xref: /qemu/include/hw/core/cpu.h (revision 15d62536)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/breakpoint.h"
26 #include "exec/hwaddr.h"
27 #include "exec/vaddr.h"
28 #include "exec/memattrs.h"
29 #include "exec/mmu-access-type.h"
30 #include "exec/tlb-common.h"
31 #include "qapi/qapi-types-machine.h"
32 #include "qapi/qapi-types-run-state.h"
33 #include "qemu/bitmap.h"
34 #include "qemu/rcu_queue.h"
35 #include "qemu/queue.h"
36 #include "qemu/thread.h"
37 #include "qom/object.h"
38 
39 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
40                                      void *opaque);
41 
42 /**
43  * SECTION:cpu
44  * @section_id: QEMU-cpu
45  * @title: CPU Class
46  * @short_description: Base class for all CPUs
47  */
48 
49 #define TYPE_CPU "cpu"
50 
51 /* Since this macro is used a lot in hot code paths and in conjunction with
52  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
53  * an unchecked cast.
54  */
55 #define CPU(obj) ((CPUState *)(obj))
56 
57 /*
58  * The class checkers bring in CPU_GET_CLASS() which is potentially
59  * expensive given the eventual call to
60  * object_class_dynamic_cast_assert(). Because of this the CPUState
61  * has a cached value for the class in cs->cc which is set up in
62  * cpu_exec_realizefn() for use in hot code paths.
63  */
64 typedef struct CPUClass CPUClass;
65 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
66                        TYPE_CPU)
67 
68 /**
69  * OBJECT_DECLARE_CPU_TYPE:
70  * @CpuInstanceType: instance struct name
71  * @CpuClassType: class struct name
72  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
73  *
74  * This macro is typically used in "cpu-qom.h" header file, and will:
75  *
76  *   - create the typedefs for the CPU object and class structs
77  *   - register the type for use with g_autoptr
78  *   - provide three standard type cast functions
79  *
80  * The object struct and class struct need to be declared manually.
81  */
82 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
83     typedef struct ArchCPU CpuInstanceType; \
84     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
85 
86 typedef struct CPUWatchpoint CPUWatchpoint;
87 
88 /* see physmem.c */
89 struct CPUAddressSpace;
90 
91 /* see accel/tcg/tb-jmp-cache.h */
92 struct CPUJumpCache;
93 
94 /* see accel-cpu.h */
95 struct AccelCPUClass;
96 
97 /* see sysemu-cpu-ops.h */
98 struct SysemuCPUOps;
99 
100 /**
101  * CPUClass:
102  * @class_by_name: Callback to map -cpu command line model name to an
103  *                 instantiatable CPU type.
104  * @parse_features: Callback to parse command line arguments.
105  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
106  * @has_work: Callback for checking if there is work to do.
107  * @mmu_index: Callback for choosing softmmu mmu index;
108  *       may be used internally by memory_rw_debug without TCG.
109  * @memory_rw_debug: Callback for GDB memory access.
110  * @dump_state: Callback for dumping state.
111  * @query_cpu_fast:
112  *       Fill in target specific information for the "query-cpus-fast"
113  *       QAPI call.
114  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
115  * @set_pc: Callback for setting the Program Counter register. This
116  *       should have the semantics used by the target architecture when
117  *       setting the PC from a source such as an ELF file entry point;
118  *       for example on Arm it will also set the Thumb mode bit based
119  *       on the least significant bit of the new PC value.
120  *       If the target behaviour here is anything other than "set
121  *       the PC register to the value passed in" then the target must
122  *       also implement the synchronize_from_tb hook.
123  * @get_pc: Callback for getting the Program Counter register.
124  *       As above, with the semantics of the target architecture.
125  * @gdb_read_register: Callback for letting GDB read a register.
126  * @gdb_write_register: Callback for letting GDB write a register.
127  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
128  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
129  *       its Harvard architecture split code and data.
130  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
131  *                     from @gdb_core_xml_file.
132  * @gdb_core_xml_file: File name for core registers GDB XML description.
133  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
134  *           before the insn which triggers a watchpoint rather than after it.
135  * @gdb_arch_name: Optional callback that returns the architecture name known
136  * to GDB. The caller must free the returned string with g_free.
137  * @disas_set_info: Setup architecture specific components of disassembly info
138  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
139  * address before attempting to match it against watchpoints.
140  * @deprecation_note: If this CPUClass is deprecated, this field provides
141  *                    related information.
142  *
143  * Represents a CPU family or model.
