xref: /qemu/include/exec/memory.h (revision 85aad98a)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /* New-style MMIO accessors can indicate that the transaction failed.
71  * A zero (MEMTX_OK) response means success; anything else is a failure
72  * of some kind. The memory subsystem will bitwise-OR together results
73  * if it is synthesizing an operation from multiple smaller accesses.
74  */
75 #define MEMTX_OK 0
76 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
77 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
78 typedef uint32_t MemTxResult;
79 
80 /*
81  * Memory region callbacks
82  */
83 struct MemoryRegionOps {
84     /* Read from the memory region. @addr is relative to @mr; @size is
85      * in bytes. */
86     uint64_t (*read)(void *opaque,
87                      hwaddr addr,
88                      unsigned size);
89     /* Write to the memory region. @addr is relative to @mr; @size is
90      * in bytes. */
91     void (*write)(void *opaque,
92                   hwaddr addr,
93                   uint64_t data,
94                   unsigned size);
95 
96     MemTxResult (*read_with_attrs)(void *opaque,
97                                    hwaddr addr,
98                                    uint64_t *data,
99                                    unsigned size,
100                                    MemTxAttrs attrs);
101     MemTxResult (*write_with_attrs)(void *opaque,
102                                     hwaddr addr,
103                                     uint64_t data,
104                                     unsigned size,
105                                     MemTxAttrs attrs);
106 
107     enum device_endian endianness;
108     /* Guest-visible constraints: */
109     struct {
110         /* If nonzero, specify bounds on access sizes beyond which a machine
111          * check is thrown.
112          */
113         unsigned min_access_size;
114         unsigned max_access_size;
115         /* If true, unaligned accesses are supported.  Otherwise unaligned
116          * accesses throw machine checks.
117          */
118          bool unaligned;
119         /*
120          * If present, and returns #false, the transaction is not accepted
121          * by the device (and results in machine dependent behaviour such
122          * as a machine check exception).
123          */
124         bool (*accepts)(void *opaque, hwaddr addr,
125                         unsigned size, bool is_write);
126     } valid;
127     /* Internal implementation constraints: */
128     struct {
129         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
130          * will be rounded upwards and a partial result will be returned.
131          */
132         unsigned min_access_size;
133         /* If nonzero, specifies the maximum size implemented.  Larger sizes
134          * will be done as a series of accesses with smaller sizes.
135          */
136         unsigned max_access_size;
137         /* If true, unaligned accesses are supported.  Otherwise all accesses
138          * are converted to (possibly multiple) naturally aligned accesses.
139          */
140         bool unaligned;
141     } impl;
142 
143     /* If .read and .write are not present, old_mmio may be used for
144      * backwards compatibility with old mmio registration
145      */
146     const MemoryRegionMmio old_mmio;
147 };
148 
149 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
150 
151 struct MemoryRegionIOMMUOps {
152     /* Return a TLB entry that contains a given address. */
153     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
154     /* Returns minimum supported page size */
155     uint64_t (*get_min_page_size)(MemoryRegion *iommu);
156     /* Called when the first notifier is set */
157     void (*notify_started)(MemoryRegion *iommu);
158     /* Called when the last notifier is removed */
159     void (*notify_stopped)(MemoryRegion *iommu);
160 };
161 
162 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
163 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
164 
165 struct MemoryRegion {
166     Object parent_obj;
167 
168     /* All fields are private - violators will be prosecuted */
169 
170     /* The following fields should fit in a cache line */
171     bool romd_mode;
172     bool ram;
173     bool subpage;
174     bool readonly; /* For RAM regions */
175     bool rom_device;
176     bool flush_coalesced_mmio;
177     bool global_locking;
178     uint8_t dirty_log_mask;
179     RAMBlock *ram_block;
180     Object *owner;
181     const MemoryRegionIOMMUOps *iommu_ops;
182 
183     const MemoryRegionOps *ops;
184     void *opaque;
185     MemoryRegion *container;
186     Int128 size;
187     hwaddr addr;
188     void (*destructor)(MemoryRegion *mr);
189     uint64_t align;
190     bool terminates;
191     bool skip_dump;
192     bool enabled;
193     bool warning_printed; /* For reservations */
194     uint8_t vga_logging_count;
195     MemoryRegion *alias;
196     hwaddr alias_offset;
197     int32_t priority;
198     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
199     QTAILQ_ENTRY(MemoryRegion) subregions_link;
200     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
201     const char *name;
202     unsigned ioeventfd_nb;
203     MemoryRegionIoeventfd *ioeventfds;
204     NotifierList iommu_notify;
205 };
206 
207 /**
208  * MemoryListener: callbacks structure for updates to the physical memory map
209  *
210  * Allows a component to adjust to changes in the guest-visible memory map.
211  * Use with memory_listener_register() and memory_listener_unregister().
