xref: /qemu/include/exec/memory.h (revision 9be38598)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include "exec/cpu-common.h"
25 #ifndef CONFIG_USER_ONLY
26 #include "exec/hwaddr.h"
27 #endif
28 #include "exec/memattrs.h"
29 #include "qemu/queue.h"
30 #include "qemu/int128.h"
31 #include "qemu/notify.h"
32 #include "qom/object.h"
33 #include "qemu/rcu.h"
34 
35 #define RAM_ADDR_INVALID (~(ram_addr_t)0)
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /* New-style MMIO accessors can indicate that the transaction failed.
71  * A zero (MEMTX_OK) response means success; anything else is a failure
72  * of some kind. The memory subsystem will bitwise-OR together results
73  * if it is synthesizing an operation from multiple smaller accesses.
74  */
75 #define MEMTX_OK 0
76 #define MEMTX_ERROR             (1U << 0) /* device returned an error */
77 #define MEMTX_DECODE_ERROR      (1U << 1) /* nothing at that address */
78 typedef uint32_t MemTxResult;
79 
80 /*
81  * Memory region callbacks
82  */
83 struct MemoryRegionOps {
84     /* Read from the memory region. @addr is relative to @mr; @size is
85      * in bytes. */
86     uint64_t (*read)(void *opaque,
87                      hwaddr addr,
88                      unsigned size);
89     /* Write to the memory region. @addr is relative to @mr; @size is
90      * in bytes. */
91     void (*write)(void *opaque,
92                   hwaddr addr,
93                   uint64_t data,
94                   unsigned size);
95 
96     MemTxResult (*read_with_attrs)(void *opaque,
97                                    hwaddr addr,
98                                    uint64_t *data,
99                                    unsigned size,
100                                    MemTxAttrs attrs);
101     MemTxResult (*write_with_attrs)(void *opaque,
102                                     hwaddr addr,
103                                     uint64_t data,
104                                     unsigned size,
105                                     MemTxAttrs attrs);
106 
107     enum device_endian endianness;
108     /* Guest-visible constraints: */
109     struct {
110         /* If nonzero, specify bounds on access sizes beyond which a machine
111          * check is thrown.
112          */
113         unsigned min_access_size;
114         unsigned max_access_size;
115         /* If true, unaligned accesses are supported.  Otherwise unaligned
116          * accesses throw machine checks.
117          */
118          bool unaligned;
119         /*
120          * If present, and returns #false, the transaction is not accepted
121          * by the device (and results in machine dependent behaviour such
122          * as a machine check exception).
123          */
124         bool (*accepts)(void *opaque, hwaddr addr,
125                         unsigned size, bool is_write);
126     } valid;
127     /* Internal implementation constraints: */
128     struct {
129         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
130          * will be rounded upwards and a partial result will be returned.
131          */
132         unsigned min_access_size;
133         /* If nonzero, specifies the maximum size implemented.  Larger sizes
134          * will be done as a series of accesses with smaller sizes.
135          */
136         unsigned max_access_size;
137         /* If true, unaligned accesses are supported.  Otherwise all accesses
138          * are converted to (possibly multiple) naturally aligned accesses.
139          */
140         bool unaligned;
141     } impl;
142 
143     /* If .read and .write are not present, old_mmio may be used for
144      * backwards compatibility with old mmio registration
145      */
146     const MemoryRegionMmio old_mmio;
147 };
148 
149 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
150 
151 struct MemoryRegionIOMMUOps {
152     /* Return a TLB entry that contains a given address. */
153     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr, bool is_write);
154 };
155 
156 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
157 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
158 
159 struct MemoryRegion {
160     Object parent_obj;
161 
162     /* All fields are private - violators will be prosecuted */
163 
164     /* The following fields should fit in a cache line */
165     bool romd_mode;
166     bool ram;
167     bool subpage;
168     bool readonly; /* For RAM regions */
169     bool rom_device;
170     bool flush_coalesced_mmio;
171     bool global_locking;
172     uint8_t dirty_log_mask;
173     RAMBlock *ram_block;
174     Object *owner;
175     const MemoryRegionIOMMUOps *iommu_ops;
176 
177     const MemoryRegionOps *ops;
178     void *opaque;
179     MemoryRegion *container;
180     Int128 size;
181     hwaddr addr;
182     void (*destructor)(MemoryRegion *mr);
183     uint64_t align;
184     bool terminates;
185     bool skip_dump;
186     bool enabled;
187     bool warning_printed; /* For reservations */
188     uint8_t vga_logging_count;
189     MemoryRegion *alias;
190     hwaddr alias_offset;
191     int32_t priority;
192     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
193     QTAILQ_ENTRY(MemoryRegion) subregions_link;
194     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
195     const char *name;
196     unsigned ioeventfd_nb;
197     MemoryRegionIoeventfd *ioeventfds;
198     NotifierList iommu_notify;
199 };
200 
201 /**
202  * MemoryListener: callbacks structure for updates to the physical memory map
203  *
204  * Allows a component to adjust to changes in the guest-visible memory map.
205  * Use with memory_listener_register() and memory_listener_unregister().
