xref: /qemu/include/exec/memory.h (revision d072cdf3)
1 /*
2  * Physical memory management API
3  *
4  * Copyright 2011 Red Hat, Inc. and/or its affiliates
5  *
6  * Authors:
7  *  Avi Kivity <avi@redhat.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2.  See
10  * the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef MEMORY_H
15 #define MEMORY_H
16 
17 #ifndef CONFIG_USER_ONLY
18 
19 #define DIRTY_MEMORY_VGA       0
20 #define DIRTY_MEMORY_CODE      1
21 #define DIRTY_MEMORY_MIGRATION 2
22 #define DIRTY_MEMORY_NUM       3        /* num of dirty bits */
23 
24 #include <stdint.h>
25 #include <stdbool.h>
26 #include "qemu-common.h"
27 #include "exec/cpu-common.h"
28 #ifndef CONFIG_USER_ONLY
29 #include "exec/hwaddr.h"
30 #endif
31 #include "qemu/queue.h"
32 #include "qemu/int128.h"
33 #include "qemu/notify.h"
34 #include "qapi/error.h"
35 #include "qom/object.h"
36 
37 #define MAX_PHYS_ADDR_SPACE_BITS 62
38 #define MAX_PHYS_ADDR            (((hwaddr)1 << MAX_PHYS_ADDR_SPACE_BITS) - 1)
39 
40 #define TYPE_MEMORY_REGION "qemu:memory-region"
41 #define MEMORY_REGION(obj) \
42         OBJECT_CHECK(MemoryRegion, (obj), TYPE_MEMORY_REGION)
43 
44 typedef struct MemoryRegionOps MemoryRegionOps;
45 typedef struct MemoryRegionMmio MemoryRegionMmio;
46 
47 struct MemoryRegionMmio {
48     CPUReadMemoryFunc *read[3];
49     CPUWriteMemoryFunc *write[3];
50 };
51 
52 typedef struct IOMMUTLBEntry IOMMUTLBEntry;
53 
54 /* See address_space_translate: bit 0 is read, bit 1 is write.  */
55 typedef enum {
56     IOMMU_NONE = 0,
57     IOMMU_RO   = 1,
58     IOMMU_WO   = 2,
59     IOMMU_RW   = 3,
60 } IOMMUAccessFlags;
61 
62 struct IOMMUTLBEntry {
63     AddressSpace    *target_as;
64     hwaddr           iova;
65     hwaddr           translated_addr;
66     hwaddr           addr_mask;  /* 0xfff = 4k translation */
67     IOMMUAccessFlags perm;
68 };
69 
70 /*
71  * Memory region callbacks
72  */
73 struct MemoryRegionOps {
74     /* Read from the memory region. @addr is relative to @mr; @size is
75      * in bytes. */
76     uint64_t (*read)(void *opaque,
77                      hwaddr addr,
78                      unsigned size);
79     /* Write to the memory region. @addr is relative to @mr; @size is
80      * in bytes. */
81     void (*write)(void *opaque,
82                   hwaddr addr,
83                   uint64_t data,
84                   unsigned size);
85 
86     enum device_endian endianness;
87     /* Guest-visible constraints: */
88     struct {
89         /* If nonzero, specify bounds on access sizes beyond which a machine
90          * check is thrown.
91          */
92         unsigned min_access_size;
93         unsigned max_access_size;
94         /* If true, unaligned accesses are supported.  Otherwise unaligned
95          * accesses throw machine checks.
96          */
97          bool unaligned;
98         /*
99          * If present, and returns #false, the transaction is not accepted
100          * by the device (and results in machine dependent behaviour such
101          * as a machine check exception).
102          */
103         bool (*accepts)(void *opaque, hwaddr addr,
104                         unsigned size, bool is_write);
105     } valid;
106     /* Internal implementation constraints: */
107     struct {
108         /* If nonzero, specifies the minimum size implemented.  Smaller sizes
109          * will be rounded upwards and a partial result will be returned.
110          */
111         unsigned min_access_size;
112         /* If nonzero, specifies the maximum size implemented.  Larger sizes
113          * will be done as a series of accesses with smaller sizes.
114          */
115         unsigned max_access_size;
116         /* If true, unaligned accesses are supported.  Otherwise all accesses
117          * are converted to (possibly multiple) naturally aligned accesses.