144  */
145 struct CPUClass {
146     /*< private >*/
147     DeviceClass parent_class;
148     /*< public >*/
149 
150     ObjectClass *(*class_by_name)(const char *cpu_model);
151     void (*parse_features)(const char *typename, char *str, Error **errp);
152 
153     bool (*has_work)(CPUState *cpu);
154     int (*mmu_index)(CPUState *cpu, bool ifetch);
155     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
156                            uint8_t *buf, int len, bool is_write);
157     void (*dump_state)(CPUState *cpu, FILE *, int flags);
158     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
159     int64_t (*get_arch_id)(CPUState *cpu);
160     void (*set_pc)(CPUState *cpu, vaddr value);
161     vaddr (*get_pc)(CPUState *cpu);
162     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
163     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
164     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
165 
166     const char *gdb_core_xml_file;
167     const gchar * (*gdb_arch_name)(CPUState *cpu);
168 
169     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
170 
171     const char *deprecation_note;
172     struct AccelCPUClass *accel_cpu;
173 
174     /* when system emulation is not available, this pointer is NULL */
175     const struct SysemuCPUOps *sysemu_ops;
176 
177     /* when TCG is not available, this pointer is NULL */
178     const TCGCPUOps *tcg_ops;
179 
180     /*
181      * if not NULL, this is called in order for the CPUClass to initialize
182      * class data that depends on the accelerator, see accel/accel-common.c.
183      */
184     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
185 
186     /*
187      * Keep non-pointer data at the end to minimize holes.
188      */
189     int reset_dump_flags;
190     int gdb_num_core_regs;
191     bool gdb_stop_before_watchpoint;
192 };
193 
194 /*
195  * Fix the number of mmu modes to 16, which is also the maximum
196  * supported by the softmmu tlb api.
197  */
198 #define NB_MMU_MODES 16
199 
200 /* Use a fully associative victim tlb of 8 entries. */
201 #define CPU_VTLB_SIZE 8
202 
203 /*
204  * The full TLB entry, which is not accessed by generated TCG code,
205  * so the layout is not as critical as that of CPUTLBEntry. This is
206  * also why we don't want to combine the two structs.
207  */
208 typedef struct CPUTLBEntryFull {
209     /*
210      * @xlat_section contains:
211      *  - in the lower TARGET_PAGE_BITS, a physical section number
212      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
213      *    must be added to the virtual address to obtain:
214      *     + the ram_addr_t of the target RAM (if the physical section
215      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
216      *     + the offset within the target MemoryRegion (otherwise)
217      */
218     hwaddr xlat_section;
219 
220     /*
221      * @phys_addr contains the physical address in the address space
222      * given by cpu_asidx_from_attrs(cpu, @attrs).
223      */
224     hwaddr phys_addr;
225 
226     /* @attrs contains the memory transaction attributes for the page. */
227     MemTxAttrs attrs;
228 
229     /* @prot contains the complete protections for the page. */
230     uint8_t prot;
231 
232     /* @lg_page_size contains the log2 of the page size. */
233     uint8_t lg_page_size;
234 
235     /* Additional tlb flags requested by tlb_fill. */
236     uint8_t tlb_fill_flags;
237 
238     /*
239      * Additional tlb flags for use by the slow path. If non-zero,
240      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
241      */
242     uint8_t slow_flags[MMU_ACCESS_COUNT];
243 
244     /*
245      * Allow target-specific additions to this structure.
246      * This may be used to cache items from the guest cpu
247      * page tables for later use by the implementation.
248      */
249     union {
250         /*
251          * Cache the attrs and shareability fields from the page table entry.
252          *
253          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
254          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
255          * For shareability and guarded, as in the SH and GP fields respectively
256          * of the VMSAv8-64 PTEs.
257          */
258         struct {
259             uint8_t pte_attrs;
260             uint8_t shareability;
261             bool guarded;
262         } arm;
263     } extra;
264 } CPUTLBEntryFull;
265 
266 /*
267  * Data elements that are per MMU mode, minus the bits accessed by
268  * the TCG fast path.
269  */
270 typedef struct CPUTLBDesc {
271     /*
272      * Describe a region covering all of the large pages allocated
273      * into the tlb.  When any page within this region is flushed,
274      * we must flush the entire tlb.  The region is matched if
275      * (addr & large_page_mask) == large_page_addr.
276      */
277     vaddr large_page_addr;
278     vaddr large_page_mask;
279     /* host time (in ns) at the beginning of the time window */
280     int64_t window_begin_ns;
281     /* maximum number of entries observed in the window */
282     size_t window_max_entries;
283     size_t n_used_entries;
284     /* The next index to use in the tlb victim table.  */
285     size_t vindex;
286     /* The tlb victim table, in two parts.  */
287     CPUTLBEntry vtable[CPU_VTLB_SIZE];
288     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
289     CPUTLBEntryFull *fulltlb;
290 } CPUTLBDesc;
291 
292 /*
293  * Data elements that are shared between all MMU modes.