206  */
207 struct MemoryListener {
208     void (*begin)(MemoryListener *listener);
209     void (*commit)(MemoryListener *listener);
210     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
211     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
212     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
213     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section,
214                       int old, int new);
215     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section,
216                      int old, int new);
217     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
218     void (*log_global_start)(MemoryListener *listener);
219     void (*log_global_stop)(MemoryListener *listener);
220     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
221                         bool match_data, uint64_t data, EventNotifier *e);
222     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
223                         bool match_data, uint64_t data, EventNotifier *e);
224     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
225                                hwaddr addr, hwaddr len);
226     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
227                                hwaddr addr, hwaddr len);
228     /* Lower = earlier (during add), later (during del) */
229     unsigned priority;
230     AddressSpace *address_space_filter;
231     QTAILQ_ENTRY(MemoryListener) link;
232 };
233 
234 /**
235  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
236  */
237 struct AddressSpace {
238     /* All fields are private. */
239     struct rcu_head rcu;
240     char *name;
241     MemoryRegion *root;
242     int ref_count;
243     bool malloced;
244 
245     /* Accessed via RCU.  */
246     struct FlatView *current_map;
247 
248     int ioeventfd_nb;
249     struct MemoryRegionIoeventfd *ioeventfds;
250     struct AddressSpaceDispatch *dispatch;
251     struct AddressSpaceDispatch *next_dispatch;
252     MemoryListener dispatch_listener;
253 
254     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
255 };
256 
257 /**
258  * MemoryRegionSection: describes a fragment of a #MemoryRegion
259  *
260  * @mr: the region, or %NULL if empty
261  * @address_space: the address space the region is mapped in
262  * @offset_within_region: the beginning of the section, relative to @mr's start
263  * @size: the size of the section; will not exceed @mr's boundaries
264  * @offset_within_address_space: the address of the first byte of the section
265  *     relative to the region's address space
266  * @readonly: writes to this section are ignored
267  */
268 struct MemoryRegionSection {
269     MemoryRegion *mr;
270     AddressSpace *address_space;
271     hwaddr offset_within_region;
272     Int128 size;
273     hwaddr offset_within_address_space;
274     bool readonly;
275 };
276 
277 /**
278  * memory_region_init: Initialize a memory region
279  *
280  * The region typically acts as a container for other memory regions.  Use
281  * memory_region_add_subregion() to add subregions.
282  *
283  * @mr: the #MemoryRegion to be initialized
284  * @owner: the object that tracks the region's reference count
285  * @name: used for debugging; not visible to the user or ABI
286  * @size: size of the region; any subregions beyond this size will be clipped
287  */
288 void memory_region_init(MemoryRegion *mr,
289                         struct Object *owner,
290                         const char *name,
291                         uint64_t size);
292 
293 /**
294  * memory_region_ref: Add 1 to a memory region's reference count
295  *
296  * Whenever memory regions are accessed outside the BQL, they need to be
297  * preserved against hot-unplug.  MemoryRegions actually do not have their
298  * own reference count; they piggyback on a QOM object, their "owner".
299  * This function adds a reference to the owner.
300  *
301  * All MemoryRegions must have an owner if they can disappear, even if the
302  * device they belong to operates exclusively under the BQL.  This is because
303  * the region could be returned at any time by memory_region_find, and this
304  * is usually under guest control.
305  *
306  * @mr: the #MemoryRegion
307  */
308 void memory_region_ref(MemoryRegion *mr);
309 
310 /**
311  * memory_region_unref: Remove 1 to a memory region's reference count
312  *
313  * Whenever memory regions are accessed outside the BQL, they need to be
314  * preserved against hot-unplug.  MemoryRegions actually do not have their
315  * own reference count; they piggyback on a QOM object, their "owner".
316  * This function removes a reference to the owner and possibly destroys it.
317  *
318  * @mr: the #MemoryRegion
319  */
320 void memory_region_unref(MemoryRegion *mr);
321 
322 /**
323  * memory_region_init_io: Initialize an I/O memory region.
324  *
325  * Accesses into the region will cause the callbacks in @ops to be called.
326  * if @size is nonzero, subregions will be clipped to @size.
327  *
328  * @mr: the #MemoryRegion to be initialized.
329  * @owner: the object that tracks the region's reference count
330  * @ops: a structure containing read and write callbacks to be used when
331  *       I/O is performed on the region.
332  * @opaque: passed to the read and write callbacks of the @ops structure.
333  * @name: used for debugging; not visible to the user or ABI
334  * @size: size of the region.
335  */
336 void memory_region_init_io(MemoryRegion *mr,
337                            struct Object *owner,
338                            const MemoryRegionOps *ops,
339                            void *opaque,
340                            const char *name,
341                            uint64_t size);
342 
343 /**
344  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
345  *                          region will modify memory directly.
346  *
347  * @mr: the #MemoryRegion to be initialized.
348  * @owner: the object that tracks the region's reference count
349  * @name: the name of the region.
350  * @size: size of the region.
351  * @errp: pointer to Error*, to store an error if it happens.
352  */
353 void memory_region_init_ram(MemoryRegion *mr,
354                             struct Object *owner,
355                             const char *name,
356                             uint64_t size,
357                             Error **errp);
358 
359 /**
360  * memory_region_init_resizeable_ram:  Initialize memory region with resizeable
361  *                                     RAM.  Accesses into the region will
362  *                                     modify memory directly.  Only an initial
363  *                                     portion of this RAM is actually used.
364  *                                     The used size can change across reboots.
365  *
366  * @mr: the #MemoryRegion to be initialized.
367  * @owner: the object that tracks the region's reference count
368  * @name: the name of the region.
369  * @size: used size of the region.
370  * @max_size: max size of the region.
371  * @resized: callback to notify owner about used size change.
372  * @errp: pointer to Error*, to store an error if it happens.
373  */
374 void memory_region_init_resizeable_ram(MemoryRegion *mr,
375                                        struct Object *owner,
376                                        const char *name,
377                                        uint64_t size,
378                                        uint64_t max_size,
379                                        void (*resized)(const char*,
380                                                        uint64_t length,
381                                                        void *host),
382                                        Error **errp);
383 #ifdef __linux__
384 /**
385  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
386  *                                    mmap-ed backend.
387  *
388  * @mr: the #MemoryRegion to be initialized.
389  * @owner: the object that tracks the region's reference count
390  * @name: the name of the region.
391  * @size: size of the region.
392  * @share: %true if memory must be mmaped with the MAP_SHARED flag
393  * @path: the path in which to allocate the RAM.
394  * @errp: pointer to Error*, to store an error if it happens.
395  */
396 void memory_region_init_ram_from_file(MemoryRegion *mr,
397                                       struct Object *owner,
398                                       const char *name,
399                                       uint64_t size,
400                                       bool share,
401                                       const char *path,
402                                       Error **errp);
403 #endif
404 
405 /**
406  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
407  *                              user-provided pointer.  Accesses into the
408  *                              region will modify memory directly.
409  *
410  * @mr: the #MemoryRegion to be initialized.
411  * @owner: the object that tracks the region's reference count
412  * @name: the name of the region.
413  * @size: size of the region.
414  * @ptr: memory to be mapped; must contain at least @size bytes.
