old mmio registration
166      */
167     const MemoryRegionMmio old_mmio;
168 };
169 
170 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
171 
172 struct MemoryRegionIOMMUOps {
173     /* Return a TLB entry that contains a given address. */
174     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
175     /* Returns minimum supported page size */
176     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
177     /* Called when IOMMU Notifier flag changed */
178     void (*notify_flag_changed)(MemoryRegion *iommu,
179                                 IOMMUNotifierFlag old_flags,
180                                 IOMMUNotifierFlag new_flags);
181 };
182 
183 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
184 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
185 
186 struct MemoryRegion {
187     Object parent_obj;
188 
189     /* All fields are private - violators will be prosecuted */
190 
191     /* The following fields should fit in a cache line */
192     bool romd_mode;
193     bool ram;
194     bool subpage;
195     bool readonly; /* For RAM regions */
196     bool rom_device;
197     bool flush_coalesced_mmio;
198     bool global_locking;
199     uint8_t dirty_log_mask;
200     RAMBlock *ram_block;
201     Object *owner;
202     const MemoryRegionIOMMUOps *iommu_ops;
203 
204     const MemoryRegionOps *ops;
205     void *opaque;
206     MemoryRegion *container;
207     Int128 size;
208     hwaddr addr;
209     void (*destructor)(MemoryRegion *mr);
210     uint64_t align;
211     bool terminates;
212     bool skip_dump;
213     bool enabled;
214     bool warning_printed; /* For reservations */
215     uint8_t vga_logging_count;
216     MemoryRegion *alias;
217     hwaddr alias_offset;
218     int32_t priority;
219     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
220     QTAILQ_ENTRY(MemoryRegion) subregions_link;
221     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
222     const char *name;
223     unsigned ioeventfd_nb;
224     MemoryRegionIoeventfd *ioeventfds;
225     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
226     IOMMUNotifierFlag iommu_notify_flags;
227 };
228 
229 /**
230  * MemoryListener: callbacks structure for updates to the physical memory map
231  *
232  * Allows a component to adjust to changes in the guest-visible memory map.
233  * Use with memory_listener_register() and memory_listener_unregister().
234  */
235 struct MemoryListener {
236     void (*begin)(MemoryListener *listener);
237     void (*commit)(MemoryListener *listener);
238     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
239     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
240     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
241     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
242                       int old, int new);
243     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
244                      int old, int new);
245     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
246     void (*log_global_start)(MemoryListener *listener);
247     void (*log_global_stop)(MemoryListener *listener);
248     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
249                         bool match_data, uint64_t data, EventNotifier *e);
250     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
251                         bool match_data, uint64_t data, EventNotifier *e);
252     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
253                                hwaddr addr, hwaddr len);
254     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
255                                hwaddr addr, hwaddr len);
256     /* Lower = earlier (during add), later (during del) */
257     unsigned priority;
258     AddressSpace *address_space;
259     QTAILQ_ENTRY(MemoryListener) link;
260     QTAILQ_ENTRY(MemoryListener) link_as;
261 };
262 
263 /**
264  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
265  */
266 struct AddressSpace {
267     /* All fields are private. */
268     struct rcu_head rcu;
269     char *name;
270     MemoryRegion *root;
271     int ref_count;
272     bool malloced;
273 
274     /* Accessed via RCU.  */
275     struct FlatView *current_map;
276 
277     int ioeventfd_nb;
278     struct MemoryRegionIoeventfd *ioeventfds;
279     struct AddressSpaceDispatch *dispatch;
280     struct AddressSpaceDispatch *next_dispatch;
281     MemoryListener dispatch_listener;
282     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
283     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
284 };
285 
286 /**
287  * MemoryRegionSection: describes a fragment of a #MemoryRegion
288  *
289  * @mr: the region, or %NULL if empty
290  * @address_space: the address space the region is mapped in
291  * @offset_within_region: the beginning of the section, relative to @mr's start
292  * @size: the size of the section; will not exceed @mr's boundaries
293  * @offset_within_address_space: the address of the first byte of the section
294  *     relative to the region's address space
295  * @readonly: writes to this section are ignored
296  */
297 struct MemoryRegionSection {
298     MemoryRegion *mr;
299     AddressSpace *address_space;
300     hwaddr offset_within_region;
301     Int128 size;
302     hwaddr offset_within_address_space;
303     bool readonly;
304 };
305 
306 /**
307  * memory_region_init: Initialize a memory region
308  *
309  * The region typically acts as a container for other memory regions.  Use
310  * memory_region_add_subregion() to add subregions.
311  *
312  * @mr: the #MemoryRegion to be initialized
313  * @owner: the object that tracks the region's reference count
314  * @name: used for debugging; not visible to the user or ABI
315  * @size: size of the region; any subregions beyond this size will be clipped
316  */
317 void memory_region_init(MemoryRegion *mr,
318                         struct Object *owner,
319                         const char *name,
320                         uint64_t size);
321 
322 /**
323  * memory_region_ref: Add 1 to a memory region's reference count
324  *
325  * Whenever memory regions are accessed outside the BQL, they need to be
326  * preserved against hot-unplug.  MemoryRegions actually do not have their
327  * own reference count; they piggyback on a QOM object, their "owner".
328  * This function adds a reference to the owner.
329  *
330  * All MemoryRegions must have an owner if they can disappear, even if the
331  * device they belong to operates exclusively under the BQL.  This is because
332  * the region could be returned at any time by memory_region_find, and this
333  * is usually under guest control.
