xref: /qemu/include/exec/memory.h (revision 65650f01)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #include "exec/cpu-common.h"
20 #include "exec/hwaddr.h"
21 #include "exec/memattrs.h"
22 #include "exec/ramlist.h"
23 #include "qemu/queue.h"
24 #include "qemu/int128.h"
25 #include "qemu/notify.h"
26 #include "qom/object.h"
27 #include "qemu/rcu.h"
28 #include "hw/qdev-core.h"
29 
30 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
31 
32 #define MAX_PHYS_ADDR_SPACE_BITS 62
33 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
34 
35 #define TYPE_MEMORY_REGION "qemu:memory-region"
36 #define MEMORY_REGION(obj) \
37         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
38 
39 #define TYPE_IOMMU_MEMORY_REGION "qemu:iommu-memory-region"
40 #define IOMMU_MEMORY_REGION(obj) \
41         OBJECT_CHECK(IOMMUMemoryRegion, (obj), TYPE_IOMMU_MEMORY_REGION)
42 #define IOMMU_MEMORY_REGION_CLASS(klass) \
43         OBJECT_CLASS_CHECK(IOMMUMemoryRegionClass, (klass), \
44                          TYPE_IOMMU_MEMORY_REGION)
45 #define IOMMU_MEMORY_REGION_GET_CLASS(obj) \
46         OBJECT_GET_CLASS(IOMMUMemoryRegionClass, (obj), \
47                          TYPE_IOMMU_MEMORY_REGION)
48 
49 typedef struct MemoryRegionOps MemoryRegionOps;
50 typedef struct MemoryRegionMmio MemoryRegionMmio;
51 
52 struct MemoryRegionMmio {
53     CPUReadMemoryFunc *read[3];
54     CPUWriteMemoryFunc *write[3];
55 };
56 
57 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
58 
59 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
60 typedef enum {
61     IOMMU_NONE = 0,
62     IOMMU_RO   = 1,
63     IOMMU_WO   = 2,
64     IOMMU_RW   = 3,
65 } IOMMUAccessFlags;
66 
67 #define IOMMU_ACCESS_FLAG(r, w) (((r) ? IOMMU_RO : 0) | ((w) ? IOMMU_WO : 0))
68 
69 struct IOMMUTLBEntry {
70     AddressSpace    *target_as;
71     hwaddr           iova;
72     hwaddr           translated_addr;
73     hwaddr           addr_mask;  /* 0xfff = 4k translation */
74     IOMMUAccessFlags perm;
75 };
76 
77 /*
78  * Bitmap for different IOMMUNotifier capabilities. Each notifier can
79  * register with one or multiple IOMMU Notifier capability bit(s).
80  */
81 typedef enum {
82     IOMMU_NOTIFIER_NONE = 0,
83     /* Notify cache invalidations */
84     IOMMU_NOTIFIER_UNMAP = 0x1,
85     /* Notify entry changes (newly created entries) */
86     IOMMU_NOTIFIER_MAP = 0x2,
87 } IOMMUNotifierFlag;
88 
89 #define IOMMU_NOTIFIER_ALL (IOMMU_NOTIFIER_MAP | IOMMU_NOTIFIER_UNMAP)
90 
91 struct IOMMUNotifier;
92 typedef void (*IOMMUNotify)(struct IOMMUNotifier *notifier,
93                             IOMMUTLBEntry *data);
94 
95 struct IOMMUNotifier {
96     IOMMUNotify notify;
97     IOMMUNotifierFlag notifier_flags;
98     /* Notify for address space range start <= addr <= end */
99     hwaddr start;
100     hwaddr end;
101     int iommu_idx;
102     QLIST_ENTRY(IOMMUNotifier) node;
103 };
104 typedef struct IOMMUNotifier IOMMUNotifier;
105 
106 static inline void iommu_notifier_init(IOMMUNotifier *n, IOMMUNotify fn,
107                                        IOMMUNotifierFlag flags,
108                                        hwaddr start, hwaddr end,
109                                        int iommu_idx)
110 {
111     n->notify = fn;
112     n->notifier_flags = flags;
113     n->start = start;
114     n->end = end;
115     n->iommu_idx = iommu_idx;
116 }
117 
118 /*
119  * Memory region callbacks
120  */
121 struct MemoryRegionOps {
122     /* Read from the memory region. @addr is relative to @mr; @size is
123      * in bytes. */
124     uint64_t (*read)(void *opaque,
125                      hwaddr addr,
126                      unsigned size);
127     /* Write to the memory region. @addr is relative to @mr; @size is
128      * in bytes. */
129     void (*write)(void *opaque,
130                   hwaddr addr,
131                   uint64_t data,
132                   unsigned size);
133 
134     MemTxResult (*read_with_attrs)(void *opaque,
135                                    hwaddr addr,
136                                    uint64_t *data,
137                                    unsigned size,
138                                    MemTxAttrs attrs);
139     MemTxResult (*write_with_attrs)(void *opaque,
140                                     hwaddr addr,
141                                     uint64_t data,
142                                     unsigned size,
143                                     MemTxAttrs attrs);
144     /* Instruction execution pre-callback:
145      * @addr is the address of the access relative to the @mr.
146      * @size is the size of the area returned by the callback.
147      * @offset is the location of the pointer inside @mr.
148      *
149      * Returns a pointer to a location which contains guest code.
150      */
151     void *(*request_ptr)(void *opaque, hwaddr addr, unsigned *size,
152                          unsigned *offset);
153 
154     enum device_endian endianness;
155     /* Guest-visible constraints: */
156     struct {
157         /* If nonzero, specify bounds on access sizes beyond which a machine
158          * check is thrown.
159          */
160         unsigned min_access_size;
161         unsigned max_access_size;
162         /* If true, unaligned accesses are supported.  Otherwise unaligned
163          * accesses throw machine checks.
164          */
165          bool unaligned;
166         /*
167          * If present, and returns #false, the transaction is not accepted
168          * by the device (and results in machine dependent behaviour such
169          * as a machine check exception).
170          */
171         bool (*accepts)(void *opaque, hwaddr addr,
172                         unsigned size, bool is_write,
173                         MemTxAttrs attrs);
174     } valid;
175     /* Internal implementation constraints: */
176     struct {
177         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
178          * will be rounded upwards and a partial result will be returned.
179          */
180         unsigned min_access_size;
181         /* If nonzero, specifies the maximum size implemented.  Larger sizes
182          * will be done as a series of accesses with smaller sizes.
183          */
184         unsigned max_access_size;
185         /* If true, unaligned accesses are supported.  Otherwise all accesses
186          * are converted to (possibly multiple) naturally aligned accesses.
187          */
188         bool unaligned;
189     } impl;
190 
191     /* If .read and .write are not present, old_mmio may be used for
192      * backwards compatibility with old mmio registration
193      */
194     const MemoryRegionMmio old_mmio;
195 };
196 
197 enum IOMMUMemoryRegionAttr {
198     IOMMU_ATTR_SPAPR_TCE_FD
199 };
200 
201 /**
202  * IOMMUMemoryRegionClass:
203  *
204  * All IOMMU implementations need to subclass TYPE_IOMMU_MEMORY_REGION
205  * and provide an implementation of at least the @translate method here
206  * to handle requests to the memory region. Other methods are optional.
207  *
208  * The IOMMU implementation must use the IOMMU notifier infrastructure
209  * to report whenever mappings are changed, by calling
210  * memory_region_notify_iommu() (or, if necessary, by calling
211  * memory_region_notify_one() for each registered notifier).
212  *
213  * Conceptually an IOMMU provides a mapping from input address
214  * to an output TLB entry. If the IOMMU is aware of memory transaction
215  * attributes and the output TLB entry depends on the transaction
216  * attributes, we represent this using IOMMU indexes. Each index
217  * selects a particular translation table that the IOMMU has:
218  *   @attrs_to_index returns the IOMMU index for a set of transaction attributes
219  *   @translate takes an input address and an IOMMU index
220  * and the mapping returned can only depend on the input address and the
221  * IOMMU index.
222  *
223  * Most IOMMUs don't care about the transaction attributes and support
224  * only a single IOMMU index. A more complex IOMMU might have one index
225  * for secure transactions and one for non-secure transactions.
226  */
227 typedef struct IOMMUMemoryRegionClass {
228     /* private */
229     struct DeviceClass parent_class;
230 
231     /*
232      * Return a TLB entry that contains a given address.
233      *
234      * The IOMMUAccessFlags indicated via @flag are optional and may
235      * be specified as IOMMU_NONE to indicate that the caller needs
236      * the full translation information for both reads and writes. If
237      * the access flags are specified then the IOMMU implementation
238      * may use this as an optimization, to stop doing a page table
239      * walk as soon as it knows that the requested permissions are not
240      * allowed. If IOMMU_NONE is passed then the IOMMU must do the
241      * full page table walk and report the permissions in the returned
242      * IOMMUTLBEntry. (Note that this implies that an IOMMU may not
243      * return different mappings for reads and writes.)
244      *
245      * The returned information remains valid while the caller is
246      * holding the big QEMU lock or is inside an RCU critical section;
247      * if the caller wishes to cache the mapping beyond that it must
248      * register an IOMMU notifier so it can invalidate its cached
249      * information when the IOMMU mapping changes.
250      *
251      * @iommu: the IOMMUMemoryRegion
252      * @hwaddr: address to be translated within the memory region
253      * @flag: requested access permissions
254      * @iommu_idx: IOMMU index for the translation
255      */
256     IOMMUTLBEntry (*translate)(IOMMUMemoryRegion *iommu, hwaddr addr,
257                                IOMMUAccessFlags flag, int iommu_idx);
258     /* Returns minimum supported page size in bytes.
259      * If this method is not provided then the minimum is assumed to
260      * be TARGET_PAGE_SIZE.
