xref: /qemu/include/hw/core/cpu.h (revision 2e8f72ac)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/memattrs.h"
27 #include "qapi/qapi-types-run-state.h"
28 #include "qemu/bitmap.h"
29 #include "qemu/rcu_queue.h"
30 #include "qemu/queue.h"
31 #include "qemu/thread.h"
32 #include "qemu/plugin.h"
33 #include "qom/object.h"
34 
35 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
36                                      void *opaque);
37 
38 /**
39  * vaddr:
40  * Type wide enough to contain any #target_ulong virtual address.
41  */
42 typedef uint64_t vaddr;
43 #define VADDR_PRId PRId64
44 #define VADDR_PRIu PRIu64
45 #define VADDR_PRIo PRIo64
46 #define VADDR_PRIx PRIx64
47 #define VADDR_PRIX PRIX64
48 #define VADDR_MAX UINT64_MAX
49 
50 /**
51  * SECTION:cpu
52  * @section_id: QEMU-cpu
53  * @title: CPU Class
54  * @short_description: Base class for all CPUs
55  */
56 
57 #define TYPE_CPU "cpu"
58 
59 /* Since this macro is used a lot in hot code paths and in conjunction with
60  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
61  * an unchecked cast.
62  */
63 #define CPU(obj) ((CPUState *)(obj))
64 
65 typedef struct CPUClass CPUClass;
66 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
67                        TYPE_CPU)
68 
69 typedef enum MMUAccessType {
70     MMU_DATA_LOAD  = 0,
71     MMU_DATA_STORE = 1,
72     MMU_INST_FETCH = 2
73 } MMUAccessType;
74 
75 typedef struct CPUWatchpoint CPUWatchpoint;
76 
77 struct TranslationBlock;
78 
79 /**
80  * CPUClass:
81  * @class_by_name: Callback to map -cpu command line model name to an
82  * instantiatable CPU type.
83  * @parse_features: Callback to parse command line arguments.
84  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
85  * @has_work: Callback for checking if there is work to do.
86  * @do_interrupt: Callback for interrupt handling.
87  * @do_unaligned_access: Callback for unaligned access handling, if
88  * the target defines #TARGET_ALIGNED_ONLY.
89  * @do_transaction_failed: Callback for handling failed memory transactions
90  * (ie bus faults or external aborts; not MMU faults)
91  * @virtio_is_big_endian: Callback to return %true if a CPU which supports
92  * runtime configurable endianness is currently big-endian. Non-configurable
93  * CPUs can use the default implementation of this method. This method should
94  * not be used by any callers other than the pre-1.0 virtio devices.
95  * @memory_rw_debug: Callback for GDB memory access.
96  * @dump_state: Callback for dumping state.
97  * @dump_statistics: Callback for dumping statistics.
98  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
99  * @get_paging_enabled: Callback for inquiring whether paging is enabled.
100  * @get_memory_mapping: Callback for obtaining the memory mappings.
101  * @set_pc: Callback for setting the Program Counter register. This
102  *       should have the semantics used by the target architecture when
103  *       setting the PC from a source such as an ELF file entry point;
104  *       for example on Arm it will also set the Thumb mode bit based
105  *       on the least significant bit of the new PC value.
106  *       If the target behaviour here is anything other than "set
107  *       the PC register to the value passed in" then the target must
108  *       also implement the synchronize_from_tb hook.
109  * @synchronize_from_tb: Callback for synchronizing state from a TCG
110  *       #TranslationBlock. This is called when we abandon execution
111  *       of a TB before starting it, and must set all parts of the CPU
112  *       state which the previous TB in the chain may not have updated.
113  *       This always includes at least the program counter; some targets
114  *       will need to do more. If this hook is not implemented then the
115  *       default is to call @set_pc(tb->pc).
116  * @tlb_fill: Callback for handling a softmmu tlb miss or user-only
117  *       address fault.  For system mode, if the access is valid, call
118  *       tlb_set_page and return true; if the access is invalid, and
119  *       probe is true, return false; otherwise raise an exception and
120  *       do not return.  For user-only mode, always raise an exception
121  *       and do not return.
122  * @get_phys_page_debug: Callback for obtaining a physical address.
123  * @get_phys_page_attrs_debug: Callback for obtaining a physical address and the
124  *       associated memory transaction attributes to use for the access.
125  *       CPUs which use memory transaction attributes should implement this
126  *       instead of get_phys_page_debug.
127  * @asidx_from_attrs: Callback to return the CPU AddressSpace to use for
128  *       a memory access with the specified memory transaction attributes.
129  * @gdb_read_register: Callback for letting GDB read a register.
130  * @gdb_write_register: Callback for letting GDB write a register.