118          */
119         bool unaligned;
120     } impl;
121 
122     /* If .read and .write are not present, old_mmio may be used for
123      * backwards compatibility with old mmio registration
124      */
125     const MemoryRegionMmio old_mmio;
126 };
127 
128 typedef struct MemoryRegionIOMMUOps MemoryRegionIOMMUOps;
129 
130 struct MemoryRegionIOMMUOps {
131     /* Return a TLB entry that contains a given address. */
132     IOMMUTLBEntry (*translate)(MemoryRegion *iommu, hwaddr addr);
133 };
134 
135 typedef struct CoalescedMemoryRange CoalescedMemoryRange;
136 typedef struct MemoryRegionIoeventfd MemoryRegionIoeventfd;
137 
138 struct MemoryRegion {
139     Object parent_obj;
140     /* All fields are private - violators will be prosecuted */
141     const MemoryRegionOps *ops;
142     const MemoryRegionIOMMUOps *iommu_ops;
143     void *opaque;
144     MemoryRegion *container;
145     Int128 size;
146     hwaddr addr;
147     void (*destructor)(MemoryRegion *mr);
148     ram_addr_t ram_addr;
149     bool subpage;
150     bool terminates;
151     bool romd_mode;
152     bool ram;
153     bool readonly; /* For RAM regions */
154     bool enabled;
155     bool rom_device;
156     bool warning_printed; /* For reservations */
157     bool flush_coalesced_mmio;
158     MemoryRegion *alias;
159     hwaddr alias_offset;
160     int32_t priority;
161     bool may_overlap;
162     QTAILQ_HEAD(subregions, MemoryRegion) subregions;
163     QTAILQ_ENTRY(MemoryRegion) subregions_link;
164     QTAILQ_HEAD(coalesced_ranges, CoalescedMemoryRange) coalesced;
165     const char *name;
166     uint8_t dirty_log_mask;
167     unsigned ioeventfd_nb;
168     MemoryRegionIoeventfd *ioeventfds;
169     NotifierList iommu_notify;
170 };
171 
172 /**
173  * MemoryListener: callbacks structure for updates to the physical memory map
174  *
175  * Allows a component to adjust to changes in the guest-visible memory map.
176  * Use with memory_listener_register() and memory_listener_unregister().
177  */
178 struct MemoryListener {
179     void (*begin)(MemoryListener *listener);
180     void (*commit)(MemoryListener *listener);
181     void (*region_add)(MemoryListener *listener, MemoryRegionSection *section);
182     void (*region_del)(MemoryListener *listener, MemoryRegionSection *section);
183     void (*region_nop)(MemoryListener *listener, MemoryRegionSection *section);
184     void (*log_start)(MemoryListener *listener, MemoryRegionSection *section);
185     void (*log_stop)(MemoryListener *listener, MemoryRegionSection *section);
186     void (*log_sync)(MemoryListener *listener, MemoryRegionSection *section);
187     void (*log_global_start)(MemoryListener *listener);
188     void (*log_global_stop)(MemoryListener *listener);
189     void (*eventfd_add)(MemoryListener *listener, MemoryRegionSection *section,
190                         bool match_data, uint64_t data, EventNotifier *e);
191     void (*eventfd_del)(MemoryListener *listener, MemoryRegionSection *section,
192                         bool match_data, uint64_t data, EventNotifier *e);
193     void (*coalesced_mmio_add)(MemoryListener *listener, MemoryRegionSection *section,
194                                hwaddr addr, hwaddr len);
195     void (*coalesced_mmio_del)(MemoryListener *listener, MemoryRegionSection *section,
196                                hwaddr addr, hwaddr len);
197     /* Lower = earlier (during add), later (during del) */
198     unsigned priority;
199     AddressSpace *address_space_filter;
200     QTAILQ_ENTRY(MemoryListener) link;
201 };
202 
203 /**
204  * AddressSpace: describes a mapping of addresses to #MemoryRegion objects
205  */
206 struct AddressSpace {
207     /* All fields are private. */
208     char *name;
209     MemoryRegion *root;
210     struct FlatView *current_map;
211     int ioeventfd_nb;
212     struct MemoryRegionIoeventfd *ioeventfds;
213     struct AddressSpaceDispatch *dispatch;
214     struct AddressSpaceDispatch *next_dispatch;
215     MemoryListener dispatch_listener;
216 
217     QTAILQ_ENTRY(AddressSpace) address_spaces_link;
218 };
219 
220 /**
221  * MemoryRegionSection: describes a fragment of a #MemoryRegion
222  *
223  * @mr: the region, or %NULL if empty
224  * @address_space: the address space the region is mapped in
225  * @offset_within_region: the beginning of the section, relative to @mr's start
226  * @size: the size of the section; will not exceed @mr's boundaries
227  * @offset_within_address_space: the address of the first byte of the section
228  *     relative to the region's address space
229  * @readonly: writes to this section are ignored
230  */
231 struct MemoryRegionSection {
232     MemoryRegion *mr;
233     AddressSpace *address_space;
234     hwaddr offset_within_region;
235     Int128 size;
236     hwaddr offset_within_address_space;
237     bool readonly;
238 };
239 
240 /**
241  * memory_region_init: Initialize a memory region
242  *
243  * The region typically acts as a container for other memory regions.  Use
244  * memory_region_add_subregion() to add subregions.
245  *
246  * @mr: the #MemoryRegion to be initialized
247  * @owner: the object that tracks the region's reference count
248  * @name: used for debugging; not visible to the user or ABI
249  * @size: size of the region; any subregions beyond this size will be clipped
250  */
251 void memory_region_init(MemoryRegion *mr,
252                         struct Object *owner,
253                         const char *name,
254                         uint64_t size);
255 
256 /**
257  * memory_region_ref: Add 1 to a memory region's reference count
258  *
259  * Whenever memory regions are accessed outside the BQL, they need to be
260  * preserved against hot-unplug.  MemoryRegions actually do not have their
261  * own reference count; they piggyback on a QOM object, their "owner".
262  * This function adds a reference to the owner.