415  */
416 void memory_region_init_ram_ptr(MemoryRegion *mr,
417                                 struct Object *owner,
418                                 const char *name,
419                                 uint64_t size,
420                                 void *ptr);
421 
422 /**
423  * memory_region_init_alias: Initialize a memory region that aliases all or a
424  *                           part of another memory region.
425  *
426  * @mr: the #MemoryRegion to be initialized.
427  * @owner: the object that tracks the region's reference count
428  * @name: used for debugging; not visible to the user or ABI
429  * @orig: the region to be referenced; @mr will be equivalent to
430  *        @orig between @offset and @offset + @size - 1.
431  * @offset: start of the section in @orig to be referenced.
432  * @size: size of the region.
433  */
434 void memory_region_init_alias(MemoryRegion *mr,
435                               struct Object *owner,
436                               const char *name,
437                               MemoryRegion *orig,
438                               hwaddr offset,
439                               uint64_t size);
440 
441 /**
442  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
443  *                                 handled via callbacks.
444  *
445  * If NULL callbacks pointer is given, then I/O space is not supposed to be
446  * handled by QEMU itself. Any access via the memory API will cause an abort().
447  *
448  * @mr: the #MemoryRegion to be initialized.
449  * @owner: the object that tracks the region's reference count
450  * @ops: callbacks for write access handling.
451  * @name: the name of the region.
452  * @size: size of the region.
453  * @errp: pointer to Error*, to store an error if it happens.
454  */
455 void memory_region_init_rom_device(MemoryRegion *mr,
456                                    struct Object *owner,
457                                    const MemoryRegionOps *ops,
458                                    void *opaque,
459                                    const char *name,
460                                    uint64_t size,
461                                    Error **errp);
462 
463 /**
464  * memory_region_init_reservation: Initialize a memory region that reserves
465  *                                 I/O space.
466  *
467  * A reservation region primariy serves debugging purposes.  It claims I/O
468  * space that is not supposed to be handled by QEMU itself.  Any access via
469  * the memory API will cause an abort().
470  * This function is deprecated. Use memory_region_init_io() with NULL
471  * callbacks instead.
472  *
473  * @mr: the #MemoryRegion to be initialized
474  * @owner: the object that tracks the region's reference count
475  * @name: used for debugging; not visible to the user or ABI
476  * @size: size of the region.
477  */
478 static inline void memory_region_init_reservation(MemoryRegion *mr,
479                                     Object *owner,
480                                     const char *name,
481                                     uint64_t size)
482 {
483     memory_region_init_io(mr, owner, NULL, mr, name, size);
484 }
485 
486 /**
487  * memory_region_init_iommu: Initialize a memory region that translates
488  * addresses
489  *
490  * An IOMMU region translates addresses and forwards accesses to a target
491  * memory region.
492  *
493  * @mr: the #MemoryRegion to be initialized
494  * @owner: the object that tracks the region's reference count
495  * @ops: a function that translates addresses into the @target region
496  * @name: used for debugging; not visible to the user or ABI
497  * @size: size of the region.
498  */
499 void memory_region_init_iommu(MemoryRegion *mr,
500                               struct Object *owner,
501                               const MemoryRegionIOMMUOps *ops,
502                               const char *name,
503                               uint64_t size);
504 
505 /**
506  * memory_region_owner: get a memory region's owner.
507  *
508  * @mr: the memory region being queried.
509  */
510 struct Object *memory_region_owner(MemoryRegion *mr);
511 
512 /**
513  * memory_region_size: get a memory region's size.
514  *
515  * @mr: the memory region being queried.
516  */
517 uint64_t memory_region_size(MemoryRegion *mr);
518 
519 /**
520  * memory_region_is_ram: check whether a memory region is random access
521  *
522  * Returns %true is a memory region is random access.
523  *
524  * @mr: the memory region being queried
525  */
526 static inline bool memory_region_is_ram(MemoryRegion *mr)
527 {
528     return mr->ram;
529 }
530 
531 /**
532  * memory_region_is_skip_dump: check whether a memory region should not be
533  *                             dumped
534  *
535  * Returns %true is a memory region should not be dumped(e.g. VFIO BAR MMAP).
536  *
537  * @mr: the memory region being queried
538  */
539 bool memory_region_is_skip_dump(MemoryRegion *mr);
540 
541 /**
542  * memory_region_set_skip_dump: Set skip_dump flag, dump will ignore this memory
543  *                              region
544  *
545  * @mr: the memory region being queried
546  */
547 void memory_region_set_skip_dump(MemoryRegion *mr);
548 
549 /**
550  * memory_region_is_romd: check whether a memory region is in ROMD mode
551  *
552  * Returns %true if a memory region is a ROM device and currently set to allow
553  * direct reads.
554  *
555  * @mr: the memory region being queried
556  */
557 static inline bool memory_region_is_romd(MemoryRegion *mr)
558 {
559     return mr->rom_device && mr->romd_mode;
560 }
561 
562 /**
563  * memory_region_is_iommu: check whether a memory region is an iommu
564  *
565  * Returns %true is a memory region is an iommu.
566  *
567  * @mr: the memory region being queried
568  */
569 static inline bool memory_region_is_iommu(MemoryRegion *mr)
570 {
571     return mr->iommu_ops;
572 }
573 
574 
575 /**
576  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
577  *
578  * @mr: the memory region that was changed
579  * @entry: the new entry in the IOMMU translation table.  The entry
580  *         replaces all old entries for the same virtual I/O address range.
581  *         Deleted entries have .@perm == 0.
582  */
583 void memory_region_notify_iommu(MemoryRegion *mr,
584                                 IOMMUTLBEntry entry);
585 
586 /**
587  * memory_region_register_iommu_notifier: register a notifier for changes to
588  * IOMMU translation entries.
589  *
590  * @mr: the memory region to observe
591  * @n: the notifier to be added; the notifier receives a pointer to an
592  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
593  *     valid on exit from the notifier.
594  */
595 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
596 
597 /**
598  * memory_region_iommu_replay: replay existing IOMMU translations to
599  * a notifier
600  *
601  * @mr: the memory region to observe
602  * @n: the notifier to which to replay iommu mappings
603  * @granularity: Minimum page granularity to replay notifications for
604  * @is_write: Whether to treat the replay as a translate "write"
605  *     through the iommu
606  */
607 void memory_region_iommu_replay(MemoryRegion *mr, Notifier *n,
608                                 hwaddr granularity, bool is_write);
609 
610 /**
611  * memory_region_unregister_iommu_notifier: unregister a notifier for
612  * changes to IOMMU translation entries.