131  * @debug_check_watchpoint: Callback: return true if the architectural
132  *       watchpoint whose address has matched should really fire.
133  * @debug_excp_handler: Callback for handling debug exceptions.
134  * @write_elf64_note: Callback for writing a CPU-specific ELF note to a
135  * 64-bit VM coredump.
136  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
137  * note to a 32-bit VM coredump.
138  * @write_elf32_note: Callback for writing a CPU-specific ELF note to a
139  * 32-bit VM coredump.
140  * @write_elf32_qemunote: Callback for writing a CPU- and QEMU-specific ELF
141  * note to a 32-bit VM coredump.
142  * @vmsd: State description for migration.
143  * @gdb_num_core_regs: Number of core registers accessible to GDB.
144  * @gdb_core_xml_file: File name for core registers GDB XML description.
145  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
146  *           before the insn which triggers a watchpoint rather than after it.
147  * @gdb_arch_name: Optional callback that returns the architecture name known
148  * to GDB. The caller must free the returned string with g_free.
149  * @gdb_get_dynamic_xml: Callback to return dynamically generated XML for the
150  *   gdb stub. Returns a pointer to the XML contents for the specified XML file
151  *   or NULL if the CPU doesn't have a dynamically generated content for it.
152  * @cpu_exec_enter: Callback for cpu_exec preparation.
153  * @cpu_exec_exit: Callback for cpu_exec cleanup.
154  * @cpu_exec_interrupt: Callback for processing interrupts in cpu_exec.
155  * @disas_set_info: Setup architecture specific components of disassembly info
156  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
157  * address before attempting to match it against watchpoints.
158  * @deprecation_note: If this CPUClass is deprecated, this field provides
159  *                    related information.
160  *
161  * Represents a CPU family or model.
162  */
163 struct CPUClass {
164     /*< private >*/
165     DeviceClass parent_class;
166     /*< public >*/
167 
168     ObjectClass *(*class_by_name)(const char *cpu_model);
169     void (*parse_features)(const char *typename, char *str, Error **errp);
170 
171     int reset_dump_flags;
172     bool (*has_work)(CPUState *cpu);
173     void (*do_interrupt)(CPUState *cpu);
174     void (*do_unaligned_access)(CPUState *cpu, vaddr addr,
175                                 MMUAccessType access_type,
176                                 int mmu_idx, uintptr_t retaddr);
177     void (*do_transaction_failed)(CPUState *cpu, hwaddr physaddr, vaddr addr,
178                                   unsigned size, MMUAccessType access_type,
179                                   int mmu_idx, MemTxAttrs attrs,
180                                   MemTxResult response, uintptr_t retaddr);
181     bool (*virtio_is_big_endian)(CPUState *cpu);
182     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
183                            uint8_t *buf, int len, bool is_write);
184     void (*dump_state)(CPUState *cpu, FILE *, int flags);
185     GuestPanicInformation* (*get_crash_info)(CPUState *cpu);
186     void (*dump_statistics)(CPUState *cpu, int flags);
187     int64_t (*get_arch_id)(CPUState *cpu);
188     bool (*get_paging_enabled)(const CPUState *cpu);
189     void (*get_memory_mapping)(CPUState *cpu, MemoryMappingList *list,
190                                Error **errp);
191     void (*set_pc)(CPUState *cpu, vaddr value);
192     void (*synchronize_from_tb)(CPUState *cpu,
193                                 const struct TranslationBlock *tb);
194     bool (*tlb_fill)(CPUState *cpu, vaddr address, int size,
195                      MMUAccessType access_type, int mmu_idx,
196                      bool probe, uintptr_t retaddr);
197     hwaddr (*get_phys_page_debug)(CPUState *cpu, vaddr addr);
198     hwaddr (*get_phys_page_attrs_debug)(CPUState *cpu, vaddr addr,
199                                         MemTxAttrs *attrs);
200     int (*asidx_from_attrs)(CPUState *cpu, MemTxAttrs attrs);
201     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
202     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
203     bool (*debug_check_watchpoint)(CPUState *cpu, CPUWatchpoint *wp);
204     void (*debug_excp_handler)(CPUState *cpu);
205 
206     int (*write_elf64_note)(WriteCoreDumpFunction f, CPUState *cpu,
207                             int cpuid, void *opaque);
208     int (*write_elf64_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
209                                 void *opaque);
210     int (*write_elf32_note)(WriteCoreDumpFunction f, CPUState *cpu,
211                             int cpuid, void *opaque);
212     int (*write_elf32_qemunote)(WriteCoreDumpFunction f, CPUState *cpu,
213                                 void *opaque);
214 
215     const VMStateDescription *vmsd;
216     const char *gdb_core_xml_file;
217     gchar * (*gdb_arch_name)(CPUState *cpu);
218     const char * (*gdb_get_dynamic_xml)(CPUState *cpu, const char *xmlname);
219     void (*cpu_exec_enter)(CPUState *cpu);
220     void (*cpu_exec_exit)(CPUState *cpu);
221     bool (*cpu_exec_interrupt)(CPUState *cpu, int interrupt_request);
222 
223     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
224     vaddr (*adjust_watchpoint_address)(CPUState *cpu, vaddr addr, int len);
225     void (*tcg_initialize)(void);
226 
227     const char *deprecation_note;
228     /* Keep non-pointer data at the end to minimize holes.  */
229     int gdb_num_core_regs;
230     bool gdb_stop_before_watchpoint;
231 };
232 
233 /*
234  * Low 16 bits: number of cycles left, used only in icount mode.