263  *
264  * All MemoryRegions must have an owner if they can disappear, even if the
265  * device they belong to operates exclusively under the BQL.  This is because
266  * the region could be returned at any time by memory_region_find, and this
267  * is usually under guest control.
268  *
269  * @mr: the #MemoryRegion
270  */
271 void memory_region_ref(MemoryRegion *mr);
272 
273 /**
274  * memory_region_unref: Remove 1 to a memory region's reference count
275  *
276  * Whenever memory regions are accessed outside the BQL, they need to be
277  * preserved against hot-unplug.  MemoryRegions actually do not have their
278  * own reference count; they piggyback on a QOM object, their "owner".
279  * This function removes a reference to the owner and possibly destroys it.
280  *
281  * @mr: the #MemoryRegion
282  */
283 void memory_region_unref(MemoryRegion *mr);
284 
285 /**
286  * memory_region_init_io: Initialize an I/O memory region.
287  *
288  * Accesses into the region will cause the callbacks in @ops to be called.
289  * if @size is nonzero, subregions will be clipped to @size.
290  *
291  * @mr: the #MemoryRegion to be initialized.
292  * @owner: the object that tracks the region's reference count
293  * @ops: a structure containing read and write callbacks to be used when
294  *       I/O is performed on the region.
295  * @opaque: passed to to the read and write callbacks of the @ops structure.
296  * @name: used for debugging; not visible to the user or ABI
297  * @size: size of the region.
298  */
299 void memory_region_init_io(MemoryRegion *mr,
300                            struct Object *owner,
301                            const MemoryRegionOps *ops,
302                            void *opaque,
303                            const char *name,
304                            uint64_t size);
305 
306 /**
307  * memory_region_init_ram:  Initialize RAM memory region.  Accesses into the
308  *                          region will modify memory directly.
309  *
310  * @mr: the #MemoryRegion to be initialized.
311  * @owner: the object that tracks the region's reference count
312  * @name: the name of the region.
313  * @size: size of the region.
314  */
315 void memory_region_init_ram(MemoryRegion *mr,
316                             struct Object *owner,
317                             const char *name,
318                             uint64_t size);
319 
320 #ifdef __linux__
321 /**
322  * memory_region_init_ram_from_file:  Initialize RAM memory region with a
323  *                                    mmap-ed backend.
324  *
325  * @mr: the #MemoryRegion to be initialized.
326  * @owner: the object that tracks the region's reference count
327  * @name: the name of the region.
328  * @size: size of the region.
329  * @share: %true if memory must be mmaped with the MAP_SHARED flag
330  * @path: the path in which to allocate the RAM.
331  * @errp: pointer to Error*, to store an error if it happens.
332  */
333 void memory_region_init_ram_from_file(MemoryRegion *mr,
334                                       struct Object *owner,
335                                       const char *name,
336                                       uint64_t size,
337                                       bool share,
338                                       const char *path,
339                                       Error **errp);
340 #endif
341 
342 /**
343  * memory_region_init_ram_ptr:  Initialize RAM memory region from a
344  *                              user-provided pointer.  Accesses into the
345  *                              region will modify memory directly.
346  *
347  * @mr: the #MemoryRegion to be initialized.
348  * @owner: the object that tracks the region's reference count
349  * @name: the name of the region.
350  * @size: size of the region.
351  * @ptr: memory to be mapped; must contain at least @size bytes.
352  */
353 void memory_region_init_ram_ptr(MemoryRegion *mr,
354                                 struct Object *owner,
355                                 const char *name,
356                                 uint64_t size,
357                                 void *ptr);
358 
359 /**
360  * memory_region_init_alias: Initialize a memory region that aliases all or a
361  *                           part of another memory region.
362  *
363  * @mr: the #MemoryRegion to be initialized.
364  * @owner: the object that tracks the region's reference count
365  * @name: used for debugging; not visible to the user or ABI
366  * @orig: the region to be referenced; @mr will be equivalent to
367  *        @orig between @offset and @offset + @size - 1.
368  * @offset: start of the section in @orig to be referenced.
369  * @size: size of the region.
370  */
371 void memory_region_init_alias(MemoryRegion *mr,
372                               struct Object *owner,
373                               const char *name,
374                               MemoryRegion *orig,
375                               hwaddr offset,
376                               uint64_t size);
377 
378 /**
379  * memory_region_init_rom_device:  Initialize a ROM memory region.  Writes are
380  *                                 handled via callbacks.
381  *
382  * @mr: the #MemoryRegion to be initialized.
383  * @owner: the object that tracks the region's reference count
384  * @ops: callbacks for write access handling.
385  * @name: the name of the region.
386  * @size: size of the region.
387  */
388 void memory_region_init_rom_device(MemoryRegion *mr,
389                                    struct Object *owner,
390                                    const MemoryRegionOps *ops,
391                                    void *opaque,
392                                    const char *name,
393                                    uint64_t size);
394 
395 /**
396  * memory_region_init_reservation: Initialize a memory region that reserves
397  *                                 I/O space.
398  *
399  * A reservation region primariy serves debugging purposes.  It claims I/O
400  * space that is not supposed to be handled by QEMU itself.  Any access via
401  * the memory API will cause an abort().