261      *
262      * @iommu: the IOMMUMemoryRegion
263      */
264     uint64_t (*get_min_page_size)(IOMMUMemoryRegion *iommu);
265     /* Called when IOMMU Notifier flag changes (ie when the set of
266      * events which IOMMU users are requesting notification for changes).
267      * Optional method -- need not be provided if the IOMMU does not
268      * need to know exactly which events must be notified.
269      *
270      * @iommu: the IOMMUMemoryRegion
271      * @old_flags: events which previously needed to be notified
272      * @new_flags: events which now need to be notified
273      */
274     void (*notify_flag_changed)(IOMMUMemoryRegion *iommu,
275                                 IOMMUNotifierFlag old_flags,
276                                 IOMMUNotifierFlag new_flags);
277     /* Called to handle memory_region_iommu_replay().
278      *
279      * The default implementation of memory_region_iommu_replay() is to
280      * call the IOMMU translate method for every page in the address space
281      * with flag == IOMMU_NONE and then call the notifier if translate
282      * returns a valid mapping. If this method is implemented then it
283      * overrides the default behaviour, and must provide the full semantics
284      * of memory_region_iommu_replay(), by calling @notifier for every
285      * translation present in the IOMMU.
286      *
287      * Optional method -- an IOMMU only needs to provide this method
288      * if the default is inefficient or produces undesirable side effects.
289      *
290      * Note: this is not related to record-and-replay functionality.
291      */
292     void (*replay)(IOMMUMemoryRegion *iommu, IOMMUNotifier *notifier);
293 
294     /* Get IOMMU misc attributes. This is an optional method that
295      * can be used to allow users of the IOMMU to get implementation-specific
296      * information. The IOMMU implements this method to handle calls
297      * by IOMMU users to memory_region_iommu_get_attr() by filling in
298      * the arbitrary data pointer for any IOMMUMemoryRegionAttr values that
299      * the IOMMU supports. If the method is unimplemented then
300      * memory_region_iommu_get_attr() will always return -EINVAL.
301      *
302      * @iommu: the IOMMUMemoryRegion
303      * @attr: attribute being queried
304      * @data: memory to fill in with the attribute data
305      *
306      * Returns 0 on success, or a negative errno; in particular
307      * returns -EINVAL for unrecognized or unimplemented attribute types.
308      */
309     int (*get_attr)(IOMMUMemoryRegion *iommu, enum IOMMUMemoryRegionAttr attr,
310                     void *data);
311 
312     /* Return the IOMMU index to use for a given set of transaction attributes.
313      *
314      * Optional method: if an IOMMU only supports a single IOMMU index then
315      * the default implementation of memory_region_iommu_attrs_to_index()
316      * will return 0.
317      *
318      * The indexes supported by an IOMMU must be contiguous, starting at 0.
319      *
320      * @iommu: the IOMMUMemoryRegion
321      * @attrs: memory transaction attributes
322      */
323     int (*attrs_to_index)(IOMMUMemoryRegion *iommu, MemTxAttrs attrs);
324 
325     /* Return the number of IOMMU indexes this IOMMU supports.
326      *
327      * Optional method: if this method is not provided, then
328      * memory_region_iommu_num_indexes() will return 1, indicating that
329      * only a single IOMMU index is supported.
330      *
331      * @iommu: the IOMMUMemoryRegion
332      */
333     int (*num_indexes)(IOMMUMemoryRegion *iommu);
334 } IOMMUMemoryRegionClass;
335 
336 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
337 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
338 
339 struct MemoryRegion {
340     Object parent_obj;
341 
342     /* All fields are private - violators will be prosecuted */
343 
344     /* The following fields should fit in a cache line */
345     bool romd_mode;
346     bool ram;
347     bool subpage;
348     bool readonly; /* For RAM regions */
349     bool rom_device;
350     bool flush_coalesced_mmio;
351     bool global_locking;
352     uint8_t dirty_log_mask;
353     bool is_iommu;
354     RAMBlock *ram_block;
355     Object *owner;
356 
357     const MemoryRegionOps *ops;
358     void *opaque;
359     MemoryRegion *container;
360     Int128 size;
361     hwaddr addr;
362     void (*destructor)(MemoryRegion *mr);
363     uint64_t align;
364     bool terminates;
365     bool ram_device;
366     bool enabled;
367     bool warning_printed; /* For reservations */
368     uint8_t vga_logging_count;
369     MemoryRegion *alias;
370     hwaddr alias_offset;
371     int32_t priority;
372     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
373     QTAILQ_ENTRY(MemoryRegion) subregions_link;
374     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
375     const char *name;
376     unsigned ioeventfd_nb;
377     MemoryRegionIoeventfd *ioeventfds;
378 };
379 
380 struct IOMMUMemoryRegion {
381     MemoryRegion parent_obj;
382 
383     QLIST_HEAD(, IOMMUNotifier) iommu_notify;
384     IOMMUNotifierFlag iommu_notify_flags;
385 };
386 
387 #define IOMMU_NOTIFIER_FOREACH(n, mr) \
388     QLIST_FOREACH((n), &(mr)->iommu_notify, node)
389 
390 /**
391  * MemoryListener: callbacks structure for updates to the physical memory map
392  *
393  * Allows a component to adjust to changes in the guest-visible memory map.
394  * Use with memory_listener_register() and memory_listener_unregister().
395  */
396 struct MemoryListener {
397     void (*begin)(MemoryListener *listener);
398     void (*commit)(MemoryListener *listener);
399     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
400     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
401     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
402     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
403                       int old, int new);
404     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
405                      int old, int new);
406     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
407     void (*log_global_start)(MemoryListener *listener);
408     void (*log_global_stop)(MemoryListener *listener);
409     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
410                         bool match_data, uint64_t data, EventNotifier *e);
411     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
412                         bool match_data, uint64_t data, EventNotifier *e);
413     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
414                                hwaddr addr, hwaddr len);
415     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
416                                hwaddr addr, hwaddr len);
417     /* Lower = earlier (during add), later (during del) */
418     unsigned priority;
419     AddressSpace *address_space;
420     QTAILQ_ENTRY(MemoryListener) link;
421     QTAILQ_ENTRY(MemoryListener) link_as;
422 };
423 
424 /**
425  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
426  */
427 struct AddressSpace {
428     /* All fields are private. */
429     struct rcu_head rcu;
430     char *name;
431     MemoryRegion *root;
432 
433     /* Accessed via RCU.  */
434     struct FlatView *current_map;
435 
436     int ioeventfd_nb;
437     struct MemoryRegionIoeventfd *ioeventfds;
438     QTAILQ_HEAD(memory_listeners_as, MemoryListener) listeners;
439     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
440 };
441 
442 typedef struct AddressSpaceDispatch AddressSpaceDispatch;
443 typedef struct FlatRange FlatRange;
444 
445 /* Flattened global view of current active memory hierarchy.  Kept in sorted
446  * order.
447  */
448 struct FlatView {
449     struct rcu_head rcu;
450     unsigned ref;
451     FlatRange *ranges;
452     unsigned nr;
453     unsigned nr_allocated;
454     struct AddressSpaceDispatch *dispatch;
455     MemoryRegion *root;
456 };
457 
458 static inline FlatView *address_space_to_flatview(AddressSpace *as)
459 {
460     return atomic_rcu_read(&as->current_map);
461 }
462 
463 
464 /**
465  * MemoryRegionSection: describes a fragment of a #MemoryRegion
466  *
467  * @mr: the region, or %NULL if empty
468  * @fv: the flat view of the address space the region is mapped in
469  * @offset_within_region: the beginning of the section, relative to @mr's start
470  * @size: the size of the section; will not exceed @mr's boundaries
471  * @offset_within_address_space: the address of the first byte of the section
472  *     relative to the region's address space
473  * @readonly: writes to this section are ignored
474  */
475 struct MemoryRegionSection {
476     MemoryRegion *mr;
477     FlatView *fv;
478     hwaddr offset_within_region;
479     Int128 size;
480     hwaddr offset_within_address_space;
481     bool readonly;
482 };
483 
484 /**
485  * memory_region_init: Initialize a memory region
486  *
487  * The region typically acts as a container for other memory regions.  Use
488  * memory_region_add_subregion() to add subregions.
489  *
490  * @mr: the #MemoryRegion to be initialized
491  * @owner: the object that tracks the region's reference count
492  * @name: used for debugging; not visible to the user or ABI
493  * @size: size of the region; any subregions beyond this size will be clipped
494  */
495 void memory_region_init(MemoryRegion *mr,
496                         struct Object *owner,
497                         const char *name,
498                         uint64_t size);
499 
500 /**
501  * memory_region_ref: Add 1 to a memory region's reference count
502  *
503  * Whenever memory regions are accessed outside the BQL, they need to be
504  * preserved against hot-unplug.  MemoryRegions actually do not have their
505  * own reference count; they piggyback on a QOM object, their "owner".
506  * This function adds a reference to the owner.
507  *
508  * All MemoryRegions must have an owner if they can disappear, even if the
509  * device they belong to operates exclusively under the BQL.  This is because
510  * the region could be returned at any time by memory_region_find, and this
511  * is usually under guest control.
512  *
513  * @mr: the #MemoryRegion
514  */
515 void memory_region_ref(MemoryRegion *mr);
516 
517 /**
518  * memory_region_unref: Remove 1 to a memory region's reference count
519  *
520  * Whenever memory regions are accessed outside the BQL, they need to be
521  * preserved against hot-unplug.  MemoryRegions actually do not have their
522  * own reference count; they piggyback on a QOM object, their "owner".
523  * This function removes a reference to the owner and possibly destroys it.
524  *
525  * @mr: the #MemoryRegion
526  */
527 void memory_region_unref(MemoryRegion *mr);
528 
529 /**
530  * memory_region_init_io: Initialize an I/O memory region.
531  *
532  * Accesses into the region will cause the callbacks in @ops to be called.
533  * if @size is nonzero, subregions will be clipped to @size.
534  *
535  * @mr: the #MemoryRegion to be initialized.