212  */
213 struct MemoryListener {
214     void (*begin)(MemoryListener *listener);
215     void (*commit)(MemoryListener *listener);
216     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
217     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
218     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
219     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
220                       int old, int new);
221     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
222                      int old, int new);
223     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
224     void (*log_global_start)(MemoryListener *listener);
225     void (*log_global_stop)(MemoryListener *listener);
226     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
227                         bool match_data, uint64_t data, EventNotifier *e);
228     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
229                         bool match_data, uint64_t data, EventNotifier *e);
230     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
231                                hwaddr addr, hwaddr len);
232     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
233                                hwaddr addr, hwaddr len);
234     /* Lower = earlier (during add), later (during del) */
235     unsigned priority;
236     AddressSpace *address_space_filter;
237     QTAILQ_ENTRY(MemoryListener) link;
238 };
239 
240 /**
241  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
242  */
243 struct AddressSpace {
244     /* All fields are private. */
245     struct rcu_head rcu;
246     char *name;
247     MemoryRegion *root;
248     int ref_count;
249     bool malloced;
250 
251     /* Accessed via RCU.  */
252     struct FlatView *current_map;
253 
254     int ioeventfd_nb;
255     struct MemoryRegionIoeventfd *ioeventfds;
256     struct AddressSpaceDispatch *dispatch;
257     struct AddressSpaceDispatch *next_dispatch;
258     MemoryListener dispatch_listener;
259 
260     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
261 };
262 
263 /**
264  * MemoryRegionSection: describes a fragment of a #MemoryRegion
265  *
266  * @mr: the region, or %NULL if empty
267  * @address_space: the address space the region is mapped in
268  * @offset_within_region: the beginning of the section, relative to @mr's start
269  * @size: the size of the section; will not exceed @mr's boundaries
270  * @offset_within_address_space: the address of the first byte of the section
271  *     relative to the region's address space
272  * @readonly: writes to this section are ignored
273  */
274 struct MemoryRegionSection {
275     MemoryRegion *mr;
276     AddressSpace *address_space;
277     hwaddr offset_within_region;
278     Int128 size;
279     hwaddr offset_within_address_space;
280     bool readonly;
281 };
282 
283 /**
284  * memory_region_init: Initialize a memory region
285  *
286  * The region typically acts as a container for other memory regions.  Use
287  * memory_region_add_subregion() to add subregions.
288  *
289  * @mr: the #MemoryRegion to be initialized
290  * @owner: the object that tracks the region's reference count
291  * @name: used for debugging; not visible to the user or ABI
292  * @size: size of the region; any subregions beyond this size will be clipped
293  */
294 void memory_region_init(MemoryRegion *mr,
295                         struct Object *owner,
296                         const char *name,
297                         uint64_t size);
298 
299 /**
300  * memory_region_ref: Add 1 to a memory region's reference count
301  *
302  * Whenever memory regions are accessed outside the BQL, they need to be
303  * preserved against hot-unplug.  MemoryRegions actually do not have their
304  * own reference count; they piggyback on a QOM object, their "owner".
305  * This function adds a reference to the owner.
306  *
307  * All MemoryRegions must have an owner if they can disappear, even if the
308  * device they belong to operates exclusively under the BQL.  This is because
309  * the region could be returned at any time by memory_region_find, and this
310  * is usually under guest control.
311  *
312  * @mr: the #MemoryRegion
313  */
314 void memory_region_ref(MemoryRegion *mr);
315 
316 /**
317  * memory_region_unref: Remove 1 to a memory region's reference count
318  *
319  * Whenever memory regions are accessed outside the BQL, they need to be
320  * preserved against hot-unplug.  MemoryRegions actually do not have their
321  * own reference count; they piggyback on a QOM object, their "owner".
322  * This function removes a reference to the owner and possibly destroys it.
323  *
324  * @mr: the #MemoryRegion
325  */
326 void memory_region_unref(MemoryRegion *mr);
327 
328 /**
329  * memory_region_init_io: Initialize an I/O memory region.
330  *
331  * Accesses into the region will cause the callbacks in @ops to be called.
332  * if @size is nonzero, subregions will be clipped to @size.
333  *
334  * @mr: the #MemoryRegion to be initialized.
335  * @owner: the object that tracks the region's reference count
336  * @ops: a structure containing read and write callbacks to be used when
337  *       I/O is performed on the region.
338  * @opaque: passed to the read and write callbacks of the @ops structure.
339  * @name: used for debugging; not visible to the user or ABI
340  * @size: size of the region.
341  */
342 void memory_region_init_io(MemoryRegion *mr,
343                            struct Object *owner,
344                            const MemoryRegionOps *ops,
345                            void *opaque,
346                            const char *name,
347                            uint64_t size);
348 
349 /**
350  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
351  *                          region will modify memory directly.
352  *
353  * @mr: the #MemoryRegion to be initialized.
354  * @owner: the object that tracks the region's reference count
355  * @name: the name of the region.
356  * @size: size of the region.
357  * @errp: pointer to Error*, to store an error if it happens.
358  */
359 void memory_region_init_ram(MemoryRegion *mr,
360                             struct Object *owner,
361                             const char *name,
362                             uint64_t size,
363                             Error **errp);
364 
365 /**
366  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
367  *                                     RAM.  Accesses into the region will
368  *                                     modify memory directly.  Only an initial
369  *                                     portion of this RAM is actually used.
370  *                                     The used size can change across reboots.
371  *
372  * @mr: the #MemoryRegion to be initialized.
373  * @owner: the object that tracks the region's reference count
374  * @name: the name of the region.
375  * @size: used size of the region.
376  * @max_size: max size of the region.
377  * @resized: callback to notify owner about used size change.
378  * @errp: pointer to Error*, to store an error if it happens.
379  */
380 void memory_region_init_resizeable_ram(MemoryRegion *mr,
381                                        struct Object *owner,
382                                        const char *name,
383                                        uint64_t size,
384                                        uint64_t max_size,
385                                        void (*resized)(const char*,
386                                                        uint64_t length,
387                                                        void *host),
388                                        Error **errp);
389 #ifdef __linux__
390 /**
391  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
392  *                                    mmap-ed backend.
393  *
394  * @mr: the #MemoryRegion to be initialized.
395  * @owner: the object that tracks the region's reference count
396  * @name: the name of the region.
397  * @size: size of the region.
398  * @share: %true if memory must be mmaped with the MAP_SHARED flag
399  * @path: the path in which to allocate the RAM.
400  * @errp: pointer to Error*, to store an error if it happens.
401  */
402 void memory_region_init_ram_from_file(MemoryRegion *mr,
403                                       struct Object *owner,
404                                       const char *name,
405                                       uint64_t size,
406                                       bool share,
407                                       const char *path,
408                                       Error **errp);
409 #endif
410 
411 /**
412  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
413  *                              user-provided pointer.  Accesses into the
414  *                              region will modify memory directly.
415  *
416  * @mr: the #MemoryRegion to be initialized.