402  *
403  * @mr: the #MemoryRegion to be initialized
404  * @owner: the object that tracks the region's reference count
405  * @name: used for debugging; not visible to the user or ABI
406  * @size: size of the region.
407  */
408 void memory_region_init_reservation(MemoryRegion *mr,
409                                     struct Object *owner,
410                                     const char *name,
411                                     uint64_t size);
412 
413 /**
414  * memory_region_init_iommu: Initialize a memory region that translates
415  * addresses
416  *
417  * An IOMMU region translates addresses and forwards accesses to a target
418  * memory region.
419  *
420  * @mr: the #MemoryRegion to be initialized
421  * @owner: the object that tracks the region's reference count
422  * @ops: a function that translates addresses into the @target region
423  * @name: used for debugging; not visible to the user or ABI
424  * @size: size of the region.
425  */
426 void memory_region_init_iommu(MemoryRegion *mr,
427                               struct Object *owner,
428                               const MemoryRegionIOMMUOps *ops,
429                               const char *name,
430                               uint64_t size);
431 
432 /**
433  * memory_region_owner: get a memory region's owner.
434  *
435  * @mr: the memory region being queried.
436  */
437 struct Object *memory_region_owner(MemoryRegion *mr);
438 
439 /**
440  * memory_region_size: get a memory region's size.
441  *
442  * @mr: the memory region being queried.
443  */
444 uint64_t memory_region_size(MemoryRegion *mr);
445 
446 /**
447  * memory_region_is_ram: check whether a memory region is random access
448  *
449  * Returns %true is a memory region is random access.
450  *
451  * @mr: the memory region being queried
452  */
453 bool memory_region_is_ram(MemoryRegion *mr);
454 
455 /**
456  * memory_region_is_romd: check whether a memory region is in ROMD mode
457  *
458  * Returns %true if a memory region is a ROM device and currently set to allow
459  * direct reads.
460  *
461  * @mr: the memory region being queried
462  */
463 static inline bool memory_region_is_romd(MemoryRegion *mr)
464 {
465     return mr->rom_device && mr->romd_mode;
466 }
467 
468 /**
469  * memory_region_is_iommu: check whether a memory region is an iommu
470  *
471  * Returns %true is a memory region is an iommu.
472  *
473  * @mr: the memory region being queried
474  */
475 bool memory_region_is_iommu(MemoryRegion *mr);
476 
477 /**
478  * memory_region_notify_iommu: notify a change in an IOMMU translation entry.
479  *
480  * @mr: the memory region that was changed
481  * @entry: the new entry in the IOMMU translation table.  The entry
482  *         replaces all old entries for the same virtual I/O address range.
483  *         Deleted entries have .@perm == 0.
484  */
485 void memory_region_notify_iommu(MemoryRegion *mr,
486                                 IOMMUTLBEntry entry);
487 
488 /**
489  * memory_region_register_iommu_notifier: register a notifier for changes to
490  * IOMMU translation entries.
491  *
492  * @mr: the memory region to observe
493  * @n: the notifier to be added; the notifier receives a pointer to an
494  *     #IOMMUTLBEntry as the opaque value; the pointer ceases to be
495  *     valid on exit from the notifier.
496  */
497 void memory_region_register_iommu_notifier(MemoryRegion *mr, Notifier *n);
498 
499 /**
500  * memory_region_unregister_iommu_notifier: unregister a notifier for
501  * changes to IOMMU translation entries.
502  *
503  * @n: the notifier to be removed.
504  */
505 void memory_region_unregister_iommu_notifier(Notifier *n);
506 
507 /**
508  * memory_region_name: get a memory region's name
509  *
510  * Returns the string that was used to initialize the memory region.
511  *
512  * @mr: the memory region being queried
513  */
514 const char *memory_region_name(const MemoryRegion *mr);
515 
516 /**
517  * memory_region_is_logging: return whether a memory region is logging writes
518  *
519  * Returns %true if the memory region is logging writes
520  *
521  * @mr: the memory region being queried
522  */
523 bool memory_region_is_logging(MemoryRegion *mr);
524 
525 /**
526  * memory_region_is_rom: check whether a memory region is ROM
527  *
528  * Returns %true is a memory region is read-only memory.
529  *
530  * @mr: the memory region being queried
531  */
532 bool memory_region_is_rom(MemoryRegion *mr);
533 
534 /**
535  * memory_region_get_fd: Get a file descriptor backing a RAM memory region.
536  *
537  * Returns a file descriptor backing a file-based RAM memory region,
538  * or -1 if the region is not a file-based RAM memory region.
539  *
540  * @mr: the RAM or alias memory region being queried.
541  */
542 int memory_region_get_fd(MemoryRegion *mr);
543 
544 /**
545  * memory_region_get_ram_ptr: Get a pointer into a RAM memory region.
546  *
547  * Returns a host pointer to a RAM memory region (created with
548  * memory_region_init_ram() or memory_region_init_ram_ptr()).  Use with
549  * care.
550  *
551  * @mr: the memory region being queried.
552  */
553 void *memory_region_get_ram_ptr(MemoryRegion *mr);
554 
555 /**
556  * memory_region_set_log: Turn dirty logging on or off for a region.