334  *
335  * @mr: the #MemoryRegion
336  */
337 void memory_region_ref(MemoryRegion *mr);
338 
339 /**
340  * memory_region_unref: Remove 1 to a memory region's reference count
341  *
342  * Whenever memory regions are accessed outside the BQL, they need to be
343  * preserved against hot-unplug.  MemoryRegions actually do not have their
344  * own reference count; they piggyback on a QOM object, their "owner".
345  * This function removes a reference to the owner and possibly destroys it.
346  *
347  * @mr: the #MemoryRegion
348  */
349 void memory_region_unref(MemoryRegion *mr);
350 
351 /**
352  * memory_region_init_io: Initialize an I/O memory region.
353  *
354  * Accesses into the region will cause the callbacks in @ops to be called.
355  * if @size is nonzero, subregions will be clipped to @size.
356  *
357  * @mr: the #MemoryRegion to be initialized.
358  * @owner: the object that tracks the region's reference count
359  * @ops: a structure containing read and write callbacks to be used when
360  *       I/O is performed on the region.
361  * @opaque: passed to the read and write callbacks of the @ops structure.
362  * @name: used for debugging; not visible to the user or ABI
363  * @size: size of the region.
364  */
365 void memory_region_init_io(MemoryRegion *mr,
366                            struct Object *owner,
367                            const MemoryRegionOps *ops,
368                            void *opaque,
369                            const char *name,
370                            uint64_t size);
371 
372 /**
373  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
374  *                          region will modify memory directly.
375  *
376  * @mr: the #MemoryRegion to be initialized.
377  * @owner: the object that tracks the region's reference count
378  * @name: the name of the region.
379  * @size: size of the region.
380  * @errp: pointer to Error*, to store an error if it happens.
381  */
382 void memory_region_init_ram(MemoryRegion *mr,
383                             struct Object *owner,
384                             const char *name,
385                             uint64_t size,
386                             Error **errp);
387 
388 /**
389  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
390  *                                     RAM.  Accesses into the region will
391  *                                     modify memory directly.  Only an initial
392  *                                     portion of this RAM is actually used.
393  *                                     The used size can change across reboots.
394  *
395  * @mr: the #MemoryRegion to be initialized.
396  * @owner: the object that tracks the region's reference count
397  * @name: the name of the region.
398  * @size: used size of the region.
399  * @max_size: max size of the region.
400  * @resized: callback to notify owner about used size change.
401  * @errp: pointer to Error*, to store an error if it happens.
402  */
403 void memory_region_init_resizeable_ram(MemoryRegion *mr,
404                                        struct Object *owner,
405                                        const char *name,
406                                        uint64_t size,
407                                        uint64_t max_size,
408                                        void (*resized)(const char*,
409                                                        uint64_t length,
410                                                        void *host),
411                                        Error **errp);
412 #ifdef __linux__
413 /**
414  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
415  *                                    mmap-ed backend.
416  *
417  * @mr: the #MemoryRegion to be initialized.
418  * @owner: the object that tracks the region's reference count
419  * @name: the name of the region.
420  * @size: size of the region.
421  * @share: %true if memory must be mmaped with the MAP_SHARED flag
422  * @path: the path in which to allocate the RAM.
423  * @errp: pointer to Error*, to store an error if it happens.
424  */
425 void memory_region_init_ram_from_file(MemoryRegion *mr,
426                                       struct Object *owner,
427                                       const char *name,
428                                       uint64_t size,
429                                       bool share,
430                                       const char *path,
431                                       Error **errp);
432 #endif
433 
434 /**
435  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
436  *                              user-provided pointer.  Accesses into the
437  *                              region will modify memory directly.
438  *
439  * @mr: the #MemoryRegion to be initialized.
440  * @owner: the object that tracks the region's reference count
441  * @name: the name of the region.
442  * @size: size of the region.
443  * @ptr: memory to be mapped; must contain at least @size bytes.
444  */
445 void memory_region_init_ram_ptr(MemoryRegion *mr,
446                                 struct Object *owner,
447                                 const char *name,
448                                 uint64_t size,
449                                 void *ptr);
450 
451 /**
452  * memory_region_init_alias: Initialize a memory region that aliases all or a
453  *                           part of another memory region.
454  *
455  * @mr: the #MemoryRegion to be initialized.
456  * @owner: the object that tracks the region's reference count
457  * @name: used for debugging; not visible to the user or ABI
458  * @orig: the region to be referenced; @mr will be equivalent to
459  *        @orig between @offset and @offset + @size - 1.
460  * @offset: start of the section in @orig to be referenced.
461  * @size: size of the region.
462  */
463 void memory_region_init_alias(MemoryRegion *mr,
464                               struct Object *owner,
465                               const char *name,
466                               MemoryRegion *orig,
467                               hwaddr offset,
468                               uint64_t size);
469 
470 /**
471  * memory_region_init_rom: Initialize a ROM memory region.
472  *
473  * This has the same effect as calling memory_region_init_ram()
474  * and then marking the resulting region read-only with
475  * memory_region_set_readonly().
476  *
477  * @mr: the #MemoryRegion to be initialized.
478  * @owner: the object that tracks the region's reference count
479  * @name: the name of the region.
480  * @size: size of the region.
481  * @errp: pointer to Error*, to store an error if it happens.
482  */
483 void memory_region_init_rom(MemoryRegion *mr,
484                             struct Object *owner,
485                             const char *name,
486                             uint64_t size,
487                             Error **errp);
488 
489 /**
490  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
491  *                                 handled via callbacks.
492  *
493  * @mr: the #MemoryRegion to be initialized.
494  * @owner: the object that tracks the region's reference count
495  * @ops: callbacks for write access handling (must not be NULL).
496  * @name: the name of the region.