613  *
614  * @n: the notifier to be removed.
615  */
616 void memory_region_unregister_iommu_notifier(Notifier *n);
617 
618 /**
619  * memory_region_name: get a memory region's name
620  *
621  * Returns the string that was used to initialize the memory region.
622  *
623  * @mr: the memory region being queried
624  */
625 const char *memory_region_name(const MemoryRegion *mr);
626 
627 /**
628  * memory_region_is_logging: return whether a memory region is logging writes
629  *
630  * Returns %true if the memory region is logging writes for the given client
631  *
632  * @mr: the memory region being queried
633  * @client: the client being queried
634  */
635 bool memory_region_is_logging(MemoryRegion *mr, uint8_t client);
636 
637 /**
638  * memory_region_get_dirty_log_mask: return the clients for which a
639  * memory region is logging writes.
640  *
641  * Returns a bitmap of clients, in which the DIRTY_MEMORY_* constants
642  * are the bit indices.
643  *
644  * @mr: the memory region being queried
645  */
646 uint8_t memory_region_get_dirty_log_mask(MemoryRegion *mr);
647 
648 /**
649  * memory_region_is_rom: check whether a memory region is ROM
650  *
651  * Returns %true is a memory region is read-only memory.
652  *
653  * @mr: the memory region being queried
654  */
655 static inline bool memory_region_is_rom(MemoryRegion *mr)
656 {
657     return mr->ram && mr->readonly;
658 }
659 
660 
661 /**
662  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
663  *
664  * Returns a file descriptor backing a file-based RAM memory region,
665  * or -1 if the region is not a file-based RAM memory region.
666  *
667  * @mr: the RAM or alias memory region being queried.
668  */
669 int memory_region_get_fd(MemoryRegion *mr);
670 
671 /**
672  * memory_region_set_fd: Mark a RAM memory region as backed by a
673  * file descriptor.
674  *
675  * This function is typically used after memory_region_init_ram_ptr().
676  *
677  * @mr: the memory region being queried.
678  * @fd: the file descriptor that backs @mr.
679  */
680 void memory_region_set_fd(MemoryRegion *mr, int fd);
681 
682 /**
683  * memory_region_from_host: Convert a pointer into a RAM memory region
684  * and an offset within it.
685  *
686  * Given a host pointer inside a RAM memory region (created with
687  * memory_region_init_ram() or memory_region_init_ram_ptr()), return
688  * the MemoryRegion and the offset within it.
689  *
690  * Use with care; by the time this function returns, the returned pointer is
691  * not protected by RCU anymore.  If the caller is not within an RCU critical
692  * section and does not hold the iothread lock, it must have other means of
693  * protecting the pointer, such as a reference to the region that includes
694  * the incoming ram_addr_t.
695  *
696  * @mr: the memory region being queried.
697  */
698 MemoryRegion *memory_region_from_host(void *ptr, ram_addr_t *offset);
699 
700 /**
701  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
702  *
703  * Returns a host pointer to a RAM memory region (created with
704  * memory_region_init_ram() or memory_region_init_ram_ptr()).
705  *
706  * Use with care; by the time this function returns, the returned pointer is
707  * not protected by RCU anymore.  If the caller is not within an RCU critical
708  * section and does not hold the iothread lock, it must have other means of
709  * protecting the pointer, such as a reference to the region that includes
710  * the incoming ram_addr_t.
711  *
712  * @mr: the memory region being queried.
713  */
714 void *memory_region_get_ram_ptr(MemoryRegion *mr);
715 
716 /* memory_region_ram_resize: Resize a RAM region.
717  *
718  * Only legal before guest might have detected the memory size: e.g. on
719  * incoming migration, or right after reset.
720  *
721  * @mr: a memory region created with @memory_region_init_resizeable_ram.
722  * @newsize: the new size the region
723  * @errp: pointer to Error*, to store an error if it happens.
724  */
725 void memory_region_ram_resize(MemoryRegion *mr, ram_addr_t newsize,
726                               Error **errp);
727 
728 /**
729  * memory_region_set_log: Turn dirty logging on or off for a region.
730  *
731  * Turns dirty logging on or off for a specified client (display, migration).
732  * Only meaningful for RAM regions.
733  *
734  * @mr: the memory region being updated.
735  * @log: whether dirty logging is to be enabled or disabled.
736  * @client: the user of the logging information; %DIRTY_MEMORY_VGA only.
737  */
738 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
739 
740 /**
741  * memory_region_get_dirty: Check whether a range of bytes is dirty
742  *                          for a specified client.
743  *
744  * Checks whether a range of bytes has been written to since the last
745  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
746  * must be enabled.
747  *
748  * @mr: the memory region being queried.
749  * @addr: the address (relative to the start of the region) being queried.
750  * @size: the size of the range being queried.
751  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
752  *          %DIRTY_MEMORY_VGA.
753  */
754 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
755                              hwaddr size, unsigned client);
756 
757 /**
758  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
759  *
760  * Marks a range of bytes as dirty, after it has been dirtied outside
761  * guest code.
762  *
763  * @mr: the memory region being dirtied.
764  * @addr: the address (relative to the start of the region) being dirtied.
765  * @size: size of the range being dirtied.
766  */
767 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
768                              hwaddr size);
769 
770 /**
771  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
772  *                                     for a specified client. It clears them.
773  *
774  * Checks whether a range of bytes has been written to since the last
775  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
776  * must be enabled.
777  *
778  * @mr: the memory region being queried.
779  * @addr: the address (relative to the start of the region) being queried.
780  * @size: the size of the range being queried.
781  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
782  *          %DIRTY_MEMORY_VGA.
783  */
784 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
785                                         hwaddr size, unsigned client);
786 /**
787  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
788  *                                  any external TLBs (e.g. kvm)
789  *
790  * Flushes dirty information from accelerators such as kvm and vhost-net
791  * and makes it available to users of the memory API.
792  *
793  * @mr: the region being flushed.