557  *
558  * Turns dirty logging on or off for a specified client (display, migration).
559  * Only meaningful for RAM regions.
560  *
561  * @mr: the memory region being updated.
562  * @log: whether dirty logging is to be enabled or disabled.
563  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
564  *          %DIRTY_MEMORY_VGA.
565  */
566 void memory_region_set_log(MemoryRegion *mr, bool log, unsigned client);
567 
568 /**
569  * memory_region_get_dirty: Check whether a range of bytes is dirty
570  *                          for a specified client.
571  *
572  * Checks whether a range of bytes has been written to since the last
573  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
574  * must be enabled.
575  *
576  * @mr: the memory region being queried.
577  * @addr: the address (relative to the start of the region) being queried.
578  * @size: the size of the range being queried.
579  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
580  *          %DIRTY_MEMORY_VGA.
581  */
582 bool memory_region_get_dirty(MemoryRegion *mr, hwaddr addr,
583                              hwaddr size, unsigned client);
584 
585 /**
586  * memory_region_set_dirty: Mark a range of bytes as dirty in a memory region.
587  *
588  * Marks a range of bytes as dirty, after it has been dirtied outside
589  * guest code.
590  *
591  * @mr: the memory region being dirtied.
592  * @addr: the address (relative to the start of the region) being dirtied.
593  * @size: size of the range being dirtied.
594  */
595 void memory_region_set_dirty(MemoryRegion *mr, hwaddr addr,
596                              hwaddr size);
597 
598 /**
599  * memory_region_test_and_clear_dirty: Check whether a range of bytes is dirty
600  *                                     for a specified client. It clears them.
601  *
602  * Checks whether a range of bytes has been written to since the last
603  * call to memory_region_reset_dirty() with the same @client.  Dirty logging
604  * must be enabled.
605  *
606  * @mr: the memory region being queried.
607  * @addr: the address (relative to the start of the region) being queried.
608  * @size: the size of the range being queried.
609  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
610  *          %DIRTY_MEMORY_VGA.
611  */
612 bool memory_region_test_and_clear_dirty(MemoryRegion *mr, hwaddr addr,
613                                         hwaddr size, unsigned client);
614 /**
615  * memory_region_sync_dirty_bitmap: Synchronize a region's dirty bitmap with
616  *                                  any external TLBs (e.g. kvm)
617  *
618  * Flushes dirty information from accelerators such as kvm and vhost-net
619  * and makes it available to users of the memory API.
620  *
621  * @mr: the region being flushed.
622  */
623 void memory_region_sync_dirty_bitmap(MemoryRegion *mr);
624 
625 /**
626  * memory_region_reset_dirty: Mark a range of pages as clean, for a specified
627  *                            client.
628  *
629  * Marks a range of pages as no longer dirty.
630  *
631  * @mr: the region being updated.
632  * @addr: the start of the subrange being cleaned.
633  * @size: the size of the subrange being cleaned.
634  * @client: the user of the logging information; %DIRTY_MEMORY_MIGRATION or
635  *          %DIRTY_MEMORY_VGA.
636  */
637 void memory_region_reset_dirty(MemoryRegion *mr, hwaddr addr,
638                                hwaddr size, unsigned client);
639 
640 /**
641  * memory_region_set_readonly: Turn a memory region read-only (or read-write)
642  *
643  * Allows a memory region to be marked as read-only (turning it into a ROM).
644  * only useful on RAM regions.
645  *
646  * @mr: the region being updated.
647  * @readonly: whether rhe region is to be ROM or RAM.
648  */
649 void memory_region_set_readonly(MemoryRegion *mr, bool readonly);
650 
651 /**
652  * memory_region_rom_device_set_romd: enable/disable ROMD mode
653  *
654  * Allows a ROM device (initialized with memory_region_init_rom_device() to
655  * set to ROMD mode (default) or MMIO mode.  When it is in ROMD mode, the
656  * device is mapped to guest memory and satisfies read access directly.
657  * When in MMIO mode, reads are forwarded to the #MemoryRegion.read function.
658  * Writes are always handled by the #MemoryRegion.write function.
659  *
660  * @mr: the memory region to be updated
661  * @romd_mode: %true to put the region into ROMD mode
662  */
663 void memory_region_rom_device_set_romd(MemoryRegion *mr, bool romd_mode);
664 
665 /**
666  * memory_region_set_coalescing: Enable memory coalescing for the region.
667  *
668  * Enabled writes to a region to be queued for later processing. MMIO ->write
669  * callbacks may be delayed until a non-coalesced MMIO is issued.
670  * Only useful for IO regions.  Roughly similar to write-combining hardware.
671  *
672  * @mr: the memory region to be write coalesced
673  */
674 void memory_region_set_coalescing(MemoryRegion *mr);
675 
676 /**
677  * memory_region_add_coalescing: Enable memory coalescing for a sub-range of
678  *                               a region.
679  *
680  * Like memory_region_set_coalescing(), but works on a sub-range of a region.
681  * Multiple calls can be issued coalesced disjoint ranges.
682  *
683  * @mr: the memory region to be updated.
684  * @offset: the start of the range within the region to be coalesced.