497  * @size: size of the region.
498  * @errp: pointer to Error*, to store an error if it happens.
499  */
500 void memory_region_init_rom_device(MemoryRegion *mr,
501                                    struct Object *owner,
502                                    const MemoryRegionOps *ops,
503                                    void *opaque,
504                                    const char *name,
505                                    uint64_t size,
506                                    Error **errp);
507 
508 /**
509  * memory_region_init_reservation: Initialize a memory region that reserves
510  *                                 I/O space.
511  *
512  * A reservation region primariy serves debugging purposes.  It claims I/O
513  * space that is not supposed to be handled by QEMU itself.  Any access via
514  * the memory API will cause an abort().
515  * This function is deprecated. Use memory_region_init_io() with NULL
516  * callbacks instead.
517  *
518  * @mr: the #MemoryRegion to be initialized
519  * @owner: the object that tracks the region's reference count
520  * @name: used for debugging; not visible to the user or ABI
521  * @size: size of the region.
522  */
523 static inline void memory_region_init_reservation(MemoryRegion *mr,
524                                     Object *owner,
525                                     const char *name,
526                                     uint64_t size)
527 {
528     memory_region_init_io(mr, owner, NULL, mr, name, size);
529 }
530 
531 /**
532  * memory_region_init_iommu: Initialize a memory region that translates
533  * addresses
534  *
535  * An IOMMU region translates addresses and forwards accesses to a target
536  * memory region.
537  *
538  * @mr: the #MemoryRegion to be initialized
539  * @owner: the object that tracks the region's reference count
540  * @ops: a function that translates addresses into the @target region
541  * @name: used for debugging; not visible to the user or ABI
542  * @size: size of the region.
543  */
544 void memory_region_init_iommu(MemoryRegion *mr,
545                               struct Object *owner,
546                               const MemoryRegionIOMMUOps *ops,
547                               const char *name,
548                               uint64_t size);
549 
550 /**
551  * memory_region_owner: get a memory region's owner.
552  *
553  * @mr: the memory region being queried.
554  */
555 struct Object *memory_region_owner(MemoryRegion *mr);
556 
557 /**
558  * memory_region_size: get a memory region's size.
559  *
560  * @mr: the memory region being queried.
561  */
562 uint64_t memory_region_size(MemoryRegion *mr);
563 
564 /**
565  * memory_region_is_ram: check whether a memory region is random access
566  *
567  * Returns %true is a memory region is random access.
568  *
569  * @mr: the memory region being queried
570  */
571 static inline bool memory_region_is_ram(MemoryRegion *mr)
572 {
573     return mr->ram;
574 }
575 
576 /**
577  * memory_region_is_skip_dump: check whether a memory region should not be
578  *                             dumped
579  *
580  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
581  *
582  * @mr: the memory region being queried
583  */
584 bool memory_region_is_skip_dump(MemoryRegion *mr);
585 
586 /**
587  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
588  *                              region
589  *
590  * @mr: the memory region being queried
591  */
592 void memory_region_set_skip_dump(MemoryRegion *mr);
593 
594 /**
595  * memory_region_is_romd: check whether a memory region is in ROMD mode
596  *
597  * Returns %true if a memory region is a ROM device and currently set to allow
598  * direct reads.
599  *
600  * @mr: the memory region being queried
601  */
602 static inline bool memory_region_is_romd(MemoryRegion *mr)
603 {
604     return mr->rom_device && mr->romd_mode;
605 }
606 
607 /**
608  * memory_region_is_iommu: check whether a memory region is an iommu
609  *
610  * Returns %true is a memory region is an iommu.
611  *
612  * @mr: the memory region being queried
613  */
614 static inline bool memory_region_is_iommu(MemoryRegion *mr)
615 {
616     return mr->iommu_ops;
617 }
618 
619 
620 /**
621  * memory_region_iommu_get_min_page_size: get minimum supported page size
622  * for an iommu
623  *
624  * Returns minimum supported page size for an iommu.
625  *
626  * @mr: the memory region being queried
627  */
628 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
629 
630 /**
631  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
632  *
633  * The notification type will be decided by entry.perm bits:
634  *
635  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
636  * - For MAP (newly added entry) notifies: set entry.perm to the
637  *   permission of the page (which is definitely !IOMMU_NONE).
638  *
639  * Note: for any IOMMU implementation, an in-place mapping change
640  * should be notified with an UNMAP followed by a MAP.
641  *
642  * @mr: the memory region that was changed
643  * @entry: the new entry in the IOMMU translation table.  The entry
644  *         replaces all old entries for the same virtual I/O address range.
645  *         Deleted entries have .@perm == 0.
646  */
647 void memory_region_notify_iommu(MemoryRegion *mr,
648                                 IOMMUTLBEntry entry);
649 
650 /**
651  * memory_region_register_iommu_notifier: register a notifier for changes to
652  * IOMMU translation entries.
653  *
654  * @mr: the memory region to observe
655  * @n: the IOMMUNotifier to be added; the notify callback receives a
656  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
657  *     ceases to be valid on exit from the notifier.
658  */
659 void memory_region_register_iommu_notifier(MemoryRegion *mr,
660                                            IOMMUNotifier *n);
661 
662 /**
663  * memory_region_iommu_replay: replay existing IOMMU translations to
664  * a notifier with the minimum page granularity returned by
665  * mr->iommu_ops->get_page_size().
666  *
667  * @mr: the memory region to observe
668  * @n: the notifier to which to replay iommu mappings
669  * @is_write: Whether to treat the replay as a translate "write"
670  *     through the iommu
671  */
672 void memory_region_iommu_replay(MemoryRegion *mr, IOMMUNotifier *n,
673                                 bool is_write);
674 
675 /**
676  * memory_region_unregister_iommu_notifier: unregister a notifier for
677  * changes to IOMMU translation entries.