794  */
795 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
796 
797 /**
798  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
799  *                            client.
800  *
801  * Marks a range of pages as no longer dirty.
802  *
803  * @mr: the region being updated.
804  * @addr: the start of the subrange being cleaned.
805  * @size: the size of the subrange being cleaned.
806  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
807  *          %DIRTY_MEMORY_VGA.
808  */
809 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
810                                hwaddr size, unsigned client);
811 
812 /**
813  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
814  *
815  * Allows a memory region to be marked as read-only (turning it into a ROM).
816  * only useful on RAM regions.
817  *
818  * @mr: the region being updated.
819  * @readonly: whether rhe region is to be ROM or RAM.
820  */
821 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
822 
823 /**
824  * memory_region_rom_device_set_romd: enable/disable ROMD mode
825  *
826  * Allows a ROM device (initialized with memory_region_init_rom_device() to
827  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
828  * device is mapped to guest memory and satisfies read access directly.
829  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
830  * Writes are always handled by the #MemoryRegion.write function.
831  *
832  * @mr: the memory region to be updated
833  * @romd_mode: %true to put the region into ROMD mode
834  */
835 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
836 
837 /**
838  * memory_region_set_coalescing: Enable memory coalescing for the region.
839  *
840  * Enabled writes to a region to be queued for later processing. MMIO ->write
841  * callbacks may be delayed until a non-coalesced MMIO is issued.
842  * Only useful for IO regions.  Roughly similar to write-combining hardware.
843  *
844  * @mr: the memory region to be write coalesced
845  */
846 void memory_region_set_coalescing(MemoryRegion *mr);
847 
848 /**
849  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
850  *                               a region.
851  *
852  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
853  * Multiple calls can be issued coalesced disjoint ranges.
854  *
855  * @mr: the memory region to be updated.
856  * @offset: the start of the range within the region to be coalesced.
857  * @size: the size of the subrange to be coalesced.
858  */
859 void memory_region_add_coalescing(MemoryRegion *mr,
860                                   hwaddr offset,
861                                   uint64_t size);
862 
863 /**
864  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
865  *
866  * Disables any coalescing caused by memory_region_set_coalescing() or
867  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
868  * hardware.
869  *
870  * @mr: the memory region to be updated.
871  */
872 void memory_region_clear_coalescing(MemoryRegion *mr);
873 
874 /**
875  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
876  *                                    accesses.
877  *
878  * Ensure that pending coalesced MMIO request are flushed before the memory
879  * region is accessed. This property is automatically enabled for all regions
880  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
881  *
882  * @mr: the memory region to be updated.
883  */
884 void memory_region_set_flush_coalesced(MemoryRegion *mr);
885 
886 /**
887  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
888  *                                      accesses.
889  *
890  * Clear the automatic coalesced MMIO flushing enabled via
891  * memory_region_set_flush_coalesced. Note that this service has no effect on
892  * memory regions that have MMIO coalescing enabled for themselves. For them,
893  * automatic flushing will stop once coalescing is disabled.
894  *
895  * @mr: the memory region to be updated.
896  */
897 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
898 
899 /**
900  * memory_region_set_global_locking: Declares the access processing requires
901  *                                   QEMU's global lock.
902  *
903  * When this is invoked, accesses to the memory region will be processed while
904  * holding the global lock of QEMU. This is the default behavior of memory
905  * regions.
906  *
907  * @mr: the memory region to be updated.
908  */
909 void memory_region_set_global_locking(MemoryRegion *mr);
910 
911 /**
912  * memory_region_clear_global_locking: Declares that access processing does
913  *                                     not depend on the QEMU global lock.
914  *
915  * By clearing this property, accesses to the memory region will be processed
916  * outside of QEMU's global lock (unless the lock is held on when issuing the
917  * access request). In this case, the device model implementing the access
918  * handlers is responsible for synchronization of concurrency.
919  *
920  * @mr: the memory region to be updated.
921  */
922 void memory_region_clear_global_locking(MemoryRegion *mr);
923 
924 /**
925  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
926  *                            is written to a location.
927  *
928  * Marks a word in an IO region (initialized with memory_region_init_io())
929  * as a trigger for an eventfd event.  The I/O callback will not be called.
930  * The caller must be prepared to handle failure (that is, take the required
931  * action if the callback _is_ called).
932  *
933  * @mr: the memory region being updated.
934  * @addr: the address within @mr that is to be monitored
935  * @size: the size of the access to trigger the eventfd
936  * @match_data: whether to match against @data, instead of just @addr
937  * @data: the data to match against the guest write
938  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
939  **/
940 void memory_region_add_eventfd(MemoryRegion *mr,
941                                hwaddr addr,
942                                unsigned size,
943                                bool match_data,
944                                uint64_t data,
945                                EventNotifier *e);
946 
947 /**
948  * memory_region_del_eventfd: Cancel an eventfd.
949  *
950  * Cancels an eventfd trigger requested by a previous
951  * memory_region_add_eventfd() call.
952  *
953  * @mr: the memory region being updated.
954  * @addr: the address within @mr that is to be monitored
955  * @size: the size of the access to trigger the eventfd
956  * @match_data: whether to match against @data, instead of just @addr
957  * @data: the data to match against the guest write
958  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
959  */
960 void memory_region_del_eventfd(MemoryRegion *mr,
961                                hwaddr addr,
962                                unsigned size,
963                                bool match_data,
964                                uint64_t data,
965                                EventNotifier *e);
966 
967 /**
968  * memory_region_add_subregion: Add a subregion to a container.
969  *
970  * Adds a subregion at @offset.  The subregion may not overlap with other
971  * subregions (except for those explicitly marked as overlapping).  A region
972  * may only be added once as a subregion (unless removed with
973  * memory_region_del_subregion()); use memory_region_init_alias() if you
974  * want a region to be a subregion in multiple locations.
975  *
976  * @mr: the region to contain the new subregion; must be a container
977  *      initialized with memory_region_init().
978  * @offset: the offset relative to @mr where @subregion is added.
979  * @subregion: the subregion to be added.
980  */
981 void memory_region_add_subregion(MemoryRegion *mr,
982                                  hwaddr offset,
983                                  MemoryRegion *subregion);
984 /**
985  * memory_region_add_subregion_overlap: Add a subregion to a container
986  *                                      with overlap.