536  * @owner: the object that tracks the region's reference count
537  * @ops: a structure containing read and write callbacks to be used when
538  *       I/O is performed on the region.
539  * @opaque: passed to the read and write callbacks of the @ops structure.
540  * @name: used for debugging; not visible to the user or ABI
541  * @size: size of the region.
542  */
543 void memory_region_init_io(MemoryRegion *mr,
544                            struct Object *owner,
545                            const MemoryRegionOps *ops,
546                            void *opaque,
547                            const char *name,
548                            uint64_t size);
549 
550 /**
551  * memory_region_init_ram_nomigrate:  Initialize RAM memory region.  Accesses
552  *                                    into the region will modify memory
553  *                                    directly.
554  *
555  * @mr: the #MemoryRegion to be initialized.
556  * @owner: the object that tracks the region's reference count
557  * @name: Region name, becomes part of RAMBlock name used in migration stream
558  *        must be unique within any device
559  * @size: size of the region.
560  * @errp: pointer to Error*, to store an error if it happens.
561  *
562  * Note that this function does not do anything to cause the data in the
563  * RAM memory region to be migrated; that is the responsibility of the caller.
564  */
565 void memory_region_init_ram_nomigrate(MemoryRegion *mr,
566                                       struct Object *owner,
567                                       const char *name,
568                                       uint64_t size,
569                                       Error **errp);
570 
571 /**
572  * memory_region_init_ram_shared_nomigrate:  Initialize RAM memory region.
573  *                                           Accesses into the region will
574  *                                           modify memory directly.
575  *
576  * @mr: the #MemoryRegion to be initialized.
577  * @owner: the object that tracks the region's reference count
578  * @name: Region name, becomes part of RAMBlock name used in migration stream
579  *        must be unique within any device
580  * @size: size of the region.
581  * @share: allow remapping RAM to different addresses
582  * @errp: pointer to Error*, to store an error if it happens.
583  *
584  * Note that this function is similar to memory_region_init_ram_nomigrate.
585  * The only difference is part of the RAM region can be remapped.
586  */
587 void memory_region_init_ram_shared_nomigrate(MemoryRegion *mr,
588                                              struct Object *owner,
589                                              const char *name,
590                                              uint64_t size,
591                                              bool share,
592                                              Error **errp);
593 
594 /**
595  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
596  *                                     RAM.  Accesses into the region will
597  *                                     modify memory directly.  Only an initial
598  *                                     portion of this RAM is actually used.
599  *                                     The used size can change across reboots.
600  *
601  * @mr: the #MemoryRegion to be initialized.
602  * @owner: the object that tracks the region's reference count
603  * @name: Region name, becomes part of RAMBlock name used in migration stream
604  *        must be unique within any device
605  * @size: used size of the region.
606  * @max_size: max size of the region.
607  * @resized: callback to notify owner about used size change.
608  * @errp: pointer to Error*, to store an error if it happens.
609  *
610  * Note that this function does not do anything to cause the data in the
611  * RAM memory region to be migrated; that is the responsibility of the caller.
612  */
613 void memory_region_init_resizeable_ram(MemoryRegion *mr,
614                                        struct Object *owner,
615                                        const char *name,
616                                        uint64_t size,
617                                        uint64_t max_size,
618                                        void (*resized)(const char*,
619                                                        uint64_t length,
620                                                        void *host),
621                                        Error **errp);
622 #ifdef __linux__
623 /**
624  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
625  *                                    mmap-ed backend.
626  *
627  * @mr: the #MemoryRegion to be initialized.
628  * @owner: the object that tracks the region's reference count
629  * @name: Region name, becomes part of RAMBlock name used in migration stream
630  *        must be unique within any device
631  * @size: size of the region.
632  * @align: alignment of the region base address; if 0, the default alignment
633  *         (getpagesize()) will be used.
634  * @share: %true if memory must be mmaped with the MAP_SHARED flag
635  * @path: the path in which to allocate the RAM.
636  * @errp: pointer to Error*, to store an error if it happens.
637  *
638  * Note that this function does not do anything to cause the data in the
639  * RAM memory region to be migrated; that is the responsibility of the caller.
640  */
641 void memory_region_init_ram_from_file(MemoryRegion *mr,
642                                       struct Object *owner,
643                                       const char *name,
644                                       uint64_t size,
645                                       uint64_t align,
646                                       bool share,
647                                       const char *path,
648                                       Error **errp);
649 
650 /**
651  * memory_region_init_ram_from_fd:  Initialize RAM memory region with a
652  *                                  mmap-ed backend.
653  *
654  * @mr: the #MemoryRegion to be initialized.
655  * @owner: the object that tracks the region's reference count
656  * @name: the name of the region.
657  * @size: size of the region.
658  * @share: %true if memory must be mmaped with the MAP_SHARED flag
659  * @fd: the fd to mmap.
660  * @errp: pointer to Error*, to store an error if it happens.
661  *
662  * Note that this function does not do anything to cause the data in the
663  * RAM memory region to be migrated; that is the responsibility of the caller.
664  */
665 void memory_region_init_ram_from_fd(MemoryRegion *mr,
666                                     struct Object *owner,
667                                     const char *name,
668                                     uint64_t size,
669                                     bool share,
670                                     int fd,
671                                     Error **errp);
672 #endif
673 
674 /**
675  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
676  *                              user-provided pointer.  Accesses into the
677  *                              region will modify memory directly.
678  *
679  * @mr: the #MemoryRegion to be initialized.
680  * @owner: the object that tracks the region's reference count
681  * @name: Region name, becomes part of RAMBlock name used in migration stream
682  *        must be unique within any device
683  * @size: size of the region.
684  * @ptr: memory to be mapped; must contain at least @size bytes.
685  *
686  * Note that this function does not do anything to cause the data in the
687  * RAM memory region to be migrated; that is the responsibility of the caller.
688  */
689 void memory_region_init_ram_ptr(MemoryRegion *mr,
690                                 struct Object *owner,
691                                 const char *name,
692                                 uint64_t size,
693                                 void *ptr);
694 
695 /**
696  * memory_region_init_ram_device_ptr:  Initialize RAM device memory region from
697  *                                     a user-provided pointer.
698  *
699  * A RAM device represents a mapping to a physical device, such as to a PCI
700  * MMIO BAR of an vfio-pci assigned device.  The memory region may be mapped
701  * into the VM address space and access to the region will modify memory
702  * directly.  However, the memory region should not be included in a memory
703  * dump (device may not be enabled/mapped at the time of the dump), and
704  * operations incompatible with manipulating MMIO should be avoided.  Replaces
705  * skip_dump flag.
706  *
707  * @mr: the #MemoryRegion to be initialized.
708  * @owner: the object that tracks the region's reference count
709  * @name: the name of the region.
710  * @size: size of the region.
711  * @ptr: memory to be mapped; must contain at least @size bytes.
712  *
713  * Note that this function does not do anything to cause the data in the
714  * RAM memory region to be migrated; that is the responsibility of the caller.
715  * (For RAM device memory regions, migrating the contents rarely makes sense.)
716  */
717 void memory_region_init_ram_device_ptr(MemoryRegion *mr,
718                                        struct Object *owner,
719                                        const char *name,
720                                        uint64_t size,
721                                        void *ptr);
722 
723 /**
724  * memory_region_init_alias: Initialize a memory region that aliases all or a
725  *                           part of another memory region.
726  *
727  * @mr: the #MemoryRegion to be initialized.
728  * @owner: the object that tracks the region's reference count
729  * @name: used for debugging; not visible to the user or ABI
730  * @orig: the region to be referenced; @mr will be equivalent to
731  *        @orig between @offset and @offset + @size - 1.
732  * @offset: start of the section in @orig to be referenced.
733  * @size: size of the region.
734  */
735 void memory_region_init_alias(MemoryRegion *mr,
736                               struct Object *owner,
737                               const char *name,
738                               MemoryRegion *orig,
739                               hwaddr offset,
740                               uint64_t size);
741 
742 /**
743  * memory_region_init_rom_nomigrate: Initialize a ROM memory region.
744  *
745  * This has the same effect as calling memory_region_init_ram_nomigrate()
746  * and then marking the resulting region read-only with
747  * memory_region_set_readonly().
748  *
749  * Note that this function does not do anything to cause the data in the
750  * RAM side of the memory region to be migrated; that is the responsibility
751  * of the caller.
752  *
753  * @mr: the #MemoryRegion to be initialized.
754  * @owner: the object that tracks the region's reference count
755  * @name: Region name, becomes part of RAMBlock name used in migration stream
756  *        must be unique within any device
757  * @size: size of the region.
758  * @errp: pointer to Error*, to store an error if it happens.
759  */
760 void memory_region_init_rom_nomigrate(MemoryRegion *mr,
761                                       struct Object *owner,
762                                       const char *name,
763                                       uint64_t size,
764                                       Error **errp);
765 
766 /**
767  * memory_region_init_rom_device_nomigrate:  Initialize a ROM memory region.
768  *                                 Writes are handled via callbacks.
769  *
770  * Note that this function does not do anything to cause the data in the
771  * RAM side of the memory region to be migrated; that is the responsibility
772  * of the caller.
773  *
774  * @mr: the #MemoryRegion to be initialized.
775  * @owner: the object that tracks the region's reference count
776  * @ops: callbacks for write access handling (must not be NULL).
777  * @opaque: passed to the read and write callbacks of the @ops structure.
778  * @name: Region name, becomes part of RAMBlock name used in migration stream
779  *        must be unique within any device
780  * @size: size of the region.
781  * @errp: pointer to Error*, to store an error if it happens.
782  */
783 void memory_region_init_rom_device_nomigrate(MemoryRegion *mr,
784                                              struct Object *owner,
785                                              const MemoryRegionOps *ops,
786                                              void *opaque,
787                                              const char *name,
788                                              uint64_t size,
789                                              Error **errp);
790 
791 /**
792  * memory_region_init_iommu: Initialize a memory region of a custom type
793  * that translates addresses
794  *
795  * An IOMMU region translates addresses and forwards accesses to a target
796  * memory region.