417  * @owner: the object that tracks the region's reference count
418  * @name: the name of the region.
419  * @size: size of the region.
420  * @ptr: memory to be mapped; must contain at least @size bytes.
421  */
422 void memory_region_init_ram_ptr(MemoryRegion *mr,
423                                 struct Object *owner,
424                                 const char *name,
425                                 uint64_t size,
426                                 void *ptr);
427 
428 /**
429  * memory_region_init_alias: Initialize a memory region that aliases all or a
430  *                           part of another memory region.
431  *
432  * @mr: the #MemoryRegion to be initialized.
433  * @owner: the object that tracks the region's reference count
434  * @name: used for debugging; not visible to the user or ABI
435  * @orig: the region to be referenced; @mr will be equivalent to
436  *        @orig between @offset and @offset + @size - 1.
437  * @offset: start of the section in @orig to be referenced.
438  * @size: size of the region.
439  */
440 void memory_region_init_alias(MemoryRegion *mr,
441                               struct Object *owner,
442                               const char *name,
443                               MemoryRegion *orig,
444                               hwaddr offset,
445                               uint64_t size);
446 
447 /**
448  * memory_region_init_rom: Initialize a ROM memory region.
449  *
450  * This has the same effect as calling memory_region_init_ram()
451  * and then marking the resulting region read-only with
452  * memory_region_set_readonly().
453  *
454  * @mr: the #MemoryRegion to be initialized.
455  * @owner: the object that tracks the region's reference count
456  * @name: the name of the region.
457  * @size: size of the region.
458  * @errp: pointer to Error*, to store an error if it happens.
459  */
460 void memory_region_init_rom(MemoryRegion *mr,
461                             struct Object *owner,
462                             const char *name,
463                             uint64_t size,
464                             Error **errp);
465 
466 /**
467  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
468  *                                 handled via callbacks.
469  *
470  * @mr: the #MemoryRegion to be initialized.
471  * @owner: the object that tracks the region's reference count
472  * @ops: callbacks for write access handling (must not be NULL).
473  * @name: the name of the region.
474  * @size: size of the region.
475  * @errp: pointer to Error*, to store an error if it happens.
476  */
477 void memory_region_init_rom_device(MemoryRegion *mr,
478                                    struct Object *owner,
479                                    const MemoryRegionOps *ops,
480                                    void *opaque,
481                                    const char *name,
482                                    uint64_t size,
483                                    Error **errp);
484 
485 /**
486  * memory_region_init_reservation: Initialize a memory region that reserves
487  *                                 I/O space.
488  *
489  * A reservation region primariy serves debugging purposes.  It claims I/O
490  * space that is not supposed to be handled by QEMU itself.  Any access via
491  * the memory API will cause an abort().
492  * This function is deprecated. Use memory_region_init_io() with NULL
493  * callbacks instead.
494  *
495  * @mr: the #MemoryRegion to be initialized
496  * @owner: the object that tracks the region's reference count
497  * @name: used for debugging; not visible to the user or ABI
498  * @size: size of the region.
499  */
500 static inline void memory_region_init_reservation(MemoryRegion *mr,
501                                     Object *owner,
502                                     const char *name,
503                                     uint64_t size)
504 {
505     memory_region_init_io(mr, owner, NULL, mr, name, size);
506 }
507 
508 /**
509  * memory_region_init_iommu: Initialize a memory region that translates
510  * addresses
511  *
512  * An IOMMU region translates addresses and forwards accesses to a target
513  * memory region.
514  *
515  * @mr: the #MemoryRegion to be initialized
516  * @owner: the object that tracks the region's reference count
517  * @ops: a function that translates addresses into the @target region
518  * @name: used for debugging; not visible to the user or ABI
519  * @size: size of the region.
520  */
521 void memory_region_init_iommu(MemoryRegion *mr,
522                               struct Object *owner,
523                               const MemoryRegionIOMMUOps *ops,
524                               const char *name,
525                               uint64_t size);
526 
527 /**
528  * memory_region_owner: get a memory region's owner.
529  *
530  * @mr: the memory region being queried.
531  */
532 struct Object *memory_region_owner(MemoryRegion *mr);
533 
534 /**
535  * memory_region_size: get a memory region's size.
536  *
537  * @mr: the memory region being queried.
538  */
539 uint64_t memory_region_size(MemoryRegion *mr);
540 
541 /**
542  * memory_region_is_ram: check whether a memory region is random access
543  *
544  * Returns %true is a memory region is random access.
545  *
546  * @mr: the memory region being queried
547  */
548 static inline bool memory_region_is_ram(MemoryRegion *mr)
549 {
550     return mr->ram;
551 }
552 
553 /**
554  * memory_region_is_skip_dump: check whether a memory region should not be
555  *                             dumped
556  *
557  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
558  *
559  * @mr: the memory region being queried
560  */
561 bool memory_region_is_skip_dump(MemoryRegion *mr);
562 
563 /**
564  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
565  *                              region
566  *
567  * @mr: the memory region being queried
568  */
569 void memory_region_set_skip_dump(MemoryRegion *mr);
570 
571 /**
572  * memory_region_is_romd: check whether a memory region is in ROMD mode
573  *
574  * Returns %true if a memory region is a ROM device and currently set to allow
575  * direct reads.
576  *
577  * @mr: the memory region being queried
578  */
579 static inline bool memory_region_is_romd(MemoryRegion *mr)
580 {
581     return mr->rom_device && mr->romd_mode;
582 }
583 
584 /**
585  * memory_region_is_iommu: check whether a memory region is an iommu
586  *
587  * Returns %true is a memory region is an iommu.
588  *
589  * @mr: the memory region being queried
590  */
591 static inline bool memory_region_is_iommu(MemoryRegion *mr)
592 {
593     return mr->iommu_ops;
594 }
595 
596 
597 /**
598  * memory_region_iommu_get_min_page_size: get minimum supported page size
599  * for an iommu
600  *
601  * Returns minimum supported page size for an iommu.