987  *
988  * Adds a subregion at @offset.  The subregion may overlap with other
989  * subregions.  Conflicts are resolved by having a higher @priority hide a
990  * lower @priority. Subregions without priority are taken as @priority 0.
991  * A region may only be added once as a subregion (unless removed with
992  * memory_region_del_subregion()); use memory_region_init_alias() if you
993  * want a region to be a subregion in multiple locations.
994  *
995  * @mr: the region to contain the new subregion; must be a container
996  *      initialized with memory_region_init().
997  * @offset: the offset relative to @mr where @subregion is added.
998  * @subregion: the subregion to be added.
999  * @priority: used for resolving overlaps; highest priority wins.
1000  */
1001 void memory_region_add_subregion_overlap(MemoryRegion *mr,
1002                                          hwaddr offset,
1003                                          MemoryRegion *subregion,
1004                                          int priority);
1005 
1006 /**
1007  * memory_region_get_ram_addr: Get the ram address associated with a memory
1008  *                             region
1009  */
1010 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
1011 
1012 uint64_t memory_region_get_alignment(const MemoryRegion *mr);
1013 /**
1014  * memory_region_del_subregion: Remove a subregion.
1015  *
1016  * Removes a subregion from its container.
1017  *
1018  * @mr: the container to be updated.
1019  * @subregion: the region being removed; must be a current subregion of @mr.
1020  */
1021 void memory_region_del_subregion(MemoryRegion *mr,
1022                                  MemoryRegion *subregion);
1023 
1024 /*
1025  * memory_region_set_enabled: dynamically enable or disable a region
1026  *
1027  * Enables or disables a memory region.  A disabled memory region
1028  * ignores all accesses to itself and its subregions.  It does not
1029  * obscure sibling subregions with lower priority - it simply behaves as
1030  * if it was removed from the hierarchy.
1031  *
1032  * Regions default to being enabled.
1033  *
1034  * @mr: the region to be updated
1035  * @enabled: whether to enable or disable the region
1036  */
1037 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
1038 
1039 /*
1040  * memory_region_set_address: dynamically update the address of a region
1041  *
1042  * Dynamically updates the address of a region, relative to its container.
1043  * May be used on regions are currently part of a memory hierarchy.
1044  *
1045  * @mr: the region to be updated
1046  * @addr: new address, relative to container region
1047  */
1048 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
1049 
1050 /*
1051  * memory_region_set_size: dynamically update the size of a region.
1052  *
1053  * Dynamically updates the size of a region.
1054  *
1055  * @mr: the region to be updated
1056  * @size: used size of the region.
1057  */
1058 void memory_region_set_size(MemoryRegion *mr, uint64_t size);
1059 
1060 /*
1061  * memory_region_set_alias_offset: dynamically update a memory alias's offset
1062  *
1063  * Dynamically updates the offset into the target region that an alias points
1064  * to, as if the fourth argument to memory_region_init_alias() has changed.
1065  *
1066  * @mr: the #MemoryRegion to be updated; should be an alias.
1067  * @offset: the new offset into the target memory region
1068  */
1069 void memory_region_set_alias_offset(MemoryRegion *mr,
1070                                     hwaddr offset);
1071 
1072 /**
1073  * memory_region_present: checks if an address relative to a @container
1074  * translates into #MemoryRegion within @container
1075  *
1076  * Answer whether a #MemoryRegion within @container covers the address
1077  * @addr.
1078  *
1079  * @container: a #MemoryRegion within which @addr is a relative address
1080  * @addr: the area within @container to be searched
1081  */
1082 bool memory_region_present(MemoryRegion *container, hwaddr addr);
1083 
1084 /**
1085  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
1086  * into any address space.
1087  *
1088  * @mr: a #MemoryRegion which should be checked if it's mapped
1089  */
1090 bool memory_region_is_mapped(MemoryRegion *mr);
1091 
1092 /**
1093  * memory_region_find: translate an address/size relative to a
1094  * MemoryRegion into a #MemoryRegionSection.
1095  *
1096  * Locates the first #MemoryRegion within @mr that overlaps the range
1097  * given by @addr and @size.
1098  *
1099  * Returns a #MemoryRegionSection that describes a contiguous overlap.
1100  * It will have the following characteristics:
1101  *    .@size = 0 iff no overlap was found
1102  *    .@mr is non-%NULL iff an overlap was found
1103  *
1104  * Remember that in the return value the @offset_within_region is
1105  * relative to the returned region (in the .@mr field), not to the
1106  * @mr argument.
1107  *
1108  * Similarly, the .@offset_within_address_space is relative to the
1109  * address space that contains both regions, the passed and the
1110  * returned one.  However, in the special case where the @mr argument
1111  * has no container (and thus is the root of the address space), the
1112  * following will hold:
1113  *    .@offset_within_address_space >= @addr
1114  *    .@offset_within_address_space + .@size <= @addr + @size
1115  *
1116  * @mr: a MemoryRegion within which @addr is a relative address
1117  * @addr: start of the area within @as to be searched
1118  * @size: size of the area to be searched
1119  */
1120 MemoryRegionSection memory_region_find(MemoryRegion *mr,
1121                                        hwaddr addr, uint64_t size);
1122 
1123 /**
1124  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
1125  *
1126  * Synchronizes the dirty page log for an entire address space.
1127  * @as: the address space that contains the memory being synchronized
1128  */
1129 void address_space_sync_dirty_bitmap(AddressSpace *as);
1130 
1131 /**
1132  * memory_region_transaction_begin: Start a transaction.
1133  *
1134  * During a transaction, changes will be accumulated and made visible
1135  * only when the transaction ends (is committed).
1136  */
1137 void memory_region_transaction_begin(void);
1138 
1139 /**
1140  * memory_region_transaction_commit: Commit a transaction and make changes
1141  *                                   visible to the guest.