797  *
798  * The IOMMU implementation must define a subclass of TYPE_IOMMU_MEMORY_REGION.
799  * @_iommu_mr should be a pointer to enough memory for an instance of
800  * that subclass, @instance_size is the size of that subclass, and
801  * @mrtypename is its name. This function will initialize @_iommu_mr as an
802  * instance of the subclass, and its methods will then be called to handle
803  * accesses to the memory region. See the documentation of
804  * #IOMMUMemoryRegionClass for further details.
805  *
806  * @_iommu_mr: the #IOMMUMemoryRegion to be initialized
807  * @instance_size: the IOMMUMemoryRegion subclass instance size
808  * @mrtypename: the type name of the #IOMMUMemoryRegion
809  * @owner: the object that tracks the region's reference count
810  * @name: used for debugging; not visible to the user or ABI
811  * @size: size of the region.
812  */
813 void memory_region_init_iommu(void *_iommu_mr,
814                               size_t instance_size,
815                               const char *mrtypename,
816                               Object *owner,
817                               const char *name,
818                               uint64_t size);
819 
820 /**
821  * memory_region_init_ram - Initialize RAM memory region.  Accesses into the
822  *                          region will modify memory directly.
823  *
824  * @mr: the #MemoryRegion to be initialized
825  * @owner: the object that tracks the region's reference count (must be
826  *         TYPE_DEVICE or a subclass of TYPE_DEVICE, or NULL)
827  * @name: name of the memory region
828  * @size: size of the region in bytes
829  * @errp: pointer to Error*, to store an error if it happens.
830  *
831  * This function allocates RAM for a board model or device, and
832  * arranges for it to be migrated (by calling vmstate_register_ram()
833  * if @owner is a DeviceState, or vmstate_register_ram_global() if
834  * @owner is NULL).
835  *
836  * TODO: Currently we restrict @owner to being either NULL (for
837  * global RAM regions with no owner) or devices, so that we can
838  * give the RAM block a unique name for migration purposes.
839  * We should lift this restriction and allow arbitrary Objects.
840  * If you pass a non-NULL non-device @owner then we will assert.
841  */
842 void memory_region_init_ram(MemoryRegion *mr,
843                             struct Object *owner,
844                             const char *name,
845                             uint64_t size,
846                             Error **errp);
847 
848 /**
849  * memory_region_init_rom: Initialize a ROM memory region.
850  *
851  * This has the same effect as calling memory_region_init_ram()
852  * and then marking the resulting region read-only with
853  * memory_region_set_readonly(). This includes arranging for the
854  * contents to be migrated.
855  *
856  * TODO: Currently we restrict @owner to being either NULL (for
857  * global RAM regions with no owner) or devices, so that we can
858  * give the RAM block a unique name for migration purposes.
859  * We should lift this restriction and allow arbitrary Objects.
860  * If you pass a non-NULL non-device @owner then we will assert.
861  *
862  * @mr: the #MemoryRegion to be initialized.
863  * @owner: the object that tracks the region's reference count
864  * @name: Region name, becomes part of RAMBlock name used in migration stream
865  *        must be unique within any device
866  * @size: size of the region.
867  * @errp: pointer to Error*, to store an error if it happens.
868  */
869 void memory_region_init_rom(MemoryRegion *mr,
870                             struct Object *owner,
871                             const char *name,
872                             uint64_t size,
873                             Error **errp);
874 
875 /**
876  * memory_region_init_rom_device:  Initialize a ROM memory region.
877  *                                 Writes are handled via callbacks.
878  *
879  * This function initializes a memory region backed by RAM for reads
880  * and callbacks for writes, and arranges for the RAM backing to
881  * be migrated (by calling vmstate_register_ram()
882  * if @owner is a DeviceState, or vmstate_register_ram_global() if
883  * @owner is NULL).
884  *
885  * TODO: Currently we restrict @owner to being either NULL (for
886  * global RAM regions with no owner) or devices, so that we can
887  * give the RAM block a unique name for migration purposes.
888  * We should lift this restriction and allow arbitrary Objects.
889  * If you pass a non-NULL non-device @owner then we will assert.
890  *
891  * @mr: the #MemoryRegion to be initialized.
892  * @owner: the object that tracks the region's reference count
893  * @ops: callbacks for write access handling (must not be NULL).
894  * @name: Region name, becomes part of RAMBlock name used in migration stream
895  *        must be unique within any device
896  * @size: size of the region.
897  * @errp: pointer to Error*, to store an error if it happens.
898  */
899 void memory_region_init_rom_device(MemoryRegion *mr,
900                                    struct Object *owner,
901                                    const MemoryRegionOps *ops,
902                                    void *opaque,
903                                    const char *name,
904                                    uint64_t size,
905                                    Error **errp);
906 
907 
908 /**
909  * memory_region_owner: get a memory region's owner.
910  *
911  * @mr: the memory region being queried.
912  */
913 struct Object *memory_region_owner(MemoryRegion *mr);
914 
915 /**
916  * memory_region_size: get a memory region's size.
917  *
918  * @mr: the memory region being queried.
919  */
920 uint64_t memory_region_size(MemoryRegion *mr);
921 
922 /**
923  * memory_region_is_ram: check whether a memory region is random access
924  *
925  * Returns %true is a memory region is random access.
926  *
927  * @mr: the memory region being queried
928  */
929 static inline bool memory_region_is_ram(MemoryRegion *mr)
930 {
931     return mr->ram;
932 }
933 
934 /**
935  * memory_region_is_ram_device: check whether a memory region is a ram device
936  *
937  * Returns %true is a memory region is a device backed ram region
938  *
939  * @mr: the memory region being queried
940  */
941 bool memory_region_is_ram_device(MemoryRegion *mr);
942 
943 /**
944  * memory_region_is_romd: check whether a memory region is in ROMD mode
945  *
946  * Returns %true if a memory region is a ROM device and currently set to allow
947  * direct reads.
948  *
949  * @mr: the memory region being queried
950  */
951 static inline bool memory_region_is_romd(MemoryRegion *mr)
952 {
953     return mr->rom_device && mr->romd_mode;
954 }
955 
956 /**
957  * memory_region_get_iommu: check whether a memory region is an iommu
958  *
959  * Returns pointer to IOMMUMemoryRegion if a memory region is an iommu,
960  * otherwise NULL.
961  *
962  * @mr: the memory region being queried
963  */
964 static inline IOMMUMemoryRegion *memory_region_get_iommu(MemoryRegion *mr)
965 {
966     if (mr->alias) {
967         return memory_region_get_iommu(mr->alias);
968     }
969     if (mr->is_iommu) {
970         return (IOMMUMemoryRegion *) mr;
971     }
972     return NULL;
973 }
974 
975 /**
976  * memory_region_get_iommu_class_nocheck: returns iommu memory region class
977  *   if an iommu or NULL if not
978  *
979  * Returns pointer to IOMMUMemoryRegionClass if a memory region is an iommu,
980  * otherwise NULL. This is fast path avoiding QOM checking, use with caution.
981  *
982  * @mr: the memory region being queried
983  */
984 static inline IOMMUMemoryRegionClass *memory_region_get_iommu_class_nocheck(
985         IOMMUMemoryRegion *iommu_mr)
986 {
987     return (IOMMUMemoryRegionClass *) (((Object *)iommu_mr)->class);
988 }
989 
990 #define memory_region_is_iommu(mr) (memory_region_get_iommu(mr) != NULL)
991 
992 /**
993  * memory_region_iommu_get_min_page_size: get minimum supported page size
994  * for an iommu
995  *
996  * Returns minimum supported page size for an iommu.
997  *
998  * @iommu_mr: the memory region being queried
999  */
1000 uint64_t memory_region_iommu_get_min_page_size(IOMMUMemoryRegion *iommu_mr);
1001 
1002 /**
1003  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
1004  *
1005  * The notification type will be decided by entry.perm bits:
1006  *
1007  * - For UNMAP (cache invalidation) notifies: set entry.perm to IOMMU_NONE.
1008  * - For MAP (newly added entry) notifies: set entry.perm to the
1009  *   permission of the page (which is definitely !IOMMU_NONE).
1010  *
1011  * Note: for any IOMMU implementation, an in-place mapping change
1012  * should be notified with an UNMAP followed by a MAP.
1013  *
1014  * @iommu_mr: the memory region that was changed
1015  * @iommu_idx: the IOMMU index for the translation table which has changed
1016  * @entry: the new entry in the IOMMU translation table.  The entry
1017  *         replaces all old entries for the same virtual I/O address range.
1018  *         Deleted entries have .@perm == 0.
1019  */
1020 void memory_region_notify_iommu(IOMMUMemoryRegion *iommu_mr,
1021                                 int iommu_idx,
1022                                 IOMMUTLBEntry entry);
1023 
1024 /**
1025  * memory_region_notify_one: notify a change in an IOMMU translation
1026  *                           entry to a single notifier
1027  *
1028  * This works just like memory_region_notify_iommu(), but it only
1029  * notifies a specific notifier, not all of them.
1030  *
1031  * @notifier: the notifier to be notified
1032  * @entry: the new entry in the IOMMU translation table.  The entry
1033  *         replaces all old entries for the same virtual I/O address range.
1034  *         Deleted entries have .@perm == 0.
1035  */
1036 void memory_region_notify_one(IOMMUNotifier *notifier,
1037                               IOMMUTLBEntry *entry);
1038 
1039 /**
1040  * memory_region_register_iommu_notifier: register a notifier for changes to
1041  * IOMMU translation entries.
1042  *
1043  * @mr: the memory region to observe
1044  * @n: the IOMMUNotifier to be added; the notify callback receives a
1045  *     pointer to an #IOMMUTLBEntry as the opaque value; the pointer
1046  *     ceases to be valid on exit from the notifier.