294  */
295 typedef struct CPUTLBCommon {
296     /* Serialize updates to f.table and d.vtable, and others as noted. */
297     QemuSpin lock;
298     /*
299      * Within dirty, for each bit N, modifications have been made to
300      * mmu_idx N since the last time that mmu_idx was flushed.
301      * Protected by tlb_c.lock.
302      */
303     uint16_t dirty;
304     /*
305      * Statistics.  These are not lock protected, but are read and
306      * written atomically.  This allows the monitor to print a snapshot
307      * of the stats without interfering with the cpu.
308      */
309     size_t full_flush_count;
310     size_t part_flush_count;
311     size_t elide_flush_count;
312 } CPUTLBCommon;
313 
314 /*
315  * The entire softmmu tlb, for all MMU modes.
316  * The meaning of each of the MMU modes is defined in the target code.
317  * Since this is placed within CPUNegativeOffsetState, the smallest
318  * negative offsets are at the end of the struct.
319  */
320 typedef struct CPUTLB {
321 #ifdef CONFIG_TCG
322     CPUTLBCommon c;
323     CPUTLBDesc d[NB_MMU_MODES];
324     CPUTLBDescFast f[NB_MMU_MODES];
325 #endif
326 } CPUTLB;
327 
328 /*
329  * Low 16 bits: number of cycles left, used only in icount mode.
330  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
331  * for this CPU and return to its top level loop (even in non-icount mode).
332  * This allows a single read-compare-cbranch-write sequence to test
333  * for both decrementer underflow and exceptions.
334  */
335 typedef union IcountDecr {
336     uint32_t u32;
337     struct {
338 #if HOST_BIG_ENDIAN
339         uint16_t high;
340         uint16_t low;
341 #else
342         uint16_t low;
343         uint16_t high;
344 #endif
345     } u16;
346 } IcountDecr;
347 
348 /*
349  * Elements of CPUState most efficiently accessed from CPUArchState,
350  * via small negative offsets.
351  */
352 typedef struct CPUNegativeOffsetState {
353     CPUTLB tlb;
354     IcountDecr icount_decr;
355     bool can_do_io;
356 } CPUNegativeOffsetState;
357 
358 struct KVMState;
359 struct kvm_run;
360 
361 /* work queue */
362 
363 /* The union type allows passing of 64 bit target pointers on 32 bit
364  * hosts in a single parameter
365  */
366 typedef union {
367     int           host_int;
368     unsigned long host_ulong;
369     void         *host_ptr;
370     vaddr         target_ptr;
371 } run_on_cpu_data;
372 
373 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
374 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
375 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
376 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
377 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
378 
379 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
380 
381 struct qemu_work_item;
382 
383 #define CPU_UNSET_NUMA_NODE_ID -1
384 
385 /**
386  * CPUState:
387  * @cpu_index: CPU index (informative).
388  * @cluster_index: Identifies which cluster this CPU is in.
389  *   For boards which don't define clusters or for "loose" CPUs not assigned
390  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
391  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
392  *   QOM parent.
393  *   Under TCG this value is propagated to @tcg_cflags.
394  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
395  * @tcg_cflags: Pre-computed cflags for this cpu.
396  * @nr_cores: Number of cores within this CPU package.
397  * @nr_threads: Number of threads within this CPU core.
398  * @running: #true if CPU is currently running (lockless).
399  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
400  * valid under cpu_list_lock.
401  * @created: Indicates whether the CPU thread has been successfully created.
402  * @interrupt_request: Indicates a pending interrupt request.
403  * @halted: Nonzero if the CPU is in suspended state.
404  * @stop: Indicates a pending stop request.
405  * @stopped: Indicates the CPU has been artificially stopped.
406  * @unplug: Indicates a pending CPU unplug request.
407  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
408  * @singlestep_enabled: Flags for single-stepping.
409  * @icount_extra: Instructions until next timer event.
410  * @neg.can_do_io: True if memory-mapped IO is allowed.
411  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
412  *            AddressSpaces this CPU has)
413  * @num_ases: number of CPUAddressSpaces in @cpu_ases
414  * @as: Pointer to the first AddressSpace, for the convenience of targets which
415  *      only have a single AddressSpace
416  * @gdb_regs: Additional GDB registers.