678  *
679  * @mr: the memory region which was observed and for which notity_stopped()
680  *      needs to be called
681  * @n: the notifier to be removed.
682  */
683 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
684                                              IOMMUNotifier *n);
685 
686 /**
687  * memory_region_name: get a memory region's name
688  *
689  * Returns the string that was used to initialize the memory region.
690  *
691  * @mr: the memory region being queried
692  */
693 const char *memory_region_name(const MemoryRegion *mr);
694 
695 /**
696  * memory_region_is_logging: return whether a memory region is logging writes
697  *
698  * Returns %true if the memory region is logging writes for the given client
699  *
700  * @mr: the memory region being queried
701  * @client: the client being queried
702  */
703 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
704 
705 /**
706  * memory_region_get_dirty_log_mask: return the clients for which a
707  * memory region is logging writes.
708  *
709  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
710  * are the bit indices.
711  *
712  * @mr: the memory region being queried
713  */
714 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
715 
716 /**
717  * memory_region_is_rom: check whether a memory region is ROM
718  *
719  * Returns %true is a memory region is read-only memory.
720  *
721  * @mr: the memory region being queried
722  */
723 static inline bool memory_region_is_rom(MemoryRegion *mr)
724 {
725     return mr->ram && mr->readonly;
726 }
727 
728 
729 /**
730  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
731  *
732  * Returns a file descriptor backing a file-based RAM memory region,
733  * or -1 if the region is not a file-based RAM memory region.
734  *
735  * @mr: the RAM or alias memory region being queried.
736  */
737 int memory_region_get_fd(MemoryRegion *mr);
738 
739 /**
740  * memory_region_set_fd: Mark a RAM memory region as backed by a
741  * file descriptor.
742  *
743  * This function is typically used after memory_region_init_ram_ptr().
744  *
745  * @mr: the memory region being queried.
746  * @fd: the file descriptor that backs @mr.
747  */
748 void memory_region_set_fd(MemoryRegion *mr, int fd);
749 
750 /**
751  * memory_region_from_host: Convert a pointer into a RAM memory region
752  * and an offset within it.
753  *
754  * Given a host pointer inside a RAM memory region (created with
755  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
756  * the MemoryRegion and the offset within it.
757  *
758  * Use with care; by the time this function returns, the returned pointer is
759  * not protected by RCU anymore.  If the caller is not within an RCU critical
760  * section and does not hold the iothread lock, it must have other means of
761  * protecting the pointer, such as a reference to the region that includes
762  * the incoming ram_addr_t.
763  *
764  * @mr: the memory region being queried.
765  */
766 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
767 
768 /**
769  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
770  *
771  * Returns a host pointer to a RAM memory region (created with
772  * memory_region_init_ram() or memory_region_init_ram_ptr()).
773  *
774  * Use with care; by the time this function returns, the returned pointer is
775  * not protected by RCU anymore.  If the caller is not within an RCU critical
776  * section and does not hold the iothread lock, it must have other means of
777  * protecting the pointer, such as a reference to the region that includes
778  * the incoming ram_addr_t.
779  *
780  * @mr: the memory region being queried.
781  */
782 void *memory_region_get_ram_ptr(MemoryRegion *mr);
783 
784 /* memory_region_ram_resize: Resize a RAM region.
785  *
786  * Only legal before guest might have detected the memory size: e.g. on
787  * incoming migration, or right after reset.
788  *
789  * @mr: a memory region created with @memory_region_init_resizeable_ram.
790  * @newsize: the new size the region
791  * @errp: pointer to Error*, to store an error if it happens.
792  */
793 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
794                               Error **errp);
795 
796 /**
797  * memory_region_set_log: Turn dirty logging on or off for a region.
798  *
799  * Turns dirty logging on or off for a specified client (display, migration).
800  * Only meaningful for RAM regions.
801  *
802  * @mr: the memory region being updated.
803  * @log: whether dirty logging is to be enabled or disabled.
804  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
805  */
806 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
807 
808 /**
809  * memory_region_get_dirty: Check whether a range of bytes is dirty
810  *                          for a specified client.
811  *
812  * Checks whether a range of bytes has been written to since the last
813  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
814  * must be enabled.
815  *
816  * @mr: the memory region being queried.
817  * @addr: the address (relative to the start of the region) being queried.
818  * @size: the size of the range being queried.
819  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
820  *          %DIRTY_MEMORY_VGA.
821  */
822 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
823                              hwaddr size, unsigned client);
824 
825 /**
826  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
827  *
828  * Marks a range of bytes as dirty, after it has been dirtied outside
829  * guest code.
830  *
831  * @mr: the memory region being dirtied.
832  * @addr: the address (relative to the start of the region) being dirtied.
833  * @size: size of the range being dirtied.
834  */
835 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
836                              hwaddr size);
837 
838 /**
839  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
840  *                                     for a specified client. It clears them.
841  *
842  * Checks whether a range of bytes has been written to since the last
843  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
844  * must be enabled.
845  *
846  * @mr: the memory region being queried.
847  * @addr: the address (relative to the start of the region) being queried.
848  * @size: the size of the range being queried.
849  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
850  *          %DIRTY_MEMORY_VGA.
851  */
852 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
853                                         hwaddr size, unsigned client);
854 /**
855  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
856  *                                  any external TLBs (e.g. kvm)
857  *
858  * Flushes dirty information from accelerators such as kvm and vhost-net
859  * and makes it available to users of the memory API.