1047  */
1048 void memory_region_register_iommu_notifier(MemoryRegion *mr,
1049                                            IOMMUNotifier *n);
1050 
1051 /**
1052  * memory_region_iommu_replay: replay existing IOMMU translations to
1053  * a notifier with the minimum page granularity returned by
1054  * mr->iommu_ops->get_page_size().
1055  *
1056  * Note: this is not related to record-and-replay functionality.
1057  *
1058  * @iommu_mr: the memory region to observe
1059  * @n: the notifier to which to replay iommu mappings
1060  */
1061 void memory_region_iommu_replay(IOMMUMemoryRegion *iommu_mr, IOMMUNotifier *n);
1062 
1063 /**
1064  * memory_region_iommu_replay_all: replay existing IOMMU translations
1065  * to all the notifiers registered.
1066  *
1067  * Note: this is not related to record-and-replay functionality.
1068  *
1069  * @iommu_mr: the memory region to observe
1070  */
1071 void memory_region_iommu_replay_all(IOMMUMemoryRegion *iommu_mr);
1072 
1073 /**
1074  * memory_region_unregister_iommu_notifier: unregister a notifier for
1075  * changes to IOMMU translation entries.
1076  *
1077  * @mr: the memory region which was observed and for which notity_stopped()
1078  *      needs to be called
1079  * @n: the notifier to be removed.
1080  */
1081 void memory_region_unregister_iommu_notifier(MemoryRegion *mr,
1082                                              IOMMUNotifier *n);
1083 
1084 /**
1085  * memory_region_iommu_get_attr: return an IOMMU attr if get_attr() is
1086  * defined on the IOMMU.
1087  *
1088  * Returns 0 on success, or a negative errno otherwise. In particular,
1089  * -EINVAL indicates that the IOMMU does not support the requested
1090  * attribute.
1091  *
1092  * @iommu_mr: the memory region
1093  * @attr: the requested attribute
1094  * @data: a pointer to the requested attribute data
1095  */
1096 int memory_region_iommu_get_attr(IOMMUMemoryRegion *iommu_mr,
1097                                  enum IOMMUMemoryRegionAttr attr,
1098                                  void *data);
1099 
1100 /**
1101  * memory_region_iommu_attrs_to_index: return the IOMMU index to
1102  * use for translations with the given memory transaction attributes.
1103  *
1104  * @iommu_mr: the memory region
1105  * @attrs: the memory transaction attributes
1106  */
1107 int memory_region_iommu_attrs_to_index(IOMMUMemoryRegion *iommu_mr,
1108                                        MemTxAttrs attrs);
1109 
1110 /**
1111  * memory_region_iommu_num_indexes: return the total number of IOMMU
1112  * indexes that this IOMMU supports.
1113  *
1114  * @iommu_mr: the memory region
1115  */
1116 int memory_region_iommu_num_indexes(IOMMUMemoryRegion *iommu_mr);
1117 
1118 /**
1119  * memory_region_name: get a memory region's name
1120  *
1121  * Returns the string that was used to initialize the memory region.
1122  *
1123  * @mr: the memory region being queried
1124  */
1125 const char *memory_region_name(const MemoryRegion *mr);
1126 
1127 /**
1128  * memory_region_is_logging: return whether a memory region is logging writes
1129  *
1130  * Returns %true if the memory region is logging writes for the given client
1131  *
1132  * @mr: the memory region being queried
1133  * @client: the client being queried
1134  */
1135 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
1136 
1137 /**
1138  * memory_region_get_dirty_log_mask: return the clients for which a
1139  * memory region is logging writes.
1140  *
1141  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
1142  * are the bit indices.
1143  *
1144  * @mr: the memory region being queried
1145  */
1146 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
1147 
1148 /**
1149  * memory_region_is_rom: check whether a memory region is ROM
1150  *
1151  * Returns %true is a memory region is read-only memory.
1152  *
1153  * @mr: the memory region being queried
1154  */
1155 static inline bool memory_region_is_rom(MemoryRegion *mr)
1156 {
1157     return mr->ram && mr->readonly;
1158 }
1159 
1160 
1161 /**
1162  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
1163  *
1164  * Returns a file descriptor backing a file-based RAM memory region,
1165  * or -1 if the region is not a file-based RAM memory region.
1166  *
1167  * @mr: the RAM or alias memory region being queried.
1168  */
1169 int memory_region_get_fd(MemoryRegion *mr);
1170 
1171 /**
1172  * memory_region_from_host: Convert a pointer into a RAM memory region
1173  * and an offset within it.
1174  *
1175  * Given a host pointer inside a RAM memory region (created with
1176  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
1177  * the MemoryRegion and the offset within it.
1178  *
1179  * Use with care; by the time this function returns, the returned pointer is
1180  * not protected by RCU anymore.  If the caller is not within an RCU critical
1181  * section and does not hold the iothread lock, it must have other means of
1182  * protecting the pointer, such as a reference to the region that includes
1183  * the incoming ram_addr_t.
1184  *
1185  * @ptr: the host pointer to be converted
1186  * @offset: the offset within memory region
1187  */
1188 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
1189 
1190 /**
1191  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
1192  *
1193  * Returns a host pointer to a RAM memory region (created with
1194  * memory_region_init_ram() or memory_region_init_ram_ptr()).
1195  *
1196  * Use with care; by the time this function returns, the returned pointer is
1197  * not protected by RCU anymore.  If the caller is not within an RCU critical
1198  * section and does not hold the iothread lock, it must have other means of
1199  * protecting the pointer, such as a reference to the region that includes
1200  * the incoming ram_addr_t.
1201  *
1202  * @mr: the memory region being queried.
1203  */
1204 void *memory_region_get_ram_ptr(MemoryRegion *mr);
1205 
1206 /* memory_region_ram_resize: Resize a RAM region.
1207  *
1208  * Only legal before guest might have detected the memory size: e.g. on
1209  * incoming migration, or right after reset.
1210  *
1211  * @mr: a memory region created with @memory_region_init_resizeable_ram.
1212  * @newsize: the new size the region
1213  * @errp: pointer to Error*, to store an error if it happens.
1214  */
1215 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
1216                               Error **errp);
1217 
1218 /**
1219  * memory_region_set_log: Turn dirty logging on or off for a region.
1220  *
1221  * Turns dirty logging on or off for a specified client (display, migration).
1222  * Only meaningful for RAM regions.
1223  *
1224  * @mr: the memory region being updated.
1225  * @log: whether dirty logging is to be enabled or disabled.
1226  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
1227  */
1228 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
1229 
1230 /**
1231  * memory_region_get_dirty: Check whether a range of bytes is dirty
1232  *                          for a specified client.
1233  *
1234  * Checks whether a range of bytes has been written to since the last
1235  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
1236  * must be enabled.
1237  *
1238  * @mr: the memory region being queried.
1239  * @addr: the address (relative to the start of the region) being queried.
1240  * @size: the size of the range being queried.
1241  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1242  *          %DIRTY_MEMORY_VGA.
1243  */
1244 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
1245                              hwaddr size, unsigned client);
1246 
1247 /**
1248  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
1249  *
1250  * Marks a range of bytes as dirty, after it has been dirtied outside
1251  * guest code.
1252  *
1253  * @mr: the memory region being dirtied.
1254  * @addr: the address (relative to the start of the region) being dirtied.
1255  * @size: size of the range being dirtied.
1256  */
1257 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
1258                              hwaddr size);
1259 
1260 /**
1261  * memory_region_snapshot_and_clear_dirty: Get a snapshot of the dirty
1262  *                                         bitmap and clear it.
1263  *
1264  * Creates a snapshot of the dirty bitmap, clears the dirty bitmap and
1265  * returns the snapshot.  The snapshot can then be used to query dirty
1266  * status, using memory_region_snapshot_get_dirty.  Snapshotting allows
1267  * querying the same page multiple times, which is especially useful for
1268  * display updates where the scanlines often are not page aligned.
1269  *
1270  * The dirty bitmap region which gets copyed into the snapshot (and
1271  * cleared afterwards) can be larger than requested.  The boundaries
1272  * are rounded up/down so complete bitmap longs (covering 64 pages on
1273  * 64bit hosts) can be copied over into the bitmap snapshot.  Which
1274  * isn't a problem for display updates as the extra pages are outside
1275  * the visible area, and in case the visible area changes a full
1276  * display redraw is due anyway.  Should other use cases for this
1277  * function emerge we might have to revisit this implementation
1278  * detail.
1279  *
1280  * Use g_free to release DirtyBitmapSnapshot.
1281  *
1282  * @mr: the memory region being queried.
1283  * @addr: the address (relative to the start of the region) being queried.
1284  * @size: the size of the range being queried.
1285  * @client: the user of the logging information; typically %DIRTY_MEMORY_VGA.
1286  */
1287 DirtyBitmapSnapshot *memory_region_snapshot_and_clear_dirty(MemoryRegion *mr,
1288                                                             hwaddr addr,
1289                                                             hwaddr size,
1290                                                             unsigned client);
1291 
1292 /**
1293  * memory_region_snapshot_get_dirty: Check whether a range of bytes is dirty
1294  *                                   in the specified dirty bitmap snapshot.
1295  *
1296  * @mr: the memory region being queried.
1297  * @snap: the dirty bitmap snapshot
1298  * @addr: the address (relative to the start of the region) being queried.
1299  * @size: the size of the range being queried.
1300  */
1301 bool memory_region_snapshot_get_dirty(MemoryRegion *mr,
1302                                       DirtyBitmapSnapshot *snap,
1303                                       hwaddr addr, hwaddr size);
1304 
1305 /**
1306  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
1307  *                            client.
1308  *
1309  * Marks a range of pages as no longer dirty.
1310  *
1311  * @mr: the region being updated.
1312  * @addr: the start of the subrange being cleaned.
1313  * @size: the size of the subrange being cleaned.
1314  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
1315  *          %DIRTY_MEMORY_VGA.