417  * @gdb_num_regs: Number of total registers accessible to GDB.
418  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
419  * @node: QTAILQ of CPUs sharing TB cache.
420  * @opaque: User data.
421  * @mem_io_pc: Host Program Counter at which the memory was accessed.
422  * @accel: Pointer to accelerator specific state.
423  * @kvm_fd: vCPU file descriptor for KVM.
424  * @work_mutex: Lock to prevent multiple access to @work_list.
425  * @work_list: List of pending asynchronous work.
426  * @plugin_mem_cbs: active plugin memory callbacks
427  * @plugin_state: per-CPU plugin state
428  * @ignore_memory_transaction_failures: Cached copy of the MachineState
429  *    flag of the same name: allows the board to suppress calling of the
430  *    CPU do_transaction_failed hook function.
431  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
432  *    ring is enabled.
433  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
434  *    dirty ring structure.
435  *
436  * State of one CPU core or thread.
437  *
438  * Align, in order to match possible alignment required by CPUArchState,
439  * and eliminate a hole between CPUState and CPUArchState within ArchCPU.
440  */
441 struct CPUState {
442     /*< private >*/
443     DeviceState parent_obj;
444     /* cache to avoid expensive CPU_GET_CLASS */
445     CPUClass *cc;
446     /*< public >*/
447 
448     int nr_cores;
449     int nr_threads;
450 
451     struct QemuThread *thread;
452 #ifdef _WIN32
453     QemuSemaphore sem;
454 #endif
455     int thread_id;
456     bool running, has_waiter;
457     struct QemuCond *halt_cond;
458     bool thread_kicked;
459     bool created;
460     bool stop;
461     bool stopped;
462 
463     /* Should CPU start in powered-off state? */
464     bool start_powered_off;
465 
466     bool unplug;
467     bool crash_occurred;
468     bool exit_request;
469     int exclusive_context_count;
470     uint32_t cflags_next_tb;
471     /* updates protected by BQL */
472     uint32_t interrupt_request;
473     int singlestep_enabled;
474     int64_t icount_budget;
475     int64_t icount_extra;
476     uint64_t random_seed;
477     sigjmp_buf jmp_env;
478 
479     QemuMutex work_mutex;
480     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
481 
482     struct CPUAddressSpace *cpu_ases;
483     int num_ases;
484     AddressSpace *as;
485     MemoryRegion *memory;
486 
487     struct CPUJumpCache *tb_jmp_cache;
488 
489     GArray *gdb_regs;
490     int gdb_num_regs;
491     int gdb_num_g_regs;
492     QTAILQ_ENTRY(CPUState) node;
493 
494     /* ice debug support */
495     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
496 
497     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
498     CPUWatchpoint *watchpoint_hit;
499 
500     void *opaque;
501 
502     /* In order to avoid passing too many arguments to the MMIO helpers,
503      * we store some rarely used information in the CPU context.
504      */
505     uintptr_t mem_io_pc;
506 
507     /* Only used in KVM */
508     int kvm_fd;
509     struct KVMState *kvm_state;
510     struct kvm_run *kvm_run;
511     struct kvm_dirty_gfn *kvm_dirty_gfns;
512     uint32_t kvm_fetch_index;
513     uint64_t dirty_pages;
514     int kvm_vcpu_stats_fd;
515     bool vcpu_dirty;
516 
517     /* Use by accel-block: CPU is executing an ioctl() */
518     QemuLockCnt in_ioctl_lock;
519 
520 #ifdef CONFIG_PLUGIN
521     /*
522      * The callback pointer stays in the main CPUState as it is
523      * accessed via TCG (see gen_empty_mem_helper).
524      */
525     GArray *plugin_mem_cbs;
526     CPUPluginState *plugin_state;
527 #endif
528 
529     /* TODO Move common fields from CPUArchState here. */
530     int cpu_index;
531     int cluster_index;
532     uint32_t tcg_cflags;
533     uint32_t halted;
534     int32_t exception_index;
535 
536     AccelCPUState *accel;
537 
538     /* Used to keep track of an outstanding cpu throttle thread for migration
539      * autoconverge
540      */
541     bool throttle_thread_scheduled;
542 
543     /*
544      * Sleep throttle_us_per_full microseconds once dirty ring is full
545      * if dirty page rate limit is enabled.
546      */
547     int64_t throttle_us_per_full;
548 
549     bool ignore_memory_transaction_failures;
550 
551     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
552     bool prctl_unalign_sigbus;
553 
554     /* track IOMMUs whose translations we've cached in the TCG TLB */
555     GArray *iommu_notifiers;
556 
557     /*
558      * MUST BE LAST in order to minimize the displacement to CPUArchState.