685  * @size: the size of the subrange to be coalesced.
686  */
687 void memory_region_add_coalescing(MemoryRegion *mr,
688                                   hwaddr offset,
689                                   uint64_t size);
690 
691 /**
692  * memory_region_clear_coalescing: Disable MMIO coalescing for the region.
693  *
694  * Disables any coalescing caused by memory_region_set_coalescing() or
695  * memory_region_add_coalescing().  Roughly equivalent to uncacheble memory
696  * hardware.
697  *
698  * @mr: the memory region to be updated.
699  */
700 void memory_region_clear_coalescing(MemoryRegion *mr);
701 
702 /**
703  * memory_region_set_flush_coalesced: Enforce memory coalescing flush before
704  *                                    accesses.
705  *
706  * Ensure that pending coalesced MMIO request are flushed before the memory
707  * region is accessed. This property is automatically enabled for all regions
708  * passed to memory_region_set_coalescing() and memory_region_add_coalescing().
709  *
710  * @mr: the memory region to be updated.
711  */
712 void memory_region_set_flush_coalesced(MemoryRegion *mr);
713 
714 /**
715  * memory_region_clear_flush_coalesced: Disable memory coalescing flush before
716  *                                      accesses.
717  *
718  * Clear the automatic coalesced MMIO flushing enabled via
719  * memory_region_set_flush_coalesced. Note that this service has no effect on
720  * memory regions that have MMIO coalescing enabled for themselves. For them,
721  * automatic flushing will stop once coalescing is disabled.
722  *
723  * @mr: the memory region to be updated.
724  */
725 void memory_region_clear_flush_coalesced(MemoryRegion *mr);
726 
727 /**
728  * memory_region_add_eventfd: Request an eventfd to be triggered when a word
729  *                            is written to a location.
730  *
731  * Marks a word in an IO region (initialized with memory_region_init_io())
732  * as a trigger for an eventfd event.  The I/O callback will not be called.
733  * The caller must be prepared to handle failure (that is, take the required
734  * action if the callback _is_ called).
735  *
736  * @mr: the memory region being updated.
737  * @addr: the address within @mr that is to be monitored
738  * @size: the size of the access to trigger the eventfd
739  * @match_data: whether to match against @data, instead of just @addr
740  * @data: the data to match against the guest write
741  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
742  **/
743 void memory_region_add_eventfd(MemoryRegion *mr,
744                                hwaddr addr,
745                                unsigned size,
746                                bool match_data,
747                                uint64_t data,
748                                EventNotifier *e);
749 
750 /**
751  * memory_region_del_eventfd: Cancel an eventfd.
752  *
753  * Cancels an eventfd trigger requested by a previous
754  * memory_region_add_eventfd() call.
755  *
756  * @mr: the memory region being updated.
757  * @addr: the address within @mr that is to be monitored
758  * @size: the size of the access to trigger the eventfd
759  * @match_data: whether to match against @data, instead of just @addr
760  * @data: the data to match against the guest write
761  * @fd: the eventfd to be triggered when @addr, @size, and @data all match.
762  */
763 void memory_region_del_eventfd(MemoryRegion *mr,
764                                hwaddr addr,
765                                unsigned size,
766                                bool match_data,
767                                uint64_t data,
768                                EventNotifier *e);
769 
770 /**
771  * memory_region_add_subregion: Add a subregion to a container.
772  *
773  * Adds a subregion at @offset.  The subregion may not overlap with other
774  * subregions (except for those explicitly marked as overlapping).  A region
775  * may only be added once as a subregion (unless removed with
776  * memory_region_del_subregion()); use memory_region_init_alias() if you
777  * want a region to be a subregion in multiple locations.
778  *
779  * @mr: the region to contain the new subregion; must be a container
780  *      initialized with memory_region_init().
781  * @offset: the offset relative to @mr where @subregion is added.
782  * @subregion: the subregion to be added.
783  */
784 void memory_region_add_subregion(MemoryRegion *mr,
785                                  hwaddr offset,
786                                  MemoryRegion *subregion);
787 /**
788  * memory_region_add_subregion_overlap: Add a subregion to a container
789  *                                      with overlap.
790  *
791  * Adds a subregion at @offset.  The subregion may overlap with other
792  * subregions.  Conflicts are resolved by having a higher @priority hide a
793  * lower @priority. Subregions without priority are taken as @priority 0.
794  * A region may only be added once as a subregion (unless removed with
795  * memory_region_del_subregion()); use memory_region_init_alias() if you
796  * want a region to be a subregion in multiple locations.
797  *
798  * @mr: the region to contain the new subregion; must be a container
799  *      initialized with memory_region_init().
800  * @offset: the offset relative to @mr where @subregion is added.
801  * @subregion: the subregion to be added.
802  * @priority: used for resolving overlaps; highest priority wins.
803  */
804 void memory_region_add_subregion_overlap(MemoryRegion *mr,
805                                          hwaddr offset,
806                                          MemoryRegion *subregion,
807                                          int priority);
808 
809 /**
810  * memory_region_get_ram_addr: Get the ram address associated with a memory
811  *                             region
812  *
813  * DO NOT USE THIS FUNCTION.  This is a temporary workaround while the Xen
814  * code is being reworked.