860  *
861  * @mr: the region being flushed.
862  */
863 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
864 
865 /**
866  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
867  *                            client.
868  *
869  * Marks a range of pages as no longer dirty.
870  *
871  * @mr: the region being updated.
872  * @addr: the start of the subrange being cleaned.
873  * @size: the size of the subrange being cleaned.
874  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
875  *          %DIRTY_MEMORY_VGA.
876  */
877 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
878                                hwaddr size, unsigned client);
879 
880 /**
881  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
882  *
883  * Allows a memory region to be marked as read-only (turning it into a ROM).
884  * only useful on RAM regions.
885  *
886  * @mr: the region being updated.
887  * @readonly: whether rhe region is to be ROM or RAM.
888  */
889 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
890 
891 /**
892  * memory_region_rom_device_set_romd: enable/disable ROMD mode
893  *
894  * Allows a ROM device (initialized with memory_region_init_rom_device() to
895  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
896  * device is mapped to guest memory and satisfies read access directly.
897  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
898  * Writes are always handled by the #MemoryRegion.write function.
899  *
900  * @mr: the memory region to be updated
901  * @romd_mode: %true to put the region into ROMD mode
902  */
903 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
904 
905 /**
906  * memory_region_set_coalescing: Enable memory coalescing for the region.
907  *
908  * Enabled writes to a region to be queued for later processing. MMIO ->write
909  * callbacks may be delayed until a non-coalesced MMIO is issued.
910  * Only useful for IO regions.  Roughly similar to write-combining hardware.
911  *
912  * @mr: the memory region to be write coalesced
913  */
914 void memory_region_set_coalescing(MemoryRegion *mr);
915 
916 /**
917  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
918  *                               a region.
919  *
920  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
921  * Multiple calls can be issued coalesced disjoint ranges.
922  *
923  * @mr: the memory region to be updated.
924  * @offset: the start of the range within the region to be coalesced.
925  * @size: the size of the subrange to be coalesced.
926  */
927 void memory_region_add_coalescing(MemoryRegion *mr,
928                                   hwaddr offset,
929                                   uint64_t size);
930 
931 /**
932  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
933  *
934  * Disables any coalescing caused by memory_region_set_coalescing() or
935  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
936  * hardware.
937  *
938  * @mr: the memory region to be updated.
939  */
940 void memory_region_clear_coalescing(MemoryRegion *mr);
941 
942 /**
943  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
944  *                                    accesses.
945  *
946  * Ensure that pending coalesced MMIO request are flushed before the memory
947  * region is accessed. This property is automatically enabled for all regions
948  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
949  *
950  * @mr: the memory region to be updated.
951  */
952 void memory_region_set_flush_coalesced(MemoryRegion *mr);
953 
954 /**
955  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
956  *                                      accesses.
957  *
958  * Clear the automatic coalesced MMIO flushing enabled via
959  * memory_region_set_flush_coalesced. Note that this service has no effect on
960  * memory regions that have MMIO coalescing enabled for themselves. For them,
961  * automatic flushing will stop once coalescing is disabled.
962  *
963  * @mr: the memory region to be updated.
964  */
965 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
966 
967 /**
968  * memory_region_set_global_locking: Declares the access processing requires
969  *                                   QEMU's global lock.
970  *
971  * When this is invoked, accesses to the memory region will be processed while
972  * holding the global lock of QEMU. This is the default behavior of memory
973  * regions.
974  *
975  * @mr: the memory region to be updated.
976  */
977 void memory_region_set_global_locking(MemoryRegion *mr);
978 
979 /**
980  * memory_region_clear_global_locking: Declares that access processing does
981  *                                     not depend on the QEMU global lock.
982  *
983  * By clearing this property, accesses to the memory region will be processed
984  * outside of QEMU's global lock (unless the lock is held on when issuing the
985  * access request). In this case, the device model implementing the access
986  * handlers is responsible for synchronization of concurrency.
987  *
988  * @mr: the memory region to be updated.
989  */
990 void memory_region_clear_global_locking(MemoryRegion *mr);
991 
992 /**
993  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
994  *                            is written to a location.
995  *
996  * Marks a word in an IO region (initialized with memory_region_init_io())
997  * as a trigger for an eventfd event.  The I/O callback will not be called.
998  * The caller must be prepared to handle failure (that is, take the required
999  * action if the callback _is_ called).
1000  *
1001  * @mr: the memory region being updated.
1002  * @addr: the address within @mr that is to be monitored
1003  * @size: the size of the access to trigger the eventfd
1004  * @match_data: whether to match against @data, instead of just @addr
1005  * @data: the data to match against the guest write
1006  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1007  **/
1008 void memory_region_add_eventfd(MemoryRegion *mr,
1009                                hwaddr addr,
1010                                unsigned size,
1011                                bool match_data,
1012                                uint64_t data,
1013                                EventNotifier *e);
1014 
1015 /**
1016  * memory_region_del_eventfd: Cancel an eventfd.
1017  *
1018  * Cancels an eventfd trigger requested by a previous
1019  * memory_region_add_eventfd() call.
1020  *
1021  * @mr: the memory region being updated.
1022  * @addr: the address within @mr that is to be monitored
1023  * @size: the size of the access to trigger the eventfd
1024  * @match_data: whether to match against @data, instead of just @addr
1025  * @data: the data to match against the guest write
1026  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
1027  */
1028 void memory_region_del_eventfd(MemoryRegion *mr,
1029                                hwaddr addr,
1030                                unsigned size,
1031                                bool match_data,
1032                                uint64_t data,
1033                                EventNotifier *e);
1034 
1035 /**
1036  * memory_region_add_subregion: Add a subregion to a container.