559      */
560     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
561     CPUNegativeOffsetState neg;
562 };
563 
564 /* Validate placement of CPUNegativeOffsetState. */
565 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
566                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
567 
568 static inline CPUArchState *cpu_env(CPUState *cpu)
569 {
570     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
571     return (CPUArchState *)(cpu + 1);
572 }
573 
574 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
575 extern CPUTailQ cpus_queue;
576 
577 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
578 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
579 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
580 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
581     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
582 
583 extern __thread CPUState *current_cpu;
584 
585 /**
586  * qemu_tcg_mttcg_enabled:
587  * Check whether we are running MultiThread TCG or not.
588  *
589  * Returns: %true if we are in MTTCG mode %false otherwise.
590  */
591 extern bool mttcg_enabled;
592 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
593 
594 /**
595  * cpu_paging_enabled:
596  * @cpu: The CPU whose state is to be inspected.
597  *
598  * Returns: %true if paging is enabled, %false otherwise.
599  */
600 bool cpu_paging_enabled(const CPUState *cpu);
601 
602 /**
603  * cpu_get_memory_mapping:
604  * @cpu: The CPU whose memory mappings are to be obtained.
605  * @list: Where to write the memory mappings to.
606  * @errp: Pointer for reporting an #Error.
607  *
608  * Returns: %true on success, %false otherwise.
609  */
610 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
611                             Error **errp);
612 
613 #if !defined(CONFIG_USER_ONLY)
614 
615 /**
616  * cpu_write_elf64_note:
617  * @f: pointer to a function that writes memory to a file
618  * @cpu: The CPU whose memory is to be dumped
619  * @cpuid: ID number of the CPU
620  * @opaque: pointer to the CPUState struct
621  */
622 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
623                          int cpuid, void *opaque);
624 
625 /**
626  * cpu_write_elf64_qemunote:
627  * @f: pointer to a function that writes memory to a file
628  * @cpu: The CPU whose memory is to be dumped
629  * @cpuid: ID number of the CPU
630  * @opaque: pointer to the CPUState struct
631  */
632 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
633                              void *opaque);
634 
635 /**
636  * cpu_write_elf32_note:
637  * @f: pointer to a function that writes memory to a file
638  * @cpu: The CPU whose memory is to be dumped
639  * @cpuid: ID number of the CPU
640  * @opaque: pointer to the CPUState struct
641  */
642 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
643                          int cpuid, void *opaque);
644 
645 /**
646  * cpu_write_elf32_qemunote:
647  * @f: pointer to a function that writes memory to a file
648  * @cpu: The CPU whose memory is to be dumped
649  * @cpuid: ID number of the CPU
650  * @opaque: pointer to the CPUState struct
651  */
652 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
653                              void *opaque);
654 
655 /**
656  * cpu_get_crash_info:
657  * @cpu: The CPU to get crash information for
658  *
659  * Gets the previously saved crash information.
660  * Caller is responsible for freeing the data.
661  */
662 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
663 
664 #endif /* !CONFIG_USER_ONLY */
665 
666 /**
667  * CPUDumpFlags:
668  * @CPU_DUMP_CODE:
669  * @CPU_DUMP_FPU: dump FPU register state, not just integer
670  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
671  * @CPU_DUMP_VPU: dump VPU registers
672  */
673 enum CPUDumpFlags {
674     CPU_DUMP_CODE = 0x00010000,
675     CPU_DUMP_FPU  = 0x00020000,
676     CPU_DUMP_CCOP = 0x00040000,
677     CPU_DUMP_VPU  = 0x00080000,
678 };
679 
680 /**
681  * cpu_dump_state:
682  * @cpu: The CPU whose state is to be dumped.
683  * @f: If non-null, dump to this stream, else to current print sink.
684  *
685  * Dumps CPU state.
686  */
687 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
688 
689 #ifndef CONFIG_USER_ONLY
690 /**
691  * cpu_get_phys_page_attrs_debug:
692  * @cpu: The CPU to obtain the physical page address for.
693  * @addr: The virtual address.
694  * @attrs: Updated on return with the memory transaction attributes to use
695  *         for this access.
696  *
697  * Obtains the physical page corresponding to a virtual one, together
698  * with the corresponding memory transaction attributes to use for the access.
699  * Use it only for debugging because no protection checks are done.
700  *
701  * Returns: Corresponding physical page address or -1 if no page found.
702  */
703 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
704                                      MemTxAttrs *attrs);
705 
706 /**
707  * cpu_get_phys_page_debug:
708  * @cpu: The CPU to obtain the physical page address for.