815  */
816 ram_addr_t memory_region_get_ram_addr(MemoryRegion *mr);
817 
818 /**
819  * memory_region_del_subregion: Remove a subregion.
820  *
821  * Removes a subregion from its container.
822  *
823  * @mr: the container to be updated.
824  * @subregion: the region being removed; must be a current subregion of @mr.
825  */
826 void memory_region_del_subregion(MemoryRegion *mr,
827                                  MemoryRegion *subregion);
828 
829 /*
830  * memory_region_set_enabled: dynamically enable or disable a region
831  *
832  * Enables or disables a memory region.  A disabled memory region
833  * ignores all accesses to itself and its subregions.  It does not
834  * obscure sibling subregions with lower priority - it simply behaves as
835  * if it was removed from the hierarchy.
836  *
837  * Regions default to being enabled.
838  *
839  * @mr: the region to be updated
840  * @enabled: whether to enable or disable the region
841  */
842 void memory_region_set_enabled(MemoryRegion *mr, bool enabled);
843 
844 /*
845  * memory_region_set_address: dynamically update the address of a region
846  *
847  * Dynamically updates the address of a region, relative to its container.
848  * May be used on regions are currently part of a memory hierarchy.
849  *
850  * @mr: the region to be updated
851  * @addr: new address, relative to container region
852  */
853 void memory_region_set_address(MemoryRegion *mr, hwaddr addr);
854 
855 /*
856  * memory_region_set_alias_offset: dynamically update a memory alias's offset
857  *
858  * Dynamically updates the offset into the target region that an alias points
859  * to, as if the fourth argument to memory_region_init_alias() has changed.
860  *
861  * @mr: the #MemoryRegion to be updated; should be an alias.
862  * @offset: the new offset into the target memory region
863  */
864 void memory_region_set_alias_offset(MemoryRegion *mr,
865                                     hwaddr offset);
866 
867 /**
868  * memory_region_present: checks if an address relative to a @container
869  * translates into #MemoryRegion within @container
870  *
871  * Answer whether a #MemoryRegion within @container covers the address
872  * @addr.
873  *
874  * @container: a #MemoryRegion within which @addr is a relative address
875  * @addr: the area within @container to be searched
876  */
877 bool memory_region_present(MemoryRegion *container, hwaddr addr);
878 
879 /**
880  * memory_region_is_mapped: returns true if #MemoryRegion is mapped
881  * into any address space.
882  *
883  * @mr: a #MemoryRegion which should be checked if it's mapped
884  */
885 bool memory_region_is_mapped(MemoryRegion *mr);
886 
887 /**
888  * memory_region_find: translate an address/size relative to a
889  * MemoryRegion into a #MemoryRegionSection.
890  *
891  * Locates the first #MemoryRegion within @mr that overlaps the range
892  * given by @addr and @size.
893  *
894  * Returns a #MemoryRegionSection that describes a contiguous overlap.
895  * It will have the following characteristics:
896  *    .@size = 0 iff no overlap was found
897  *    .@mr is non-%NULL iff an overlap was found
898  *
899  * Remember that in the return value the @offset_within_region is
900  * relative to the returned region (in the .@mr field), not to the
901  * @mr argument.
902  *
903  * Similarly, the .@offset_within_address_space is relative to the
904  * address space that contains both regions, the passed and the
905  * returned one.  However, in the special case where the @mr argument
906  * has no container (and thus is the root of the address space), the
907  * following will hold:
908  *    .@offset_within_address_space >= @addr
909  *    .@offset_within_address_space + .@size <= @addr + @size
910  *
911  * @mr: a MemoryRegion within which @addr is a relative address
912  * @addr: start of the area within @as to be searched
913  * @size: size of the area to be searched
914  */
915 MemoryRegionSection memory_region_find(MemoryRegion *mr,
916                                        hwaddr addr, uint64_t size);
917 
918 /**
919  * address_space_sync_dirty_bitmap: synchronize the dirty log for all memory
920  *
921  * Synchronizes the dirty page log for an entire address space.
922  * @as: the address space that contains the memory being synchronized
923  */
924 void address_space_sync_dirty_bitmap(AddressSpace *as);
925 
926 /**
927  * memory_region_transaction_begin: Start a transaction.
928  *
929  * During a transaction, changes will be accumulated and made visible
930  * only when the transaction ends (is committed).
931  */
932 void memory_region_transaction_begin(void);
933 
934 /**
935  * memory_region_transaction_commit: Commit a transaction and make changes
936  *                                   visible to the guest.