1316  */
1317 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
1318                                hwaddr size, unsigned client);
1319 
1320 /**
1321  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
1322  *
1323  * Allows a memory region to be marked as read-only (turning it into a ROM).
1324  * only useful on RAM regions.
1325  *
1326  * @mr: the region being updated.
1327  * @readonly: whether rhe region is to be ROM or RAM.
1328  */
1329 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
1330 
1331 /**
1332  * memory_region_rom_device_set_romd: enable/disable ROMD mode
1333  *
1334  * Allows a ROM device (initialized with memory_region_init_rom_device() to
1335  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
1336  * device is mapped to guest memory and satisfies read access directly.
1337  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
1338  * Writes are always handled by the #MemoryRegion.write function.
1339  *
1340  * @mr: the memory region to be updated
1341  * @romd_mode: %true to put the region into ROMD mode
1342  */
1343 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
1344 
1345 /**
1346  * memory_region_set_coalescing: Enable memory coalescing for the region.
1347  *
1348  * Enabled writes to a region to be queued for later processing. MMIO ->write
1349  * callbacks may be delayed until a non-coalesced MMIO is issued.
1350  * Only useful for IO regions.  Roughly similar to write-combining hardware.
1351  *
1352  * @mr: the memory region to be write coalesced
1353  */
1354 void memory_region_set_coalescing(MemoryRegion *mr);
1355 
1356 /**
1357  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
1358  *                               a region.
1359  *
1360  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
1361  * Multiple calls can be issued coalesced disjoint ranges.
1362  *
1363  * @mr: the memory region to be updated.
1364  * @offset: the start of the range within the region to be coalesced.
1365  * @size: the size of the subrange to be coalesced.
1366  */
1367 void memory_region_add_coalescing(MemoryRegion *mr,
1368                                   hwaddr offset,
1369                                   uint64_t size);
1370 
1371 /**
1372  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
1373  *
1374  * Disables any coalescing caused by memory_region_set_coalescing() or
1375  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
1376  * hardware.
1377  *
1378  * @mr: the memory region to be updated.
1379  */
1380 void memory_region_clear_coalescing(MemoryRegion *mr);
1381 
1382 /**
1383  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
1384  *                                    accesses.
1385  *
1386  * Ensure that pending coalesced MMIO request are flushed before the memory
1387  * region is accessed. This property is automatically enabled for all regions
1388  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
1389  *
1390  * @mr: the memory region to be updated.
1391  */
1392 void memory_region_set_flush_coalesced(MemoryRegion *mr);
1393 
1394 /**
1395  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
1396  *                                      accesses.
1397  *
1398  * Clear the automatic coalesced MMIO flushing enabled via
1399  * memory_region_set_flush_coalesced. Note that this service has no effect on
1400  * memory regions that have MMIO coalescing enabled for themselves. For them,
1401  * automatic flushing will stop once coalescing is disabled.
1402  *
1403  * @mr: the memory region to be updated.
1404  */
1405 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
1406 
1407 /**
1408  * memory_region_clear_global_locking: Declares that access processing does
1409  *                                     not depend on the QEMU global lock.
1410  *
1411  * By clearing this property, accesses to the memory region will be processed
1412  * outside of QEMU's global lock (unless the lock is held on when issuing the
1413  * access request). In this case, the device model implementing the access
1414  * handlers is responsible for synchronization of concurrency.
1415  *
1416  * @mr: the memory region to be updated.
1417  */
1418 void memory_region_clear_global_locking(MemoryRegion *mr);
1419 
1420 /**
1421  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
1422  *                            is written to a location.
1423  *
1424  * Marks a word in an IO region (initialized with memory_region_init_io())
1425  * as a trigger for an eventfd event.  The I/O callback will not be called.
1426  * The caller must be prepared to handle failure (that is, take the required
1427  * action if the callback _is_ called).
1428  *
1429  * @mr: the memory region being updated.
1430  * @addr: the address within @mr that is to be monitored
1431  * @size: the size of the access to trigger the eventfd
1432  * @match_data: whether to match against @data, instead of just @addr
1433  * @data: the data to match against the guest write
1434  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1435  **/
1436 void memory_region_add_eventfd(MemoryRegion *mr,
1437                                hwaddr addr,
1438                                unsigned size,
1439                                bool match_data,
1440                                uint64_t data,
1441                                EventNotifier *e);
1442 
1443 /**
1444  * memory_region_del_eventfd: Cancel an eventfd.
1445  *
1446  * Cancels an eventfd trigger requested by a previous
1447  * memory_region_add_eventfd() call.
1448  *
1449  * @mr: the memory region being updated.
1450  * @addr: the address within @mr that is to be monitored
1451  * @size: the size of the access to trigger the eventfd
1452  * @match_data: whether to match against @data, instead of just @addr
1453  * @data: the data to match against the guest write
1454  * @e: event notifier to be triggered when @addr, @size, and @data all match.
1455  */
1456 void memory_region_del_eventfd(MemoryRegion *mr,
1457                                hwaddr addr,
1458                                unsigned size,
1459                                bool match_data,
1460                                uint64_t data,
1461                                EventNotifier *e);
1462 
1463 /**
1464  * memory_region_add_subregion: Add a subregion to a container.
1465  *
1466  * Adds a subregion at @offset.  The subregion may not overlap with other
1467  * subregions (except for those explicitly marked as overlapping).  A region
1468  * may only be added once as a subregion (unless removed with
1469  * memory_region_del_subregion()); use memory_region_init_alias() if you
1470  * want a region to be a subregion in multiple locations.
1471  *
1472  * @mr: the region to contain the new subregion; must be a container
1473  *      initialized with memory_region_init().
1474  * @offset: the offset relative to @mr where @subregion is added.
1475  * @subregion: the subregion to be added.
1476  */
1477 void memory_region_add_subregion(MemoryRegion *mr,
1478                                  hwaddr offset,
1479                                  MemoryRegion *subregion);
1480 /**
1481  * memory_region_add_subregion_overlap: Add a subregion to a container
1482  *                                      with overlap.
1483  *
1484  * Adds a subregion at @offset.  The subregion may overlap with other
1485  * subregions.  Conflicts are resolved by having a higher @priority hide a
1486  * lower @priority. Subregions without priority are taken as @priority 0.
1487  * A region may only be added once as a subregion (unless removed with
1488  * memory_region_del_subregion()); use memory_region_init_alias() if you
1489  * want a region to be a subregion in multiple locations.
1490  *
1491  * @mr: the region to contain the new subregion; must be a container
1492  *      initialized with memory_region_init().
1493  * @offset: the offset relative to @mr where @subregion is added.
1494  * @subregion: the subregion to be added.
1495  * @priority: used for resolving overlaps; highest priority wins.
1496  */
1497 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1498                                          hwaddr offset,
1499                                          MemoryRegion *subregion,
1500                                          int priority);
1501 
1502 /**
1503  * memory_region_get_ram_addr: Get the ram address associated with a memory
1504  *                             region
1505  */
1506 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1507 
1508 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1509 /**
1510  * memory_region_del_subregion: Remove a subregion.
1511  *
1512  * Removes a subregion from its container.
1513  *
1514  * @mr: the container to be updated.
1515  * @subregion: the region being removed; must be a current subregion of @mr.
1516  */
1517 void memory_region_del_subregion(MemoryRegion *mr,
1518                                  MemoryRegion *subregion);
1519 
1520 /*
1521  * memory_region_set_enabled: dynamically enable or disable a region
1522  *
1523  * Enables or disables a memory region.  A disabled memory region
1524  * ignores all accesses to itself and its subregions.  It does not
1525  * obscure sibling subregions with lower priority - it simply behaves as
1526  * if it was removed from the hierarchy.
1527  *
1528  * Regions default to being enabled.
1529  *
1530  * @mr: the region to be updated
1531  * @enabled: whether to enable or disable the region
1532  */
1533 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1534 
1535 /*
1536  * memory_region_set_address: dynamically update the address of a region
1537  *
1538  * Dynamically updates the address of a region, relative to its container.
1539  * May be used on regions are currently part of a memory hierarchy.
1540  *
1541  * @mr: the region to be updated
1542  * @addr: new address, relative to container region
1543  */
1544 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1545 
1546 /*
1547  * memory_region_set_size: dynamically update the size of a region.
1548  *
1549  * Dynamically updates the size of a region.
1550  *
1551  * @mr: the region to be updated
1552  * @size: used size of the region.
1553  */
1554 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1555 
1556 /*
1557  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1558  *
1559  * Dynamically updates the offset into the target region that an alias points
1560  * to, as if the fourth argument to memory_region_init_alias() has changed.
1561  *
1562  * @mr: the #MemoryRegion to be updated; should be an alias.
1563  * @offset: the new offset into the target memory region
1564  */
1565 void memory_region_set_alias_offset(MemoryRegion *mr,
1566                                     hwaddr offset);
1567 
1568 /**
1569  * memory_region_present: checks if an address relative to a @container
1570  * translates into #MemoryRegion within @container
1571  *
1572  * Answer whether a #MemoryRegion within @container covers the address
1573  * @addr.
1574  *
1575  * @container: a #MemoryRegion within which @addr is a relative address
1576  * @addr: the area within @container to be searched
1577  */
1578 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1579 
1580 /**
1581  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1582  * into any address space.
1583  *
1584  * @mr: a #MemoryRegion which should be checked if it's mapped
1585  */
1586 bool memory_region_is_mapped(MemoryRegion *mr);
1587 
1588 /**
1589  * memory_region_find: translate an address/size relative to a
1590  * MemoryRegion into a #MemoryRegionSection.
1591  *
1592  * Locates the first #MemoryRegion within @mr that overlaps the range
1593  * given by @addr and @size.
1594  *
1595  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1596  * It will have the following characteristics:
1597  *    .@size = 0 iff no overlap was found
1598  *    .@mr is non-%NULL iff an overlap was found
1599  *
1600  * Remember that in the return value the @offset_within_region is
1601  * relative to the returned region (in the .@mr field), not to the
1602  * @mr argument.