602  *
603  * @mr: the memory region being queried
604  */
605 uint64_t memory_region_iommu_get_min_page_size(MemoryRegion *mr);
606 
607 /**
608  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
609  *
610  * @mr: the memory region that was changed
611  * @entry: the new entry in the IOMMU translation table.  The entry
612  *         replaces all old entries for the same virtual I/O address range.
613  *         Deleted entries have .@perm == 0.
614  */
615 void memory_region_notify_iommu(MemoryRegion *mr,
616                                 IOMMUTLBEntry entry);
617 
618 /**
619  * memory_region_register_iommu_notifier: register a notifier for changes to
620  * IOMMU translation entries.
621  *
622  * @mr: the memory region to observe
623  * @n: the notifier to be added; the notifier receives a pointer to an
624  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
625  *     valid on exit from the notifier.
626  */
627 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
628 
629 /**
630  * memory_region_iommu_replay: replay existing IOMMU translations to
631  * a notifier with the minimum page granularity returned by
632  * mr->iommu_ops->get_page_size().
633  *
634  * @mr: the memory region to observe
635  * @n: the notifier to which to replay iommu mappings
636  * @is_write: Whether to treat the replay as a translate "write"
637  *     through the iommu
638  */
639 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n, bool is_write);
640 
641 /**
642  * memory_region_unregister_iommu_notifier: unregister a notifier for
643  * changes to IOMMU translation entries.
644  *
645  * @mr: the memory region which was observed and for which notity_stopped()
646  *      needs to be called
647  * @n: the notifier to be removed.
648  */
649 void memory_region_unregister_iommu_notifier(MemoryRegion *mr, Notifier *n);
650 
651 /**
652  * memory_region_name: get a memory region's name
653  *
654  * Returns the string that was used to initialize the memory region.
655  *
656  * @mr: the memory region being queried
657  */
658 const char *memory_region_name(const MemoryRegion *mr);
659 
660 /**
661  * memory_region_is_logging: return whether a memory region is logging writes
662  *
663  * Returns %true if the memory region is logging writes for the given client
664  *
665  * @mr: the memory region being queried
666  * @client: the client being queried
667  */
668 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
669 
670 /**
671  * memory_region_get_dirty_log_mask: return the clients for which a
672  * memory region is logging writes.
673  *
674  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
675  * are the bit indices.
676  *
677  * @mr: the memory region being queried
678  */
679 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
680 
681 /**
682  * memory_region_is_rom: check whether a memory region is ROM
683  *
684  * Returns %true is a memory region is read-only memory.
685  *
686  * @mr: the memory region being queried
687  */
688 static inline bool memory_region_is_rom(MemoryRegion *mr)
689 {
690     return mr->ram && mr->readonly;
691 }
692 
693 
694 /**
695  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
696  *
697  * Returns a file descriptor backing a file-based RAM memory region,
698  * or -1 if the region is not a file-based RAM memory region.
699  *
700  * @mr: the RAM or alias memory region being queried.
701  */
702 int memory_region_get_fd(MemoryRegion *mr);
703 
704 /**
705  * memory_region_set_fd: Mark a RAM memory region as backed by a
706  * file descriptor.
707  *
708  * This function is typically used after memory_region_init_ram_ptr().
709  *
710  * @mr: the memory region being queried.
711  * @fd: the file descriptor that backs @mr.
712  */
713 void memory_region_set_fd(MemoryRegion *mr, int fd);
714 
715 /**
716  * memory_region_from_host: Convert a pointer into a RAM memory region
717  * and an offset within it.
718  *
719  * Given a host pointer inside a RAM memory region (created with
720  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
721  * the MemoryRegion and the offset within it.
722  *
723  * Use with care; by the time this function returns, the returned pointer is
724  * not protected by RCU anymore.  If the caller is not within an RCU critical
725  * section and does not hold the iothread lock, it must have other means of
726  * protecting the pointer, such as a reference to the region that includes
727  * the incoming ram_addr_t.
728  *
729  * @mr: the memory region being queried.
730  */
731 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
732 
733 /**
734  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
735  *
736  * Returns a host pointer to a RAM memory region (created with
737  * memory_region_init_ram() or memory_region_init_ram_ptr()).
738  *
739  * Use with care; by the time this function returns, the returned pointer is
740  * not protected by RCU anymore.  If the caller is not within an RCU critical
741  * section and does not hold the iothread lock, it must have other means of
742  * protecting the pointer, such as a reference to the region that includes
743  * the incoming ram_addr_t.
744  *
745  * @mr: the memory region being queried.
746  */
747 void *memory_region_get_ram_ptr(MemoryRegion *mr);
748 
749 /* memory_region_ram_resize: Resize a RAM region.
750  *
751  * Only legal before guest might have detected the memory size: e.g. on
752  * incoming migration, or right after reset.
753  *
754  * @mr: a memory region created with @memory_region_init_resizeable_ram.
755  * @newsize: the new size the region
756  * @errp: pointer to Error*, to store an error if it happens.
757  */
758 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
759                               Error **errp);
760 
761 /**
762  * memory_region_set_log: Turn dirty logging on or off for a region.
763  *
764  * Turns dirty logging on or off for a specified client (display, migration).
765  * Only meaningful for RAM regions.
766  *
767  * @mr: the memory region being updated.
768  * @log: whether dirty logging is to be enabled or disabled.
769  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
770  */
771 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
772 
773 /**
774  * memory_region_get_dirty: Check whether a range of bytes is dirty
775  *                          for a specified client.
776  *
777  * Checks whether a range of bytes has been written to since the last
778  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
779  * must be enabled.
780  *
781  * @mr: the memory region being queried.
782  * @addr: the address (relative to the start of the region) being queried.
783  * @size: the size of the range being queried.