709  * @addr: The virtual address.
710  *
711  * Obtains the physical page corresponding to a virtual one.
712  * Use it only for debugging because no protection checks are done.
713  *
714  * Returns: Corresponding physical page address or -1 if no page found.
715  */
716 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
717 
718 /** cpu_asidx_from_attrs:
719  * @cpu: CPU
720  * @attrs: memory transaction attributes
721  *
722  * Returns the address space index specifying the CPU AddressSpace
723  * to use for a memory access with the given transaction attributes.
724  */
725 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
726 
727 /**
728  * cpu_virtio_is_big_endian:
729  * @cpu: CPU
730 
731  * Returns %true if a CPU which supports runtime configurable endianness
732  * is currently big-endian.
733  */
734 bool cpu_virtio_is_big_endian(CPUState *cpu);
735 
736 #endif /* CONFIG_USER_ONLY */
737 
738 /**
739  * cpu_list_add:
740  * @cpu: The CPU to be added to the list of CPUs.
741  */
742 void cpu_list_add(CPUState *cpu);
743 
744 /**
745  * cpu_list_remove:
746  * @cpu: The CPU to be removed from the list of CPUs.
747  */
748 void cpu_list_remove(CPUState *cpu);
749 
750 /**
751  * cpu_reset:
752  * @cpu: The CPU whose state is to be reset.
753  */
754 void cpu_reset(CPUState *cpu);
755 
756 /**
757  * cpu_class_by_name:
758  * @typename: The CPU base type.
759  * @cpu_model: The model string without any parameters.
760  *
761  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
762  *
763  * Returns: A concrete #CPUClass or %NULL if no matching class is found
764  *          or if the matching class is abstract.
765  */
766 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
767 
768 /**
769  * cpu_model_from_type:
770  * @typename: The CPU type name
771  *
772  * Extract the CPU model name from the CPU type name. The
773  * CPU type name is either the combination of the CPU model
774  * name and suffix, or same to the CPU model name.
775  *
776  * Returns: CPU model name or NULL if the CPU class doesn't exist
777  *          The user should g_free() the string once no longer needed.
778  */
779 char *cpu_model_from_type(const char *typename);
780 
781 /**
782  * cpu_create:
783  * @typename: The CPU type.
784  *
785  * Instantiates a CPU and realizes the CPU.
786  *
787  * Returns: A #CPUState or %NULL if an error occurred.
788  */
789 CPUState *cpu_create(const char *typename);
790 
791 /**
792  * parse_cpu_option:
793  * @cpu_option: The -cpu option including optional parameters.
794  *
795  * processes optional parameters and registers them as global properties
796  *
797  * Returns: type of CPU to create or prints error and terminates process
798  *          if an error occurred.
799  */
800 const char *parse_cpu_option(const char *cpu_option);
801 
802 /**
803  * cpu_has_work:
804  * @cpu: The vCPU to check.
805  *
806  * Checks whether the CPU has work to do.
807  *
808  * Returns: %true if the CPU has work, %false otherwise.
809  */
810 static inline bool cpu_has_work(CPUState *cpu)
811 {
812     CPUClass *cc = CPU_GET_CLASS(cpu);
813 
814     g_assert(cc->has_work);
815     return cc->has_work(cpu);
816 }
817 
818 /**
819  * qemu_cpu_is_self:
820  * @cpu: The vCPU to check against.
821  *
822  * Checks whether the caller is executing on the vCPU thread.
823  *
824  * Returns: %true if called from @cpu's thread, %false otherwise.
825  */
826 bool qemu_cpu_is_self(CPUState *cpu);
827 
828 /**
829  * qemu_cpu_kick:
830  * @cpu: The vCPU to kick.
831  *
832  * Kicks @cpu's thread.
833  */
834 void qemu_cpu_kick(CPUState *cpu);
835 
836 /**
837  * cpu_is_stopped:
838  * @cpu: The CPU to check.
839  *
840  * Checks whether the CPU is stopped.
841  *
842  * Returns: %true if run state is not running or if artificially stopped;
843  * %false otherwise.
844  */
845 bool cpu_is_stopped(CPUState *cpu);
846 
847 /**
848  * do_run_on_cpu:
849  * @cpu: The vCPU to run on.
850  * @func: The function to be executed.
851  * @data: Data to pass to the function.
852  * @mutex: Mutex to release while waiting for @func to run.
853  *
854  * Used internally in the implementation of run_on_cpu.
855  */
856 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
857                    QemuMutex *mutex);
858 
859 /**
860  * run_on_cpu:
861  * @cpu: The vCPU to run on.