1603  *
1604  * Similarly, the .@offset_within_address_space is relative to the
1605  * address space that contains both regions, the passed and the
1606  * returned one.  However, in the special case where the @mr argument
1607  * has no container (and thus is the root of the address space), the
1608  * following will hold:
1609  *    .@offset_within_address_space >= @addr
1610  *    .@offset_within_address_space + .@size <= @addr + @size
1611  *
1612  * @mr: a MemoryRegion within which @addr is a relative address
1613  * @addr: start of the area within @as to be searched
1614  * @size: size of the area to be searched
1615  */
1616 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1617                                        hwaddr addr, uint64_t size);
1618 
1619 /**
1620  * memory_global_dirty_log_sync: synchronize the dirty log for all memory
1621  *
1622  * Synchronizes the dirty page log for all address spaces.
1623  */
1624 void memory_global_dirty_log_sync(void);
1625 
1626 /**
1627  * memory_region_transaction_begin: Start a transaction.
1628  *
1629  * During a transaction, changes will be accumulated and made visible
1630  * only when the transaction ends (is committed).
1631  */
1632 void memory_region_transaction_begin(void);
1633 
1634 /**
1635  * memory_region_transaction_commit: Commit a transaction and make changes
1636  *                                   visible to the guest.
1637  */
1638 void memory_region_transaction_commit(void);
1639 
1640 /**
1641  * memory_listener_register: register callbacks to be called when memory
1642  *                           sections are mapped or unmapped into an address
1643  *                           space
1644  *
1645  * @listener: an object containing the callbacks to be called
1646  * @filter: if non-%NULL, only regions in this address space will be observed
1647  */
1648 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1649 
1650 /**
1651  * memory_listener_unregister: undo the effect of memory_listener_register()
1652  *
1653  * @listener: an object containing the callbacks to be removed
1654  */
1655 void memory_listener_unregister(MemoryListener *listener);
1656 
1657 /**
1658  * memory_global_dirty_log_start: begin dirty logging for all regions
1659  */
1660 void memory_global_dirty_log_start(void);
1661 
1662 /**
1663  * memory_global_dirty_log_stop: end dirty logging for all regions
1664  */
1665 void memory_global_dirty_log_stop(void);
1666 
1667 void mtree_info(fprintf_function mon_printf, void *f, bool flatview,
1668                 bool dispatch_tree, bool owner);
1669 
1670 /**
1671  * memory_region_request_mmio_ptr: request a pointer to an mmio
1672  * MemoryRegion. If it is possible map a RAM MemoryRegion with this pointer.
1673  * When the device wants to invalidate the pointer it will call
1674  * memory_region_invalidate_mmio_ptr.
1675  *
1676  * @mr: #MemoryRegion to check
1677  * @addr: address within that region
1678  *
1679  * Returns true on success, false otherwise.
1680  */
1681 bool memory_region_request_mmio_ptr(MemoryRegion *mr, hwaddr addr);
1682 
1683 /**
1684  * memory_region_invalidate_mmio_ptr: invalidate the pointer to an mmio
1685  * previously requested.
1686  * In the end that means that if something wants to execute from this area it
1687  * will need to request the pointer again.
1688  *
1689  * @mr: #MemoryRegion associated to the pointer.
1690  * @offset: offset within the memory region
1691  * @size: size of that area.
1692  */
1693 void memory_region_invalidate_mmio_ptr(MemoryRegion *mr, hwaddr offset,
1694                                        unsigned size);
1695 
1696 /**
1697  * memory_region_dispatch_read: perform a read directly to the specified
1698  * MemoryRegion.
1699  *
1700  * @mr: #MemoryRegion to access
1701  * @addr: address within that region
1702  * @pval: pointer to uint64_t which the data is written to
1703  * @size: size of the access in bytes
1704  * @attrs: memory transaction attributes to use for the access
1705  */
1706 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1707                                         hwaddr addr,
1708                                         uint64_t *pval,
1709                                         unsigned size,
1710                                         MemTxAttrs attrs);
1711 /**
1712  * memory_region_dispatch_write: perform a write directly to the specified
1713  * MemoryRegion.
1714  *
1715  * @mr: #MemoryRegion to access
1716  * @addr: address within that region
1717  * @data: data to write
1718  * @size: size of the access in bytes
1719  * @attrs: memory transaction attributes to use for the access
1720  */
1721 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1722                                          hwaddr addr,
1723                                          uint64_t data,
1724                                          unsigned size,
1725                                          MemTxAttrs attrs);
1726 
1727 /**
1728  * address_space_init: initializes an address space
1729  *
1730  * @as: an uninitialized #AddressSpace
1731  * @root: a #MemoryRegion that routes addresses for the address space
1732  * @name: an address space name.  The name is only used for debugging
1733  *        output.
1734  */
1735 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1736 
1737 /**
1738  * address_space_destroy: destroy an address space
1739  *
1740  * Releases all resources associated with an address space.  After an address space
1741  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1742  * as well.
1743  *
1744  * @as: address space to be destroyed
1745  */
1746 void address_space_destroy(AddressSpace *as);
1747 
1748 /**
1749  * address_space_rw: read from or write to an address space.
1750  *
1751  * Return a MemTxResult indicating whether the operation succeeded
1752  * or failed (eg unassigned memory, device rejected the transaction,
1753  * IOMMU fault).
1754  *
1755  * @as: #AddressSpace to be accessed
1756  * @addr: address within that address space
1757  * @attrs: memory transaction attributes
1758  * @buf: buffer with the data transferred
1759  * @len: the number of bytes to read or write
1760  * @is_write: indicates the transfer direction
1761  */
1762 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1763                              MemTxAttrs attrs, uint8_t *buf,
1764                              int len, bool is_write);
1765 
1766 /**
1767  * address_space_write: write to address space.
1768  *
1769  * Return a MemTxResult indicating whether the operation succeeded
1770  * or failed (eg unassigned memory, device rejected the transaction,
1771  * IOMMU fault).
1772  *
1773  * @as: #AddressSpace to be accessed
1774  * @addr: address within that address space
1775  * @attrs: memory transaction attributes
1776  * @buf: buffer with the data transferred
1777  * @len: the number of bytes to write
1778  */
1779 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1780                                 MemTxAttrs attrs,
1781                                 const uint8_t *buf, int len);
1782 
1783 /* address_space_ld*: load from an address space
1784  * address_space_st*: store to an address space
1785  *
1786  * These functions perform a load or store of the byte, word,
1787  * longword or quad to the specified address within the AddressSpace.
1788  * The _le suffixed functions treat the data as little endian;
1789  * _be indicates big endian; no suffix indicates "same endianness
1790  * as guest CPU".
1791  *
1792  * The "guest CPU endianness" accessors are deprecated for use outside
1793  * target-* code; devices should be CPU-agnostic and use either the LE
1794  * or the BE accessors.
1795  *
1796  * @as #AddressSpace to be accessed
1797  * @addr: address within that address space
1798  * @val: data value, for stores
1799  * @attrs: memory transaction attributes
1800  * @result: location to write the success/failure of the transaction;
1801  *   if NULL, this information is discarded
1802  */
1803 
1804 #define SUFFIX
1805 #define ARG1         as
1806 #define ARG1_DECL    AddressSpace *as
1807 #include "exec/memory_ldst.inc.h"
1808 
1809 #define SUFFIX
1810 #define ARG1         as
1811 #define ARG1_DECL    AddressSpace *as
1812 #include "exec/memory_ldst_phys.inc.h"
1813 
1814 struct MemoryRegionCache {
1815     void *ptr;
1816     hwaddr xlat;
1817     hwaddr len;
1818     FlatView *fv;
1819     MemoryRegionSection mrs;
1820     bool is_write;
1821 };
1822 
1823 #define MEMORY_REGION_CACHE_INVALID ((MemoryRegionCache) { .mrs.mr = NULL })
1824 
1825 
1826 /* address_space_ld*_cached: load from a cached #MemoryRegion
1827  * address_space_st*_cached: store into a cached #MemoryRegion
1828  *
1829  * These functions perform a load or store of the byte, word,
1830  * longword or quad to the specified address.  The address is
1831  * a physical address in the AddressSpace, but it must lie within
1832  * a #MemoryRegion that was mapped with address_space_cache_init.
1833  *
1834  * The _le suffixed functions treat the data as little endian;
1835  * _be indicates big endian; no suffix indicates "same endianness
1836  * as guest CPU".
1837  *
1838  * The "guest CPU endianness" accessors are deprecated for use outside
1839  * target-* code; devices should be CPU-agnostic and use either the LE
1840  * or the BE accessors.
1841  *
1842  * @cache: previously initialized #MemoryRegionCache to be accessed
1843  * @addr: address within the address space
1844  * @val: data value, for stores
1845  * @attrs: memory transaction attributes
1846  * @result: location to write the success/failure of the transaction;
1847  *   if NULL, this information is discarded
1848  */
1849 
1850 #define SUFFIX       _cached_slow
1851 #define ARG1         cache
1852 #define ARG1_DECL    MemoryRegionCache *cache
1853 #include "exec/memory_ldst.inc.h"
1854 
1855 /* Inline fast path for direct RAM access.  */
1856 static inline uint8_t address_space_ldub_cached(MemoryRegionCache *cache,
1857     hwaddr addr, MemTxAttrs attrs, MemTxResult *result)
1858 {
1859     assert(addr < cache->len);
1860     if (likely(cache->ptr)) {
1861         return ldub_p(cache->ptr + addr);
1862     } else {
1863         return address_space_ldub_cached_slow(cache, addr, attrs, result);
1864     }
1865 }
1866 
1867 static inline void address_space_stb_cached(MemoryRegionCache *cache,
1868     hwaddr addr, uint32_t val, MemTxAttrs attrs, MemTxResult *result)
1869 {
1870     assert(addr < cache->len);
1871     if (likely(cache->ptr)) {
1872         stb_p(cache->ptr + addr, val);
1873     } else {
1874         address_space_stb_cached_slow(cache, addr, val, attrs, result);
1875     }
1876 }
1877 
1878 #define ENDIANNESS   _le
1879 #include "exec/memory_ldst_cached.inc.h"
1880 
1881 #define ENDIANNESS   _be
1882 #include "exec/memory_ldst_cached.inc.h"
1883 
1884 #define SUFFIX       _cached
1885 #define ARG1         cache
1886 #define ARG1_DECL    MemoryRegionCache *cache
1887 #include "exec/memory_ldst_phys.inc.h"
1888 
1889 /* address_space_cache_init: prepare for repeated access to a physical
1890  * memory region
1891  *
1892  * @cache: #MemoryRegionCache to be filled
1893  * @as: #AddressSpace to be accessed
1894  * @addr: address within that address space
1895  * @len: length of buffer
1896  * @is_write: indicates the transfer direction
1897  *
1898  * Will only work with RAM, and may map a subset of the requested range by
1899  * returning a value that is less than @len.  On failure, return a negative
1900  * errno value.