784  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
785  *          %DIRTY_MEMORY_VGA.
786  */
787 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
788                              hwaddr size, unsigned client);
789 
790 /**
791  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
792  *
793  * Marks a range of bytes as dirty, after it has been dirtied outside
794  * guest code.
795  *
796  * @mr: the memory region being dirtied.
797  * @addr: the address (relative to the start of the region) being dirtied.
798  * @size: size of the range being dirtied.
799  */
800 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
801                              hwaddr size);
802 
803 /**
804  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
805  *                                     for a specified client. It clears them.
806  *
807  * Checks whether a range of bytes has been written to since the last
808  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
809  * must be enabled.
810  *
811  * @mr: the memory region being queried.
812  * @addr: the address (relative to the start of the region) being queried.
813  * @size: the size of the range being queried.
814  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
815  *          %DIRTY_MEMORY_VGA.
816  */
817 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
818                                         hwaddr size, unsigned client);
819 /**
820  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
821  *                                  any external TLBs (e.g. kvm)
822  *
823  * Flushes dirty information from accelerators such as kvm and vhost-net
824  * and makes it available to users of the memory API.
825  *
826  * @mr: the region being flushed.
827  */
828 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
829 
830 /**
831  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
832  *                            client.
833  *
834  * Marks a range of pages as no longer dirty.
835  *
836  * @mr: the region being updated.
837  * @addr: the start of the subrange being cleaned.
838  * @size: the size of the subrange being cleaned.
839  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
840  *          %DIRTY_MEMORY_VGA.
841  */
842 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
843                                hwaddr size, unsigned client);
844 
845 /**
846  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
847  *
848  * Allows a memory region to be marked as read-only (turning it into a ROM).
849  * only useful on RAM regions.
850  *
851  * @mr: the region being updated.
852  * @readonly: whether rhe region is to be ROM or RAM.
853  */
854 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
855 
856 /**
857  * memory_region_rom_device_set_romd: enable/disable ROMD mode
858  *
859  * Allows a ROM device (initialized with memory_region_init_rom_device() to
860  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
861  * device is mapped to guest memory and satisfies read access directly.
862  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
863  * Writes are always handled by the #MemoryRegion.write function.
864  *
865  * @mr: the memory region to be updated
866  * @romd_mode: %true to put the region into ROMD mode
867  */
868 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
869 
870 /**
871  * memory_region_set_coalescing: Enable memory coalescing for the region.
872  *
873  * Enabled writes to a region to be queued for later processing. MMIO ->write
874  * callbacks may be delayed until a non-coalesced MMIO is issued.
875  * Only useful for IO regions.  Roughly similar to write-combining hardware.
876  *
877  * @mr: the memory region to be write coalesced
878  */
879 void memory_region_set_coalescing(MemoryRegion *mr);
880 
881 /**
882  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
883  *                               a region.
884  *
885  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
886  * Multiple calls can be issued coalesced disjoint ranges.
887  *
888  * @mr: the memory region to be updated.
889  * @offset: the start of the range within the region to be coalesced.
890  * @size: the size of the subrange to be coalesced.
891  */
892 void memory_region_add_coalescing(MemoryRegion *mr,
893                                   hwaddr offset,
894                                   uint64_t size);
895 
896 /**
897  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
898  *
899  * Disables any coalescing caused by memory_region_set_coalescing() or
900  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
901  * hardware.
902  *
903  * @mr: the memory region to be updated.
904  */
905 void memory_region_clear_coalescing(MemoryRegion *mr);
906 
907 /**
908  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
909  *                                    accesses.
910  *
911  * Ensure that pending coalesced MMIO request are flushed before the memory
912  * region is accessed. This property is automatically enabled for all regions
913  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
914  *
915  * @mr: the memory region to be updated.
916  */
917 void memory_region_set_flush_coalesced(MemoryRegion *mr);
918 
919 /**
920  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
921  *                                      accesses.
922  *
923  * Clear the automatic coalesced MMIO flushing enabled via
924  * memory_region_set_flush_coalesced. Note that this service has no effect on
925  * memory regions that have MMIO coalescing enabled for themselves. For them,
926  * automatic flushing will stop once coalescing is disabled.
927  *
928  * @mr: the memory region to be updated.
929  */
930 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
931 
932 /**
933  * memory_region_set_global_locking: Declares the access processing requires
934  *                                   QEMU's global lock.
935  *
936  * When this is invoked, accesses to the memory region will be processed while
937  * holding the global lock of QEMU. This is the default behavior of memory
938  * regions.
939  *
940  * @mr: the memory region to be updated.
941  */
942 void memory_region_set_global_locking(MemoryRegion *mr);
943 
944 /**
945  * memory_region_clear_global_locking: Declares that access processing does
946  *                                     not depend on the QEMU global lock.
947  *
948  * By clearing this property, accesses to the memory region will be processed
949  * outside of QEMU's global lock (unless the lock is held on when issuing the
950  * access request). In this case, the device model implementing the access
951  * handlers is responsible for synchronization of concurrency.
952  *
953  * @mr: the memory region to be updated.
954  */
955 void memory_region_clear_global_locking(MemoryRegion *mr);
956 
957 /**
958  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
959  *                            is written to a location.
960  *
961  * Marks a word in an IO region (initialized with memory_region_init_io())
962  * as a trigger for an eventfd event.  The I/O callback will not be called.
963  * The caller must be prepared to handle failure (that is, take the required
964  * action if the callback _is_ called).
965  *
966  * @mr: the memory region being updated.
967  * @addr: the address within @mr that is to be monitored
968  * @size: the size of the access to trigger the eventfd
969  * @match_data: whether to match against @data, instead of just @addr
970  * @data: the data to match against the guest write
971  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
972  **/
973 void memory_region_add_eventfd(MemoryRegion *mr,
974                                hwaddr addr,
975                                unsigned size,
976                                bool match_data,
977                                uint64_t data,
978                                EventNotifier *e);
979 
980 /**
981  * memory_region_del_eventfd: Cancel an eventfd.