1037  *
1038  * Adds a subregion at @offset.  The subregion may not overlap with other
1039  * subregions (except for those explicitly marked as overlapping).  A region
1040  * may only be added once as a subregion (unless removed with
1041  * memory_region_del_subregion()); use memory_region_init_alias() if you
1042  * want a region to be a subregion in multiple locations.
1043  *
1044  * @mr: the region to contain the new subregion; must be a container
1045  *      initialized with memory_region_init().
1046  * @offset: the offset relative to @mr where @subregion is added.
1047  * @subregion: the subregion to be added.
1048  */
1049 void memory_region_add_subregion(MemoryRegion *mr,
1050                                  hwaddr offset,
1051                                  MemoryRegion *subregion);
1052 /**
1053  * memory_region_add_subregion_overlap: Add a subregion to a container
1054  *                                      with overlap.
1055  *
1056  * Adds a subregion at @offset.  The subregion may overlap with other
1057  * subregions.  Conflicts are resolved by having a higher @priority hide a
1058  * lower @priority. Subregions without priority are taken as @priority 0.
1059  * A region may only be added once as a subregion (unless removed with
1060  * memory_region_del_subregion()); use memory_region_init_alias() if you
1061  * want a region to be a subregion in multiple locations.
1062  *
1063  * @mr: the region to contain the new subregion; must be a container
1064  *      initialized with memory_region_init().
1065  * @offset: the offset relative to @mr where @subregion is added.
1066  * @subregion: the subregion to be added.
1067  * @priority: used for resolving overlaps; highest priority wins.
1068  */
1069 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1070                                          hwaddr offset,
1071                                          MemoryRegion *subregion,
1072                                          int priority);
1073 
1074 /**
1075  * memory_region_get_ram_addr: Get the ram address associated with a memory
1076  *                             region
1077  */
1078 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1079 
1080 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1081 /**
1082  * memory_region_del_subregion: Remove a subregion.
1083  *
1084  * Removes a subregion from its container.
1085  *
1086  * @mr: the container to be updated.
1087  * @subregion: the region being removed; must be a current subregion of @mr.
1088  */
1089 void memory_region_del_subregion(MemoryRegion *mr,
1090                                  MemoryRegion *subregion);
1091 
1092 /*
1093  * memory_region_set_enabled: dynamically enable or disable a region
1094  *
1095  * Enables or disables a memory region.  A disabled memory region
1096  * ignores all accesses to itself and its subregions.  It does not
1097  * obscure sibling subregions with lower priority - it simply behaves as
1098  * if it was removed from the hierarchy.
1099  *
1100  * Regions default to being enabled.
1101  *
1102  * @mr: the region to be updated
1103  * @enabled: whether to enable or disable the region
1104  */
1105 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1106 
1107 /*
1108  * memory_region_set_address: dynamically update the address of a region
1109  *
1110  * Dynamically updates the address of a region, relative to its container.
1111  * May be used on regions are currently part of a memory hierarchy.
1112  *
1113  * @mr: the region to be updated
1114  * @addr: new address, relative to container region
1115  */
1116 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1117 
1118 /*
1119  * memory_region_set_size: dynamically update the size of a region.
1120  *
1121  * Dynamically updates the size of a region.
1122  *
1123  * @mr: the region to be updated
1124  * @size: used size of the region.
1125  */
1126 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1127 
1128 /*
1129  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1130  *
1131  * Dynamically updates the offset into the target region that an alias points
1132  * to, as if the fourth argument to memory_region_init_alias() has changed.
1133  *
1134  * @mr: the #MemoryRegion to be updated; should be an alias.
1135  * @offset: the new offset into the target memory region
1136  */
1137 void memory_region_set_alias_offset(MemoryRegion *mr,
1138                                     hwaddr offset);
1139 
1140 /**
1141  * memory_region_present: checks if an address relative to a @container
1142  * translates into #MemoryRegion within @container
1143  *
1144  * Answer whether a #MemoryRegion within @container covers the address
1145  * @addr.
1146  *
1147  * @container: a #MemoryRegion within which @addr is a relative address
1148  * @addr: the area within @container to be searched
1149  */
1150 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1151 
1152 /**
1153  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1154  * into any address space.
1155  *
1156  * @mr: a #MemoryRegion which should be checked if it's mapped
1157  */
1158 bool memory_region_is_mapped(MemoryRegion *mr);
1159 
1160 /**
1161  * memory_region_find: translate an address/size relative to a
1162  * MemoryRegion into a #MemoryRegionSection.
1163  *
1164  * Locates the first #MemoryRegion within @mr that overlaps the range
1165  * given by @addr and @size.
1166  *
1167  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1168  * It will have the following characteristics:
1169  *    .@size = 0 iff no overlap was found
1170  *    .@mr is non-%NULL iff an overlap was found
1171  *
1172  * Remember that in the return value the @offset_within_region is
1173  * relative to the returned region (in the .@mr field), not to the
1174  * @mr argument.
1175  *
1176  * Similarly, the .@offset_within_address_space is relative to the
1177  * address space that contains both regions, the passed and the
1178  * returned one.  However, in the special case where the @mr argument
1179  * has no container (and thus is the root of the address space), the
1180  * following will hold:
1181  *    .@offset_within_address_space >= @addr
1182  *    .@offset_within_address_space + .@size <= @addr + @size
1183  *
1184  * @mr: a MemoryRegion within which @addr is a relative address
1185  * @addr: start of the area within @as to be searched
1186  * @size: size of the area to be searched
1187  */
1188 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1189                                        hwaddr addr, uint64_t size);
1190 
1191 /**
1192  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1193  *
1194  * Synchronizes the dirty page log for all address spaces.