1142  */
1143 void memory_region_transaction_commit(void);
1144 
1145 /**
1146  * memory_listener_register: register callbacks to be called when memory
1147  *                           sections are mapped or unmapped into an address
1148  *                           space
1149  *
1150  * @listener: an object containing the callbacks to be called
1151  * @filter: if non-%NULL, only regions in this address space will be observed
1152  */
1153 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
1154 
1155 /**
1156  * memory_listener_unregister: undo the effect of memory_listener_register()
1157  *
1158  * @listener: an object containing the callbacks to be removed
1159  */
1160 void memory_listener_unregister(MemoryListener *listener);
1161 
1162 /**
1163  * memory_global_dirty_log_start: begin dirty logging for all regions
1164  */
1165 void memory_global_dirty_log_start(void);
1166 
1167 /**
1168  * memory_global_dirty_log_stop: end dirty logging for all regions
1169  */
1170 void memory_global_dirty_log_stop(void);
1171 
1172 void mtree_info(fprintf_function mon_printf, void *f);
1173 
1174 /**
1175  * memory_region_dispatch_read: perform a read directly to the specified
1176  * MemoryRegion.
1177  *
1178  * @mr: #MemoryRegion to access
1179  * @addr: address within that region
1180  * @pval: pointer to uint64_t which the data is written to
1181  * @size: size of the access in bytes
1182  * @attrs: memory transaction attributes to use for the access
1183  */
1184 MemTxResult memory_region_dispatch_read(MemoryRegion *mr,
1185                                         hwaddr addr,
1186                                         uint64_t *pval,
1187                                         unsigned size,
1188                                         MemTxAttrs attrs);
1189 /**
1190  * memory_region_dispatch_write: perform a write directly to the specified
1191  * MemoryRegion.
1192  *
1193  * @mr: #MemoryRegion to access
1194  * @addr: address within that region
1195  * @data: data to write
1196  * @size: size of the access in bytes
1197  * @attrs: memory transaction attributes to use for the access
1198  */
1199 MemTxResult memory_region_dispatch_write(MemoryRegion *mr,
1200                                          hwaddr addr,
1201                                          uint64_t data,
1202                                          unsigned size,
1203                                          MemTxAttrs attrs);
1204 
1205 /**
1206  * address_space_init: initializes an address space
1207  *
1208  * @as: an uninitialized #AddressSpace
1209  * @root: a #MemoryRegion that routes addresses for the address space
1210  * @name: an address space name.  The name is only used for debugging
1211  *        output.
1212  */
1213 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
1214 
1215 /**
1216  * address_space_init_shareable: return an address space for a memory region,
1217  *                               creating it if it does not already exist
1218  *
1219  * @root: a #MemoryRegion that routes addresses for the address space
1220  * @name: an address space name.  The name is only used for debugging
1221  *        output.
1222  *
1223  * This function will return a pointer to an existing AddressSpace
1224  * which was initialized with the specified MemoryRegion, or it will
1225  * create and initialize one if it does not already exist. The ASes
1226  * are reference-counted, so the memory will be freed automatically
1227  * when the AddressSpace is destroyed via address_space_destroy.
1228  */
1229 AddressSpace *address_space_init_shareable(MemoryRegion *root,
1230                                            const char *name);
1231 
1232 /**
1233  * address_space_destroy: destroy an address space
1234  *
1235  * Releases all resources associated with an address space.  After an address space
1236  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
1237  * as well.
1238  *
1239  * @as: address space to be destroyed
1240  */
1241 void address_space_destroy(AddressSpace *as);
1242 
1243 /**
1244  * address_space_rw: read from or write to an address space.
1245  *
1246  * Return a MemTxResult indicating whether the operation succeeded
1247  * or failed (eg unassigned memory, device rejected the transaction,
1248  * IOMMU fault).
1249  *
1250  * @as: #AddressSpace to be accessed
1251  * @addr: address within that address space
1252  * @attrs: memory transaction attributes
1253  * @buf: buffer with the data transferred
1254  * @is_write: indicates the transfer direction
1255  */
1256 MemTxResult address_space_rw(AddressSpace *as, hwaddr addr,
1257                              MemTxAttrs attrs, uint8_t *buf,
1258                              int len, bool is_write);
1259 
1260 /**
1261  * address_space_write: write to address space.
1262  *
1263  * Return a MemTxResult indicating whether the operation succeeded
1264  * or failed (eg unassigned memory, device rejected the transaction,
1265  * IOMMU fault).
1266  *
1267  * @as: #AddressSpace to be accessed
1268  * @addr: address within that address space
1269  * @attrs: memory transaction attributes
1270  * @buf: buffer with the data transferred
1271  */
1272 MemTxResult address_space_write(AddressSpace *as, hwaddr addr,
1273                                 MemTxAttrs attrs,
1274                                 const uint8_t *buf, int len);
1275 
1276 /* address_space_ld*: load from an address space
1277  * address_space_st*: store to an address space
1278  *
1279  * These functions perform a load or store of the byte, word,
1280  * longword or quad to the specified address within the AddressSpace.
1281  * The _le suffixed functions treat the data as little endian;
1282  * _be indicates big endian; no suffix indicates "same endianness
1283  * as guest CPU".
1284  *
1285  * The "guest CPU endianness" accessors are deprecated for use outside
1286  * target-* code; devices should be CPU-agnostic and use either the LE
1287  * or the BE accessors.