862  * @func: The function to be executed.
863  * @data: Data to pass to the function.
864  *
865  * Schedules the function @func for execution on the vCPU @cpu.
866  */
867 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
868 
869 /**
870  * async_run_on_cpu:
871  * @cpu: The vCPU to run on.
872  * @func: The function to be executed.
873  * @data: Data to pass to the function.
874  *
875  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
876  */
877 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
878 
879 /**
880  * async_safe_run_on_cpu:
881  * @cpu: The vCPU to run on.
882  * @func: The function to be executed.
883  * @data: Data to pass to the function.
884  *
885  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
886  * while all other vCPUs are sleeping.
887  *
888  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
889  * BQL.
890  */
891 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
892 
893 /**
894  * cpu_in_exclusive_context()
895  * @cpu: The vCPU to check
896  *
897  * Returns true if @cpu is an exclusive context, for example running
898  * something which has previously been queued via async_safe_run_on_cpu().
899  */
900 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
901 {
902     return cpu->exclusive_context_count;
903 }
904 
905 /**
906  * qemu_get_cpu:
907  * @index: The CPUState@cpu_index value of the CPU to obtain.
908  *
909  * Gets a CPU matching @index.
910  *
911  * Returns: The CPU or %NULL if there is no matching CPU.
912  */
913 CPUState *qemu_get_cpu(int index);
914 
915 /**
916  * cpu_exists:
917  * @id: Guest-exposed CPU ID to lookup.
918  *
919  * Search for CPU with specified ID.
920  *
921  * Returns: %true - CPU is found, %false - CPU isn't found.
922  */
923 bool cpu_exists(int64_t id);
924 
925 /**
926  * cpu_by_arch_id:
927  * @id: Guest-exposed CPU ID of the CPU to obtain.
928  *
929  * Get a CPU with matching @id.
930  *
931  * Returns: The CPU or %NULL if there is no matching CPU.
932  */
933 CPUState *cpu_by_arch_id(int64_t id);
934 
935 /**
936  * cpu_interrupt:
937  * @cpu: The CPU to set an interrupt on.
938  * @mask: The interrupts to set.
939  *
940  * Invokes the interrupt handler.
941  */
942 
943 void cpu_interrupt(CPUState *cpu, int mask);
944 
945 /**
946  * cpu_set_pc:
947  * @cpu: The CPU to set the program counter for.
948  * @addr: Program counter value.
949  *
950  * Sets the program counter for a CPU.
951  */
952 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
953 {
954     CPUClass *cc = CPU_GET_CLASS(cpu);
955 
956     cc->set_pc(cpu, addr);
957 }
958 
959 /**
960  * cpu_reset_interrupt:
961  * @cpu: The CPU to clear the interrupt on.
962  * @mask: The interrupt mask to clear.
963  *
964  * Resets interrupts on the vCPU @cpu.
965  */
966 void cpu_reset_interrupt(CPUState *cpu, int mask);
967 
968 /**
969  * cpu_exit:
970  * @cpu: The CPU to exit.
971  *
972  * Requests the CPU @cpu to exit execution.
973  */
974 void cpu_exit(CPUState *cpu);
975 
976 /**
977  * cpu_resume:
978  * @cpu: The CPU to resume.
979  *
980  * Resumes CPU, i.e. puts CPU into runnable state.
981  */
982 void cpu_resume(CPUState *cpu);
983 
984 /**
985  * cpu_remove_sync:
986  * @cpu: The CPU to remove.
987  *
988  * Requests the CPU to be removed and waits till it is removed.
989  */
990 void cpu_remove_sync(CPUState *cpu);
991 
992 /**
993  * process_queued_cpu_work() - process all items on CPU work queue
994  * @cpu: The CPU which work queue to process.
995  */
996 void process_queued_cpu_work(CPUState *cpu);
997 
998 /**
999  * cpu_exec_start:
1000  * @cpu: The CPU for the current thread.
1001  *
1002  * Record that a CPU has started execution and can be interrupted with
1003  * cpu_exit.
1004  */
1005 void cpu_exec_start(CPUState *cpu);
1006 
1007 /**
1008  * cpu_exec_end:
1009  * @cpu: The CPU for the current thread.
1010  *
1011  * Record that a CPU has stopped execution and exclusive sections
1012  * can be executed without interrupting it.
1013  */
1014 void cpu_exec_end(CPUState *cpu);
1015 
1016 /**
1017  * start_exclusive:
1018  *
1019  * Wait for a concurrent exclusive section to end, and then start
1020  * a section of work that is run while other CPUs are not running
1021  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1022  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1023  * during the exclusive section go to sleep until this CPU calls
1024  * end_exclusive.