1195  */
1196 void memory_global_dirty_log_sync(void);
1197 
1198 /**
1199  * memory_region_transaction_begin: Start a transaction.
1200  *
1201  * During a transaction, changes will be accumulated and made visible
1202  * only when the transaction ends (is committed).
1203  */
1204 void memory_region_transaction_begin(void);
1205 
1206 /**
1207  * memory_region_transaction_commit: Commit a transaction and make changes
1208  *                                   visible to the guest.
1209  */
1210 void memory_region_transaction_commit(void);
1211 
1212 /**
1213  * memory_listener_register: register callbacks to be called when memory
1214  *                           sections are mapped or unmapped into an address
1215  *                           space
1216  *
1217  * @listener: an object containing the callbacks to be called
1218  * @filter: if non-%NULL, only regions in this address space will be observed
1219  */
1220 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1221 
1222 /**
1223  * memory_listener_unregister: undo the effect of memory_listener_register()
1224  *
1225  * @listener: an object containing the callbacks to be removed
1226  */
1227 void memory_listener_unregister(MemoryListener *listener);
1228 
1229 /**
1230  * memory_global_dirty_log_start: begin dirty logging for all regions
1231  */
1232 void memory_global_dirty_log_start(void);
1233 
1234 /**
1235  * memory_global_dirty_log_stop: end dirty logging for all regions
1236  */
1237 void memory_global_dirty_log_stop(void);
1238 
1239 void mtree_info(fprintf_function mon_printf, void *f);
1240 
1241 /**
1242  * memory_region_dispatch_read: perform a read directly to the specified
1243  * MemoryRegion.
1244  *
1245  * @mr: #MemoryRegion to access
1246  * @addr: address within that region
1247  * @pval: pointer to uint64_t which the data is written to
1248  * @size: size of the access in bytes
1249  * @attrs: memory transaction attributes to use for the access
1250  */
1251 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1252                                         hwaddr addr,
1253                                         uint64_t *pval,
1254                                         unsigned size,
1255                                         MemTxAttrs attrs);
1256 /**
1257  * memory_region_dispatch_write: perform a write directly to the specified
1258  * MemoryRegion.
1259  *
1260  * @mr: #MemoryRegion to access
1261  * @addr: address within that region
1262  * @data: data to write
1263  * @size: size of the access in bytes
1264  * @attrs: memory transaction attributes to use for the access
1265  */
1266 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1267                                          hwaddr addr,
1268                                          uint64_t data,
1269                                          unsigned size,
1270                                          MemTxAttrs attrs);
1271 
1272 /**
1273  * address_space_init: initializes an address space
1274  *
1275  * @as: an uninitialized #AddressSpace
1276  * @root: a #MemoryRegion that routes addresses for the address space
1277  * @name: an address space name.  The name is only used for debugging
1278  *        output.
1279  */
1280 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1281 
1282 /**
1283  * address_space_init_shareable: return an address space for a memory region,
1284  *                               creating it if it does not already exist
1285  *
1286  * @root: a #MemoryRegion that routes addresses for the address space
1287  * @name: an address space name.  The name is only used for debugging
1288  *        output.
1289  *
1290  * This function will return a pointer to an existing AddressSpace
1291  * which was initialized with the specified MemoryRegion, or it will
1292  * create and initialize one if it does not already exist. The ASes
1293  * are reference-counted, so the memory will be freed automatically
1294  * when the AddressSpace is destroyed via address_space_destroy.
1295  */
1296 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1297                                            const char *name);
1298 
1299 /**
1300  * address_space_destroy: destroy an address space
1301  *
1302  * Releases all resources associated with an address space.  After an address space
1303  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1304  * as well.
1305  *
1306  * @as: address space to be destroyed
1307  */
1308 void address_space_destroy(AddressSpace *as);
1309 
1310 /**
1311  * address_space_rw: read from or write to an address space.
1312  *
1313  * Return a MemTxResult indicating whether the operation succeeded
1314  * or failed (eg unassigned memory, device rejected the transaction,
1315  * IOMMU fault).
1316  *
1317  * @as: #AddressSpace to be accessed
1318  * @addr: address within that address space
1319  * @attrs: memory transaction attributes
1320  * @buf: buffer with the data transferred
1321  * @is_write: indicates the transfer direction
1322  */
1323 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1324                              MemTxAttrs attrs, uint8_t *buf,
1325                              int len, bool is_write);
1326 
1327 /**
1328  * address_space_write: write to address space.
1329  *
1330  * Return a MemTxResult indicating whether the operation succeeded
1331  * or failed (eg unassigned memory, device rejected the transaction,
1332  * IOMMU fault).
1333  *
1334  * @as: #AddressSpace to be accessed
1335  * @addr: address within that address space
1336  * @attrs: memory transaction attributes
1337  * @buf: buffer with the data transferred
1338  */
1339 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1340                                 MemTxAttrs attrs,
1341                                 const uint8_t *buf, int len);
1342 
1343 /* address_space_ld*: load from an address space
1344  * address_space_st*: store to an address space
1345  *
1346  * These functions perform a load or store of the byte, word,
1347  * longword or quad to the specified address within the AddressSpace.
1348  * The _le suffixed functions treat the data as little endian;
1349  * _be indicates big endian; no suffix indicates "same endianness
1350  * as guest CPU".
1351  *
1352  * The "guest CPU endianness" accessors are deprecated for use outside
1353  * target-* code; devices should be CPU-agnostic and use either the LE
1354  * or the BE accessors.