937  */
938 void memory_region_transaction_commit(void);
939 
940 /**
941  * memory_listener_register: register callbacks to be called when memory
942  *                           sections are mapped or unmapped into an address
943  *                           space
944  *
945  * @listener: an object containing the callbacks to be called
946  * @filter: if non-%NULL, only regions in this address space will be observed
947  */
948 void memory_listener_register(MemoryListener *listener, AddressSpace *filter);
949 
950 /**
951  * memory_listener_unregister: undo the effect of memory_listener_register()
952  *
953  * @listener: an object containing the callbacks to be removed
954  */
955 void memory_listener_unregister(MemoryListener *listener);
956 
957 /**
958  * memory_global_dirty_log_start: begin dirty logging for all regions
959  */
960 void memory_global_dirty_log_start(void);
961 
962 /**
963  * memory_global_dirty_log_stop: end dirty logging for all regions
964  */
965 void memory_global_dirty_log_stop(void);
966 
967 void mtree_info(fprintf_function mon_printf, void *f);
968 
969 /**
970  * address_space_init: initializes an address space
971  *
972  * @as: an uninitialized #AddressSpace
973  * @root: a #MemoryRegion that routes addesses for the address space
974  * @name: an address space name.  The name is only used for debugging
975  *        output.
976  */
977 void address_space_init(AddressSpace *as, MemoryRegion *root, const char *name);
978 
979 
980 /**
981  * address_space_destroy: destroy an address space
982  *
983  * Releases all resources associated with an address space.  After an address space
984  * is destroyed, its root memory region (given by address_space_init()) may be destroyed
985  * as well.
986  *
987  * @as: address space to be destroyed
988  */
989 void address_space_destroy(AddressSpace *as);
990 
991 /**
992  * address_space_rw: read from or write to an address space.
993  *
994  * Return true if the operation hit any unassigned memory or encountered an
995  * IOMMU fault.
996  *
997  * @as: #AddressSpace to be accessed
998  * @addr: address within that address space
999  * @buf: buffer with the data transferred
1000  * @is_write: indicates the transfer direction
1001  */
1002 bool address_space_rw(AddressSpace *as, hwaddr addr, uint8_t *buf,
1003                       int len, bool is_write);
1004 
1005 /**
1006  * address_space_write: write to address space.
1007  *
1008  * Return true if the operation hit any unassigned memory or encountered an
1009  * IOMMU fault.
1010  *
1011  * @as: #AddressSpace to be accessed
1012  * @addr: address within that address space
1013  * @buf: buffer with the data transferred
1014  */
1015 bool address_space_write(AddressSpace *as, hwaddr addr,
1016                          const uint8_t *buf, int len);
1017 
1018 /**
1019  * address_space_read: read from an address space.
1020  *
1021  * Return true if the operation hit any unassigned memory or encountered an
1022  * IOMMU fault.
1023  *
1024  * @as: #AddressSpace to be accessed
1025  * @addr: address within that address space
1026  * @buf: buffer with the data transferred
1027  */
1028 bool address_space_read(AddressSpace *as, hwaddr addr, uint8_t *buf, int len);
1029 
1030 /* address_space_translate: translate an address range into an address space
1031  * into a MemoryRegion and an address range into that section
1032  *
1033  * @as: #AddressSpace to be accessed
1034  * @addr: address within that address space
1035  * @xlat: pointer to address within the returned memory region section's
1036  * #MemoryRegion.
1037  * @len: pointer to length
1038  * @is_write: indicates the transfer direction
1039  */
1040 MemoryRegion *address_space_translate(AddressSpace *as, hwaddr addr,
1041                                       hwaddr *xlat, hwaddr *len,
1042                                       bool is_write);
1043 
1044 /* address_space_access_valid: check for validity of accessing an address
1045  * space range
1046  *
1047  * Check whether memory is assigned to the given address space range, and
1048  * access is permitted by any IOMMU regions that are active for the address
1049  * space.
1050  *
1051  * For now, addr and len should be aligned to a page size.  This limitation
1052  * will be lifted in the future.
1053  *
1054  * @as: #AddressSpace to be accessed
1055  * @addr: address within that address space
1056  * @len: length of the area to be checked
1057  * @is_write: indicates the transfer direction
1058  */
1059 bool address_space_access_valid(AddressSpace *as, hwaddr addr, int len, bool is_write);
1060 
1061 /* address_space_map: map a physical memory region into a host virtual address
1062  *
1063  * May map a subset of the requested range, given by and returned in @plen.
1064  * May return %NULL if resources needed to perform the mapping are exhausted.
1065  * Use only for reads OR writes - not for read-modify-write operations.
1066  * Use cpu_register_map_client() to know when retrying the map operation is
1067  * likely to succeed.
1068  *
1069  * @as: #AddressSpace to be accessed
1070  * @addr: address within that address space
1071  * @plen: pointer to length of buffer; updated on return
1072  * @is_write: indicates the transfer direction
1073  */
1074 void *address_space_map(AddressSpace *as, hwaddr addr,
1075                         hwaddr *plen, bool is_write);
1076 
1077 /* address_space_unmap: Unmaps a memory region previously mapped by address_space_map()
1078  *
1079  * Will also mark the memory as dirty if @is_write == %true.  @access_len gives
1080  * the amount of memory that was actually read or written by the caller.
1081  *
1082  * @as: #AddressSpace used
1083  * @addr: address within that address space
1084  * @len: buffer length as returned by address_space_map()
1085  * @access_len: amount of data actually transferred
1086  * @is_write: indicates the transfer direction
1087  */
1088 void address_space_unmap(AddressSpace *as, void *buffer, hwaddr len,
1089                          int is_write, hwaddr access_len);
1090 
1091 
1092 #endif
1093 
1094 #endif
1095