1288  *
1289  * @as #AddressSpace to be accessed
1290  * @addr: address within that address space
1291  * @val: data value, for stores
1292  * @attrs: memory transaction attributes
1293  * @result: location to write the success/failure of the transaction;
1294  *   if NULL, this information is discarded
1295  */
1296 uint32_t address_space_ldub(AddressSpace *as, hwaddr addr,
1297                             MemTxAttrs attrs, MemTxResult *result);
1298 uint32_t address_space_lduw_le(AddressSpace *as, hwaddr addr,
1299                             MemTxAttrs attrs, MemTxResult *result);
1300 uint32_t address_space_lduw_be(AddressSpace *as, hwaddr addr,
1301                             MemTxAttrs attrs, MemTxResult *result);
1302 uint32_t address_space_ldl_le(AddressSpace *as, hwaddr addr,
1303                             MemTxAttrs attrs, MemTxResult *result);
1304 uint32_t address_space_ldl_be(AddressSpace *as, hwaddr addr,
1305                             MemTxAttrs attrs, MemTxResult *result);
1306 uint64_t address_space_ldq_le(AddressSpace *as, hwaddr addr,
1307                             MemTxAttrs attrs, MemTxResult *result);
1308 uint64_t address_space_ldq_be(AddressSpace *as, hwaddr addr,
1309                             MemTxAttrs attrs, MemTxResult *result);
1310 void address_space_stb(AddressSpace *as, hwaddr addr, uint32_t val,
1311                             MemTxAttrs attrs, MemTxResult *result);
1312 void address_space_stw_le(AddressSpace *as, hwaddr addr, uint32_t val,
1313                             MemTxAttrs attrs, MemTxResult *result);
1314 void address_space_stw_be(AddressSpace *as, hwaddr addr, uint32_t val,
1315                             MemTxAttrs attrs, MemTxResult *result);
1316 void address_space_stl_le(AddressSpace *as, hwaddr addr, uint32_t val,
1317                             MemTxAttrs attrs, MemTxResult *result);
1318 void address_space_stl_be(AddressSpace *as, hwaddr addr, uint32_t val,
1319                             MemTxAttrs attrs, MemTxResult *result);
1320 void address_space_stq_le(AddressSpace *as, hwaddr addr, uint64_t val,
1321                             MemTxAttrs attrs, MemTxResult *result);
1322 void address_space_stq_be(AddressSpace *as, hwaddr addr, uint64_t val,
1323                             MemTxAttrs attrs, MemTxResult *result);
1324 
1325 /* address_space_translate: translate an address range into an address space
1326  * into a MemoryRegion and an address range into that section.  Should be
1327  * called from an RCU critical section, to avoid that the last reference
1328  * to the returned region disappears after address_space_translate returns.
1329  *
1330  * @as: #AddressSpace to be accessed
1331  * @addr: address within that address space
1332  * @xlat: pointer to address within the returned memory region section's
1333  * #MemoryRegion.
1334  * @len: pointer to length
1335  * @is_write: indicates the transfer direction
1336  */
1337 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1338                                       hwaddr *xlat, hwaddr *len,
1339                                       bool is_write);
1340 
1341 /* address_space_access_valid: check for validity of accessing an address
1342  * space range
1343  *
1344  * Check whether memory is assigned to the given address space range, and
1345  * access is permitted by any IOMMU regions that are active for the address
1346  * space.
1347  *
1348  * For now, addr and len should be aligned to a page size.  This limitation
1349  * will be lifted in the future.
1350  *
1351  * @as: #AddressSpace to be accessed
1352  * @addr: address within that address space
1353  * @len: length of the area to be checked
1354  * @is_write: indicates the transfer direction
1355  */
1356 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1357 
1358 /* address_space_map: map a physical memory region into a host virtual address
1359  *
1360  * May map a subset of the requested range, given by and returned in @plen.
1361  * May return %NULL if resources needed to perform the mapping are exhausted.
1362  * Use only for reads OR writes - not for read-modify-write operations.
1363  * Use cpu_register_map_client() to know when retrying the map operation is
1364  * likely to succeed.
1365  *
1366  * @as: #AddressSpace to be accessed
1367  * @addr: address within that address space
1368  * @plen: pointer to length of buffer; updated on return
1369  * @is_write: indicates the transfer direction
1370  */
1371 void *address_space_map(AddressSpace *as, hwaddr addr,
1372                         hwaddr *plen, bool is_write);
1373 
1374 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1375  *
1376  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1377  * the amount of memory that was actually read or written by the caller.
1378  *
1379  * @as: #AddressSpace used
1380  * @addr: address within that address space
1381  * @len: buffer length as returned by address_space_map()
1382  * @access_len: amount of data actually transferred
1383  * @is_write: indicates the transfer direction
1384  */
1385 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1386                          int is_write, hwaddr access_len);
1387 
1388 
1389 /* Internal functions, part of the implementation of address_space_read.  */
1390 MemTxResult address_space_read_continue(AddressSpace *as, hwaddr addr,
1391                                         MemTxAttrs attrs, uint8_t *buf,
1392                                         int len, hwaddr addr1, hwaddr l,
1393 					MemoryRegion *mr);
1394 MemTxResult address_space_read_full(AddressSpace *as, hwaddr addr,
1395                                     MemTxAttrs attrs, uint8_t *buf, int len);
1396 void *qemu_map_ram_ptr(RAMBlock *ram_block, ram_addr_t addr);
1397 
1398 static inline bool memory_access_is_direct(MemoryRegion *mr, bool is_write)
1399 {
1400     if (is_write) {
1401         return memory_region_is_ram(mr) && !mr->readonly;
1402     } else {
1403         return memory_region_is_ram(mr) || memory_region_is_romd(mr);
1404     }
1405 }
1406 
1407 /**
1408  * address_space_read: read from an address space.
1409  *
1410  * Return a MemTxResult indicating whether the operation succeeded
1411  * or failed (eg unassigned memory, device rejected the transaction,
1412  * IOMMU fault).
1413  *
1414  * @as: #AddressSpace to be accessed
1415  * @addr: address within that address space
1416  * @attrs: memory transaction attributes
1417  * @buf: buffer with the data transferred
1418  */
1419 static inline __attribute__((__always_inline__))
1420 MemTxResult address_space_read(AddressSpace *as, hwaddr addr, MemTxAttrs attrs,
1421                                uint8_t *buf, int len)
1422 {
1423     MemTxResult result = MEMTX_OK;
1424     hwaddr l, addr1;
1425     void *ptr;
1426     MemoryRegion *mr;
1427 
1428     if (__builtin_constant_p(len)) {
1429         if (len) {
1430             rcu_read_lock();
1431             l = len;
1432             mr = address_space_translate(as, addr, &addr1, &l, false);
1433             if (len == l && memory_access_is_direct(mr, false)) {
1434                 ptr = qemu_map_ram_ptr(mr->ram_block, addr1);
1435                 memcpy(buf, ptr, len);
1436             } else {
1437                 result = address_space_read_continue(as, addr, attrs, buf, len,
1438                                                      addr1, l, mr);
1439             }
1440             rcu_read_unlock();
1441         }
1442     } else {
1443         result = address_space_read_full(as, addr, attrs, buf, len);
1444     }
1445     return result;
1446 }
1447 
1448 #endif
1449 
1450 #endif
1451