982  *
983  * Cancels an eventfd trigger requested by a previous
984  * memory_region_add_eventfd() call.
985  *
986  * @mr: the memory region being updated.
987  * @addr: the address within @mr that is to be monitored
988  * @size: the size of the access to trigger the eventfd
989  * @match_data: whether to match against @data, instead of just @addr
990  * @data: the data to match against the guest write
991  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
992  */
993 void memory_region_del_eventfd(MemoryRegion *mr,
994                                hwaddr addr,
995                                unsigned size,
996                                bool match_data,
997                                uint64_t data,
998                                EventNotifier *e);
999 
1000 /**
1001  * memory_region_add_subregion: Add a subregion to a container.
1002  *
1003  * Adds a subregion at @offset.  The subregion may not overlap with other
1004  * subregions (except for those explicitly marked as overlapping).  A region
1005  * may only be added once as a subregion (unless removed with
1006  * memory_region_del_subregion()); use memory_region_init_alias() if you
1007  * want a region to be a subregion in multiple locations.
1008  *
1009  * @mr: the region to contain the new subregion; must be a container
1010  *      initialized with memory_region_init().
1011  * @offset: the offset relative to @mr where @subregion is added.
1012  * @subregion: the subregion to be added.
1013  */
1014 void memory_region_add_subregion(MemoryRegion *mr,
1015                                  hwaddr offset,
1016                                  MemoryRegion *subregion);
1017 /**
1018  * memory_region_add_subregion_overlap: Add a subregion to a container
1019  *                                      with overlap.
1020  *
1021  * Adds a subregion at @offset.  The subregion may overlap with other
1022  * subregions.  Conflicts are resolved by having a higher @priority hide a
1023  * lower @priority. Subregions without priority are taken as @priority 0.
1024  * A region may only be added once as a subregion (unless removed with
1025  * memory_region_del_subregion()); use memory_region_init_alias() if you
1026  * want a region to be a subregion in multiple locations.
1027  *
1028  * @mr: the region to contain the new subregion; must be a container
1029  *      initialized with memory_region_init().
1030  * @offset: the offset relative to @mr where @subregion is added.
1031  * @subregion: the subregion to be added.
1032  * @priority: used for resolving overlaps; highest priority wins.
1033  */
1034 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1035                                          hwaddr offset,
1036                                          MemoryRegion *subregion,
1037                                          int priority);
1038 
1039 /**
1040  * memory_region_get_ram_addr: Get the ram address associated with a memory
1041  *                             region
1042  */
1043 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1044 
1045 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1046 /**
1047  * memory_region_del_subregion: Remove a subregion.
1048  *
1049  * Removes a subregion from its container.
1050  *
1051  * @mr: the container to be updated.
1052  * @subregion: the region being removed; must be a current subregion of @mr.
1053  */
1054 void memory_region_del_subregion(MemoryRegion *mr,
1055                                  MemoryRegion *subregion);
1056 
1057 /*
1058  * memory_region_set_enabled: dynamically enable or disable a region
1059  *
1060  * Enables or disables a memory region.  A disabled memory region
1061  * ignores all accesses to itself and its subregions.  It does not
1062  * obscure sibling subregions with lower priority - it simply behaves as
1063  * if it was removed from the hierarchy.
1064  *
1065  * Regions default to being enabled.
1066  *
1067  * @mr: the region to be updated
1068  * @enabled: whether to enable or disable the region
1069  */
1070 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1071 
1072 /*
1073  * memory_region_set_address: dynamically update the address of a region
1074  *
1075  * Dynamically updates the address of a region, relative to its container.
1076  * May be used on regions are currently part of a memory hierarchy.
1077  *
1078  * @mr: the region to be updated
1079  * @addr: new address, relative to container region
1080  */
1081 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1082 
1083 /*
1084  * memory_region_set_size: dynamically update the size of a region.
1085  *
1086  * Dynamically updates the size of a region.
1087  *
1088  * @mr: the region to be updated
1089  * @size: used size of the region.
1090  */
1091 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1092 
1093 /*
1094  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1095  *
1096  * Dynamically updates the offset into the target region that an alias points
1097  * to, as if the fourth argument to memory_region_init_alias() has changed.
1098  *
1099  * @mr: the #MemoryRegion to be updated; should be an alias.
1100  * @offset: the new offset into the target memory region
1101  */
1102 void memory_region_set_alias_offset(MemoryRegion *mr,
1103                                     hwaddr offset);
1104 
1105 /**
1106  * memory_region_present: checks if an address relative to a @container
1107  * translates into #MemoryRegion within @container
1108  *
1109  * Answer whether a #MemoryRegion within @container covers the address
1110  * @addr.
1111  *
1112  * @container: a #MemoryRegion within which @addr is a relative address
1113  * @addr: the area within @container to be searched
1114  */
1115 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1116 
1117 /**
1118  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1119  * into any address space.
1120  *
1121  * @mr: a #MemoryRegion which should be checked if it's mapped
1122  */
1123 bool memory_region_is_mapped(MemoryRegion *mr);
1124 
1125 /**
1126  * memory_region_find: translate an address/size relative to a
1127  * MemoryRegion into a #MemoryRegionSection.
1128  *
1129  * Locates the first #MemoryRegion within @mr that overlaps the range
1130  * given by @addr and @size.
1131  *
1132  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1133  * It will have the following characteristics:
1134  *    .@size = 0 iff no overlap was found
1135  *    .@mr is non-%NULL iff an overlap was found
1136  *
1137  * Remember that in the return value the @offset_within_region is
1138  * relative to the returned region (in the .@mr field), not to the
1139  * @mr argument.