1025  */
1026 void start_exclusive(void);
1027 
1028 /**
1029  * end_exclusive:
1030  *
1031  * Concludes an exclusive execution section started by start_exclusive.
1032  */
1033 void end_exclusive(void);
1034 
1035 /**
1036  * qemu_init_vcpu:
1037  * @cpu: The vCPU to initialize.
1038  *
1039  * Initializes a vCPU.
1040  */
1041 void qemu_init_vcpu(CPUState *cpu);
1042 
1043 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1044 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1045 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1046 
1047 /**
1048  * cpu_single_step:
1049  * @cpu: CPU to the flags for.
1050  * @enabled: Flags to enable.
1051  *
1052  * Enables or disables single-stepping for @cpu.
1053  */
1054 void cpu_single_step(CPUState *cpu, int enabled);
1055 
1056 /* Breakpoint/watchpoint flags */
1057 #define BP_MEM_READ           0x01
1058 #define BP_MEM_WRITE          0x02
1059 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1060 #define BP_STOP_BEFORE_ACCESS 0x04
1061 /* 0x08 currently unused */
1062 #define BP_GDB                0x10
1063 #define BP_CPU                0x20
1064 #define BP_ANY                (BP_GDB | BP_CPU)
1065 #define BP_HIT_SHIFT          6
1066 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1067 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1068 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1069 
1070 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1071                           CPUBreakpoint **breakpoint);
1072 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1073 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1074 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1075 
1076 /* Return true if PC matches an installed breakpoint.  */
1077 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1078 {
1079     CPUBreakpoint *bp;
1080 
1081     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1082         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1083             if (bp->pc == pc && (bp->flags & mask)) {
1084                 return true;
1085             }
1086         }
1087     }
1088     return false;
1089 }
1090 
1091 #if defined(CONFIG_USER_ONLY)
1092 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1093                                         int flags, CPUWatchpoint **watchpoint)
1094 {
1095     return -ENOSYS;
1096 }
1097 
1098 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1099                                         vaddr len, int flags)
1100 {
1101     return -ENOSYS;
1102 }
1103 
1104 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1105                                                 CPUWatchpoint *wp)
1106 {
1107 }
1108 
1109 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1110 {
1111 }
1112 #else
1113 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1114                           int flags, CPUWatchpoint **watchpoint);
1115 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1116                           vaddr len, int flags);
1117 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1118 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1119 #endif
1120 
1121 /**
1122  * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled?
1123  * @cs: CPUState pointer
1124  *
1125  * The memory callbacks are installed if a plugin has instrumented an
1126  * instruction for memory. This can be useful to know if you want to
1127  * force a slow path for a series of memory accesses.
1128  */
1129 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu)
1130 {
1131 #ifdef CONFIG_PLUGIN
1132     return !!cpu->plugin_mem_cbs;
1133 #else
1134     return false;
1135 #endif
1136 }
1137 
1138 /**
1139  * cpu_get_address_space:
1140  * @cpu: CPU to get address space from
1141  * @asidx: index identifying which address space to get
1142  *
1143  * Return the requested address space of this CPU. @asidx
1144  * specifies which address space to read.
1145  */
1146 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1147 
1148 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1149     G_GNUC_PRINTF(2, 3);
1150 
1151 /* $(top_srcdir)/cpu.c */
1152 void cpu_class_init_props(DeviceClass *dc);
1153 void cpu_exec_initfn(CPUState *cpu);
1154 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1155 void cpu_exec_unrealizefn(CPUState *cpu);
1156 void cpu_exec_reset_hold(CPUState *cpu);
1157 
1158 const char *target_name(void);
1159 
1160 #ifdef COMPILING_PER_TARGET
1161 
1162 #ifndef CONFIG_USER_ONLY
1163 
1164 extern const VMStateDescription vmstate_cpu_common;
1165 
1166 #define VMSTATE_CPU() {                                                     \
1167     .name = "parent_obj",                                                   \
1168     .size = sizeof(CPUState),                                               \
1169     .vmsd = &vmstate_cpu_common,                                            \
1170     .flags = VMS_STRUCT,                                                    \
1171     .offset = 0,                                                            \
1172 }
1173 #endif /* !CONFIG_USER_ONLY */
1174 
1175 #endif /* COMPILING_PER_TARGET */
1176 
1177 #define UNASSIGNED_CPU_INDEX -1
1178 #define UNASSIGNED_CLUSTER_INDEX -1
1179 
1180 #endif
1181