1901  *
1902  * Because it only works with RAM, this function can be used for
1903  * read-modify-write operations.  In this case, is_write should be %true.
1904  *
1905  * Note that addresses passed to the address_space_*_cached functions
1906  * are relative to @addr.
1907  */
1908 int64_t address_space_cache_init(MemoryRegionCache *cache,
1909                                  AddressSpace *as,
1910                                  hwaddr addr,
1911                                  hwaddr len,
1912                                  bool is_write);
1913 
1914 /**
1915  * address_space_cache_invalidate: complete a write to a #MemoryRegionCache
1916  *
1917  * @cache: The #MemoryRegionCache to operate on.
1918  * @addr: The first physical address that was written, relative to the
1919  * address that was passed to @address_space_cache_init.
1920  * @access_len: The number of bytes that were written starting at @addr.
1921  */
1922 void address_space_cache_invalidate(MemoryRegionCache *cache,
1923                                     hwaddr addr,
1924                                     hwaddr access_len);
1925 
1926 /**
1927  * address_space_cache_destroy: free a #MemoryRegionCache
1928  *
1929  * @cache: The #MemoryRegionCache whose memory should be released.
1930  */
1931 void address_space_cache_destroy(MemoryRegionCache *cache);
1932 
1933 /* address_space_get_iotlb_entry: translate an address into an IOTLB
1934  * entry. Should be called from an RCU critical section.
1935  */
1936 IOMMUTLBEntry address_space_get_iotlb_entry(AddressSpace *as, hwaddr addr,
1937                                             bool is_write, MemTxAttrs attrs);
1938 
1939 /* address_space_translate: translate an address range into an address space
1940  * into a MemoryRegion and an address range into that section.  Should be
1941  * called from an RCU critical section, to avoid that the last reference
1942  * to the returned region disappears after address_space_translate returns.
1943  *
1944  * @fv: #FlatView to be accessed
1945  * @addr: address within that address space
1946  * @xlat: pointer to address within the returned memory region section's
1947  * #MemoryRegion.
1948  * @len: pointer to length
1949  * @is_write: indicates the transfer direction
1950  * @attrs: memory attributes
1951  */
1952 MemoryRegion *flatview_translate(FlatView *fv,
1953                                  hwaddr addr, hwaddr *xlat,
1954                                  hwaddr *len, bool is_write,
1955                                  MemTxAttrs attrs);
1956 
1957 static inline MemoryRegion *address_space_translate(AddressSpace *as,
1958                                                     hwaddr addr, hwaddr *xlat,
1959                                                     hwaddr *len, bool is_write,
1960                                                     MemTxAttrs attrs)
1961 {
1962     return flatview_translate(address_space_to_flatview(as),
1963                               addr, xlat, len, is_write, attrs);
1964 }
1965 
1966 /* address_space_access_valid: check for validity of accessing an address
1967  * space range
1968  *
1969  * Check whether memory is assigned to the given address space range, and
1970  * access is permitted by any IOMMU regions that are active for the address
1971  * space.
1972  *
1973  * For now, addr and len should be aligned to a page size.  This limitation
1974  * will be lifted in the future.
1975  *
1976  * @as: #AddressSpace to be accessed
1977  * @addr: address within that address space
1978  * @len: length of the area to be checked
1979  * @is_write: indicates the transfer direction
1980  * @attrs: memory attributes
1981  */
1982 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len,
1983                                 bool is_write, MemTxAttrs attrs);
1984 
1985 /* address_space_map: map a physical memory region into a host virtual address
1986  *
1987  * May map a subset of the requested range, given by and returned in @plen.
1988  * May return %NULL if resources needed to perform the mapping are exhausted.
1989  * Use only for reads OR writes - not for read-modify-write operations.
1990  * Use cpu_register_map_client() to know when retrying the map operation is
1991  * likely to succeed.
1992  *
1993  * @as: #AddressSpace to be accessed
1994  * @addr: address within that address space
1995  * @plen: pointer to length of buffer; updated on return
1996  * @is_write: indicates the transfer direction
1997  * @attrs: memory attributes
1998  */
1999 void *address_space_map(AddressSpace *as, hwaddr addr,
2000                         hwaddr *plen, bool is_write, MemTxAttrs attrs);
2001 
2002 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
2003  *
2004  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
2005  * the amount of memory that was actually read or written by the caller.
2006  *
2007  * @as: #AddressSpace used
2008  * @buffer: host pointer as returned by address_space_map()
2009  * @len: buffer length as returned by address_space_map()
2010  * @access_len: amount of data actually transferred
2011  * @is_write: indicates the transfer direction
2012  */
2013 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
2014                          int is_write, hwaddr access_len);
2015 
2016 
2017 /* Internal functions, part of the implementation of address_space_read.  */
2018 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
2019                                     MemTxAttrs attrs, uint8_t *buf, int len);
2020 MemTxResult flatview_read_continue(FlatView *fv, hwaddr addr,
2021                                    MemTxAttrs attrs, uint8_t *buf,
2022                                    int len, hwaddr addr1, hwaddr l,
2023                                    MemoryRegion *mr);
2024 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
2025 
2026 /* Internal functions, part of the implementation of address_space_read_cached
2027  * and address_space_write_cached.  */
2028 void address_space_read_cached_slow(MemoryRegionCache *cache,
2029                                     hwaddr addr, void *buf, int len);
2030 void address_space_write_cached_slow(MemoryRegionCache *cache,
2031                                      hwaddr addr, const void *buf, int len);
2032 
2033 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
2034 {
2035     if (is_write) {
2036         return memory_region_is_ram(mr) &&
2037                !mr->readonly && !memory_region_is_ram_device(mr);
2038     } else {
2039         return (memory_region_is_ram(mr) && !memory_region_is_ram_device(mr)) ||
2040                memory_region_is_romd(mr);
2041     }
2042 }
2043 
2044 /**
2045  * address_space_read: read from an address space.
2046  *
2047  * Return a MemTxResult indicating whether the operation succeeded
2048  * or failed (eg unassigned memory, device rejected the transaction,
2049  * IOMMU fault).  Called within RCU critical section.
2050  *
2051  * @as: #AddressSpace to be accessed
2052  * @addr: address within that address space
2053  * @attrs: memory transaction attributes
2054  * @buf: buffer with the data transferred
2055  */
2056 static inline __attribute__((__always_inline__))
2057 MemTxResult address_space_read(AddressSpace *as, hwaddr addr,
2058                                MemTxAttrs attrs, uint8_t *buf,
2059                                int len)
2060 {
2061     MemTxResult result = MEMTX_OK;
2062     hwaddr l, addr1;
2063     void *ptr;
2064     MemoryRegion *mr;
2065     FlatView *fv;
2066 
2067     if (__builtin_constant_p(len)) {
2068         if (len) {
2069             rcu_read_lock();
2070             fv = address_space_to_flatview(as);
2071             l = len;
2072             mr = flatview_translate(fv, addr, &addr1, &l, false, attrs);
2073             if (len == l && memory_access_is_direct(mr, false)) {
2074                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
2075                 memcpy(buf, ptr, len);
2076             } else {
2077                 result = flatview_read_continue(fv, addr, attrs, buf, len,
2078                                                 addr1, l, mr);
2079             }
2080             rcu_read_unlock();
2081         }
2082     } else {
2083         result = address_space_read_full(as, addr, attrs, buf, len);
2084     }
2085     return result;
2086 }
2087 
2088 /**
2089  * address_space_read_cached: read from a cached RAM region
2090  *
2091  * @cache: Cached region to be addressed
2092  * @addr: address relative to the base of the RAM region
2093  * @buf: buffer with the data transferred
2094  * @len: length of the data transferred
2095  */
2096 static inline void
2097 address_space_read_cached(MemoryRegionCache *cache, hwaddr addr,
2098                           void *buf, int len)
2099 {
2100     assert(addr < cache->len && len <= cache->len - addr);
2101     if (likely(cache->ptr)) {
2102         memcpy(buf, cache->ptr + addr, len);
2103     } else {
2104         address_space_read_cached_slow(cache, addr, buf, len);
2105     }
2106 }
2107 
2108 /**
2109  * address_space_write_cached: write to a cached RAM region
2110  *
2111  * @cache: Cached region to be addressed
2112  * @addr: address relative to the base of the RAM region
2113  * @buf: buffer with the data transferred
2114  * @len: length of the data transferred
2115  */
2116 static inline void
2117 address_space_write_cached(MemoryRegionCache *cache, hwaddr addr,
2118                            void *buf, int len)
2119 {
2120     assert(addr < cache->len && len <= cache->len - addr);
2121     if (likely(cache->ptr)) {
2122         memcpy(cache->ptr + addr, buf, len);
2123     } else {
2124         address_space_write_cached_slow(cache, addr, buf, len);
2125     }
2126 }
2127 
2128 #endif
2129 
2130 #endif
2131