1140  *
1141  * Similarly, the .@offset_within_address_space is relative to the
1142  * address space that contains both regions, the passed and the
1143  * returned one.  However, in the special case where the @mr argument
1144  * has no container (and thus is the root of the address space), the
1145  * following will hold:
1146  *    .@offset_within_address_space >= @addr
1147  *    .@offset_within_address_space + .@size <= @addr + @size
1148  *
1149  * @mr: a MemoryRegion within which @addr is a relative address
1150  * @addr: start of the area within @as to be searched
1151  * @size: size of the area to be searched
1152  */
1153 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1154                                        hwaddr addr, uint64_t size);
1155 
1156 /**
1157  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1158  *
1159  * Synchronizes the dirty page log for an entire address space.
1160  * @as: the address space that contains the memory being synchronized
1161  */
1162 void address_space_sync_dirty_bitmap(AddressSpace *as);
1163 
1164 /**
1165  * memory_region_transaction_begin: Start a transaction.
1166  *
1167  * During a transaction, changes will be accumulated and made visible
1168  * only when the transaction ends (is committed).
1169  */
1170 void memory_region_transaction_begin(void);
1171 
1172 /**
1173  * memory_region_transaction_commit: Commit a transaction and make changes
1174  *                                   visible to the guest.
1175  */
1176 void memory_region_transaction_commit(void);
1177 
1178 /**
1179  * memory_listener_register: register callbacks to be called when memory
1180  *                           sections are mapped or unmapped into an address
1181  *                           space
1182  *
1183  * @listener: an object containing the callbacks to be called
1184  * @filter: if non-%NULL, only regions in this address space will be observed
1185  */
1186 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1187 
1188 /**
1189  * memory_listener_unregister: undo the effect of memory_listener_register()
1190  *
1191  * @listener: an object containing the callbacks to be removed
1192  */
1193 void memory_listener_unregister(MemoryListener *listener);
1194 
1195 /**
1196  * memory_global_dirty_log_start: begin dirty logging for all regions
1197  */
1198 void memory_global_dirty_log_start(void);
1199 
1200 /**
1201  * memory_global_dirty_log_stop: end dirty logging for all regions
1202  */
1203 void memory_global_dirty_log_stop(void);
1204 
1205 void mtree_info(fprintf_function mon_printf, void *f);
1206 
1207 /**
1208  * memory_region_dispatch_read: perform a read directly to the specified
1209  * MemoryRegion.
1210  *
1211  * @mr: #MemoryRegion to access
1212  * @addr: address within that region
1213  * @pval: pointer to uint64_t which the data is written to
1214  * @size: size of the access in bytes
1215  * @attrs: memory transaction attributes to use for the access
1216  */
1217 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1218                                         hwaddr addr,
1219                                         uint64_t *pval,
1220                                         unsigned size,
1221                                         MemTxAttrs attrs);
1222 /**
1223  * memory_region_dispatch_write: perform a write directly to the specified
1224  * MemoryRegion.
1225  *
1226  * @mr: #MemoryRegion to access
1227  * @addr: address within that region
1228  * @data: data to write
1229  * @size: size of the access in bytes
1230  * @attrs: memory transaction attributes to use for the access
1231  */
1232 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1233                                          hwaddr addr,
1234                                          uint64_t data,
1235                                          unsigned size,
1236                                          MemTxAttrs attrs);
1237 
1238 /**
1239  * address_space_init: initializes an address space
1240  *
1241  * @as: an uninitialized #AddressSpace
1242  * @root: a #MemoryRegion that routes addresses for the address space
1243  * @name: an address space name.  The name is only used for debugging
1244  *        output.
1245  */
1246 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1247 
1248 /**
1249  * address_space_init_shareable: return an address space for a memory region,
1250  *                               creating it if it does not already exist
1251  *
1252  * @root: a #MemoryRegion that routes addresses for the address space
1253  * @name: an address space name.  The name is only used for debugging
1254  *        output.
1255  *
1256  * This function will return a pointer to an existing AddressSpace
1257  * which was initialized with the specified MemoryRegion, or it will
1258  * create and initialize one if it does not already exist. The ASes
1259  * are reference-counted, so the memory will be freed automatically
1260  * when the AddressSpace is destroyed via address_space_destroy.
1261  */
1262 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1263                                            const char *name);
1264 
1265 /**
1266  * address_space_destroy: destroy an address space
1267  *
1268  * Releases all resources associated with an address space.  After an address space
1269  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1270  * as well.
1271  *
1272  * @as: address space to be destroyed
1273  */
1274 void address_space_destroy(AddressSpace *as);
1275 
1276 /**
1277  * address_space_rw: read from or write to an address space.
1278  *
1279  * Return a MemTxResult indicating whether the operation succeeded
1280  * or failed (eg unassigned memory, device rejected the transaction,
1281  * IOMMU fault).
1282  *
1283  * @as: #AddressSpace to be accessed
1284  * @addr: address within that address space
1285  * @attrs: memory transaction attributes
1286  * @buf: buffer with the data transferred
1287  * @is_write: indicates the transfer direction
1288  */
1289 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1290                              MemTxAttrs attrs, uint8_t *buf,
1291                              int len, bool is_write);
1292 
1293 /**
1294  * address_space_write: write to address space.
1295  *
1296  * Return a MemTxResult indicating whether the operation succeeded
1297  * or failed (eg unassigned memory, device rejected the transaction,
1298  * IOMMU fault).
1299  *
1300  * @as: #AddressSpace to be accessed
1301  * @addr: address within that address space
1302  * @attrs: memory transaction attributes
1303  * @buf: buffer with the data transferred
1304  */
1305 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1306                                 MemTxAttrs attrs,
1307                                 const uint8_t *buf, int len);
1308 
1309 /* address_space_ld*: load from an address space
1310  * address_space_st*: store to an address space
1311  *
1312  * These functions perform a load or store of the byte, word,
1313  * longword or quad to the specified address within the AddressSpace.
1314  * The _le suffixed functions treat the data as little endian;
1315  * _be indicates big endian; no suffix indicates "same endianness
1316  * as guest CPU".