1355  *
1356  * @as #AddressSpace to be accessed
1357  * @addr: address within that address space
1358  * @val: data value, for stores
1359  * @attrs: memory transaction attributes
1360  * @result: location to write the success/failure of the transaction;
1361  *   if NULL, this information is discarded
1362  */
1363 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1364                             MemTxAttrs attrs, MemTxResult *result);
1365 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1366                             MemTxAttrs attrs, MemTxResult *result);
1367 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1368                             MemTxAttrs attrs, MemTxResult *result);
1369 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1370                             MemTxAttrs attrs, MemTxResult *result);
1371 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1372                             MemTxAttrs attrs, MemTxResult *result);
1373 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1374                             MemTxAttrs attrs, MemTxResult *result);
1375 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1376                             MemTxAttrs attrs, MemTxResult *result);
1377 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1378                             MemTxAttrs attrs, MemTxResult *result);
1379 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1380                             MemTxAttrs attrs, MemTxResult *result);
1381 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1382                             MemTxAttrs attrs, MemTxResult *result);
1383 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1384                             MemTxAttrs attrs, MemTxResult *result);
1385 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1386                             MemTxAttrs attrs, MemTxResult *result);
1387 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1388                             MemTxAttrs attrs, MemTxResult *result);
1389 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1390                             MemTxAttrs attrs, MemTxResult *result);
1391 
1392 /* address_space_translate: translate an address range into an address space
1393  * into a MemoryRegion and an address range into that section.  Should be
1394  * called from an RCU critical section, to avoid that the last reference
1395  * to the returned region disappears after address_space_translate returns.
1396  *
1397  * @as: #AddressSpace to be accessed
1398  * @addr: address within that address space
1399  * @xlat: pointer to address within the returned memory region section's
1400  * #MemoryRegion.
1401  * @len: pointer to length
1402  * @is_write: indicates the transfer direction
1403  */
1404 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1405                                       hwaddr *xlat, hwaddr *len,
1406                                       bool is_write);
1407 
1408 /* address_space_access_valid: check for validity of accessing an address
1409  * space range
1410  *
1411  * Check whether memory is assigned to the given address space range, and
1412  * access is permitted by any IOMMU regions that are active for the address
1413  * space.
1414  *
1415  * For now, addr and len should be aligned to a page size.  This limitation
1416  * will be lifted in the future.
1417  *
1418  * @as: #AddressSpace to be accessed
1419  * @addr: address within that address space
1420  * @len: length of the area to be checked
1421  * @is_write: indicates the transfer direction
1422  */
1423 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1424 
1425 /* address_space_map: map a physical memory region into a host virtual address
1426  *
1427  * May map a subset of the requested range, given by and returned in @plen.
1428  * May return %NULL if resources needed to perform the mapping are exhausted.
1429  * Use only for reads OR writes - not for read-modify-write operations.
1430  * Use cpu_register_map_client() to know when retrying the map operation is
1431  * likely to succeed.
1432  *
1433  * @as: #AddressSpace to be accessed
1434  * @addr: address within that address space
1435  * @plen: pointer to length of buffer; updated on return
1436  * @is_write: indicates the transfer direction
1437  */
1438 void *address_space_map(AddressSpace *as, hwaddr addr,
1439                         hwaddr *plen, bool is_write);
1440 
1441 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1442  *
1443  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1444  * the amount of memory that was actually read or written by the caller.
1445  *
1446  * @as: #AddressSpace used
1447  * @addr: address within that address space
1448  * @len: buffer length as returned by address_space_map()
1449  * @access_len: amount of data actually transferred
1450  * @is_write: indicates the transfer direction
1451  */
1452 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1453                          int is_write, hwaddr access_len);
1454 
1455 
1456 /* Internal functions, part of the implementation of address_space_read.  */
1457 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1458                                         MemTxAttrs attrs, uint8_t *buf,
1459                                         int len, hwaddr addr1, hwaddr l,
1460 					MemoryRegion *mr);
1461 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1462                                     MemTxAttrs attrs, uint8_t *buf, int len);
1463 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1464 
1465 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1466 {
1467     if (is_write) {
1468         return memory_region_is_ram(mr) && !mr->readonly;
1469     } else {
1470         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1471     }
1472 }
1473 
1474 /**
1475  * address_space_read: read from an address space.
1476  *
1477  * Return a MemTxResult indicating whether the operation succeeded
1478  * or failed (eg unassigned memory, device rejected the transaction,
1479  * IOMMU fault).
1480  *
1481  * @as: #AddressSpace to be accessed
1482  * @addr: address within that address space
1483  * @attrs: memory transaction attributes
1484  * @buf: buffer with the data transferred
1485  */
1486 static inline __attribute__((__always_inline__))
1487 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1488                                uint8_t *buf, int len)
1489 {
1490     MemTxResult result = MEMTX_OK;
1491     hwaddr l, addr1;
1492     void *ptr;
1493     MemoryRegion *mr;
1494 
1495     if (__builtin_constant_p(len)) {
1496         if (len) {
1497             rcu_read_lock();
1498             l = len;
1499             mr = address_space_translate(as, addr, &addr1, &l, false);
1500             if (len == l && memory_access_is_direct(mr, false)) {
1501                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1502                 memcpy(buf, ptr, len);
1503             } else {
1504                 result = address_space_read_continue(as, addr, attrs, buf, len,
1505                                                      addr1, l, mr);
1506             }
1507             rcu_read_unlock();
1508         }
1509     } else {
1510         result = address_space_read_full(as, addr, attrs, buf, len);
1511     }
1512     return result;
1513 }
1514 
1515 #endif
1516 
1517 #endif
1518