1317  *
1318  * The "guest CPU endianness" accessors are deprecated for use outside
1319  * target-* code; devices should be CPU-agnostic and use either the LE
1320  * or the BE accessors.
1321  *
1322  * @as #AddressSpace to be accessed
1323  * @addr: address within that address space
1324  * @val: data value, for stores
1325  * @attrs: memory transaction attributes
1326  * @result: location to write the success/failure of the transaction;
1327  *   if NULL, this information is discarded
1328  */
1329 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1330                             MemTxAttrs attrs, MemTxResult *result);
1331 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1332                             MemTxAttrs attrs, MemTxResult *result);
1333 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1334                             MemTxAttrs attrs, MemTxResult *result);
1335 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1336                             MemTxAttrs attrs, MemTxResult *result);
1337 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1338                             MemTxAttrs attrs, MemTxResult *result);
1339 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1340                             MemTxAttrs attrs, MemTxResult *result);
1341 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1342                             MemTxAttrs attrs, MemTxResult *result);
1343 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1344                             MemTxAttrs attrs, MemTxResult *result);
1345 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1346                             MemTxAttrs attrs, MemTxResult *result);
1347 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1348                             MemTxAttrs attrs, MemTxResult *result);
1349 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1350                             MemTxAttrs attrs, MemTxResult *result);
1351 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1352                             MemTxAttrs attrs, MemTxResult *result);
1353 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1354                             MemTxAttrs attrs, MemTxResult *result);
1355 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1356                             MemTxAttrs attrs, MemTxResult *result);
1357 
1358 /* address_space_translate: translate an address range into an address space
1359  * into a MemoryRegion and an address range into that section.  Should be
1360  * called from an RCU critical section, to avoid that the last reference
1361  * to the returned region disappears after address_space_translate returns.
1362  *
1363  * @as: #AddressSpace to be accessed
1364  * @addr: address within that address space
1365  * @xlat: pointer to address within the returned memory region section's
1366  * #MemoryRegion.
1367  * @len: pointer to length
1368  * @is_write: indicates the transfer direction
1369  */
1370 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1371                                       hwaddr *xlat, hwaddr *len,
1372                                       bool is_write);
1373 
1374 /* address_space_access_valid: check for validity of accessing an address
1375  * space range
1376  *
1377  * Check whether memory is assigned to the given address space range, and
1378  * access is permitted by any IOMMU regions that are active for the address
1379  * space.
1380  *
1381  * For now, addr and len should be aligned to a page size.  This limitation
1382  * will be lifted in the future.
1383  *
1384  * @as: #AddressSpace to be accessed
1385  * @addr: address within that address space
1386  * @len: length of the area to be checked
1387  * @is_write: indicates the transfer direction
1388  */
1389 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1390 
1391 /* address_space_map: map a physical memory region into a host virtual address
1392  *
1393  * May map a subset of the requested range, given by and returned in @plen.
1394  * May return %NULL if resources needed to perform the mapping are exhausted.
1395  * Use only for reads OR writes - not for read-modify-write operations.
1396  * Use cpu_register_map_client() to know when retrying the map operation is
1397  * likely to succeed.
1398  *
1399  * @as: #AddressSpace to be accessed
1400  * @addr: address within that address space
1401  * @plen: pointer to length of buffer; updated on return
1402  * @is_write: indicates the transfer direction
1403  */
1404 void *address_space_map(AddressSpace *as, hwaddr addr,
1405                         hwaddr *plen, bool is_write);
1406 
1407 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1408  *
1409  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1410  * the amount of memory that was actually read or written by the caller.
1411  *
1412  * @as: #AddressSpace used
1413  * @addr: address within that address space
1414  * @len: buffer length as returned by address_space_map()
1415  * @access_len: amount of data actually transferred
1416  * @is_write: indicates the transfer direction
1417  */
1418 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1419                          int is_write, hwaddr access_len);
1420 
1421 
1422 /* Internal functions, part of the implementation of address_space_read.  */
1423 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1424                                         MemTxAttrs attrs, uint8_t *buf,
1425                                         int len, hwaddr addr1, hwaddr l,
1426 					MemoryRegion *mr);
1427 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1428                                     MemTxAttrs attrs, uint8_t *buf, int len);
1429 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1430 
1431 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1432 {
1433     if (is_write) {
1434         return memory_region_is_ram(mr) && !mr->readonly;
1435     } else {
1436         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1437     }
1438 }
1439 
1440 /**
1441  * address_space_read: read from an address space.
1442  *
1443  * Return a MemTxResult indicating whether the operation succeeded
1444  * or failed (eg unassigned memory, device rejected the transaction,
1445  * IOMMU fault).
1446  *
1447  * @as: #AddressSpace to be accessed
1448  * @addr: address within that address space
1449  * @attrs: memory transaction attributes
1450  * @buf: buffer with the data transferred
1451  */
1452 static inline __attribute__((__always_inline__))
1453 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1454                                uint8_t *buf, int len)
1455 {
1456     MemTxResult result = MEMTX_OK;
1457     hwaddr l, addr1;
1458     void *ptr;
1459     MemoryRegion *mr;
1460 
1461     if (__builtin_constant_p(len)) {
1462         if (len) {
1463             rcu_read_lock();
1464             l = len;
1465             mr = address_space_translate(as, addr, &addr1, &l, false);
1466             if (len == l && memory_access_is_direct(mr, false)) {
1467                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1468                 memcpy(buf, ptr, len);
1469             } else {
1470                 result = address_space_read_continue(as, addr, attrs, buf, len,
1471                                                      addr1, l, mr);
1472             }
1473             rcu_read_unlock();
1474         }
1475     } else {
1476         result = address_space_read_full(as, addr, attrs, buf, len);
1477     }
1478     return result;
1479 }
1480 
1481 #endif
1482 
1483 #endif
1484