235  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
236  * for this CPU and return to its top level loop (even in non-icount mode).
237  * This allows a single read-compare-cbranch-write sequence to test
238  * for both decrementer underflow and exceptions.
239  */
240 typedef union IcountDecr {
241     uint32_t u32;
242     struct {
243 #ifdef HOST_WORDS_BIGENDIAN
244         uint16_t high;
245         uint16_t low;
246 #else
247         uint16_t low;
248         uint16_t high;
249 #endif
250     } u16;
251 } IcountDecr;
252 
253 typedef struct CPUBreakpoint {
254     vaddr pc;
255     int flags; /* BP_* */
256     QTAILQ_ENTRY(CPUBreakpoint) entry;
257 } CPUBreakpoint;
258 
259 struct CPUWatchpoint {
260     vaddr vaddr;
261     vaddr len;
262     vaddr hitaddr;
263     MemTxAttrs hitattrs;
264     int flags; /* BP_* */
265     QTAILQ_ENTRY(CPUWatchpoint) entry;
266 };
267 
268 #ifdef CONFIG_PLUGIN
269 /*
270  * For plugins we sometime need to save the resolved iotlb data before
271  * the memory regions get moved around  by io_writex.
272  */
273 typedef struct SavedIOTLB {
274     hwaddr addr;
275     MemoryRegionSection *section;
276     hwaddr mr_offset;
277 } SavedIOTLB;
278 #endif
279 
280 struct KVMState;
281 struct kvm_run;
282 
283 struct hax_vcpu_state;
284 
285 #define TB_JMP_CACHE_BITS 12
286 #define TB_JMP_CACHE_SIZE (1 << TB_JMP_CACHE_BITS)
287 
288 /* work queue */
289 
290 /* The union type allows passing of 64 bit target pointers on 32 bit
291  * hosts in a single parameter
292  */
293 typedef union {
294     int           host_int;
295     unsigned long host_ulong;
296     void         *host_ptr;
297     vaddr         target_ptr;
298 } run_on_cpu_data;
299 
300 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
301 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
302 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
303 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
304 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
305 
306 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
307 
308 struct qemu_work_item;
309 
310 #define CPU_UNSET_NUMA_NODE_ID -1
311 #define CPU_TRACE_DSTATE_MAX_EVENTS 32
312 
313 /**
314  * CPUState:
315  * @cpu_index: CPU index (informative).
316  * @cluster_index: Identifies which cluster this CPU is in.
317  *   For boards which don't define clusters or for "loose" CPUs not assigned
318  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
319  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
320  *   QOM parent.
321  * @nr_cores: Number of cores within this CPU package.
322  * @nr_threads: Number of threads within this CPU.
323  * @running: #true if CPU is currently running (lockless).
324  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
325  * valid under cpu_list_lock.
326  * @created: Indicates whether the CPU thread has been successfully created.
327  * @interrupt_request: Indicates a pending interrupt request.
328  * @halted: Nonzero if the CPU is in suspended state.
329  * @stop: Indicates a pending stop request.
330  * @stopped: Indicates the CPU has been artificially stopped.
331  * @unplug: Indicates a pending CPU unplug request.
332  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
333  * @singlestep_enabled: Flags for single-stepping.
334  * @icount_extra: Instructions until next timer event.
335  * @can_do_io: Nonzero if memory-mapped IO is safe. Deterministic execution
336  * requires that IO only be performed on the last instruction of a TB
337  * so that interrupts take effect immediately.
338  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
339  *            AddressSpaces this CPU has)
340  * @num_ases: number of CPUAddressSpaces in @cpu_ases
341  * @as: Pointer to the first AddressSpace, for the convenience of targets which
342  *      only have a single AddressSpace
343  * @env_ptr: Pointer to subclass-specific CPUArchState field.
344  * @icount_decr_ptr: Pointer to IcountDecr field within subclass.
345  * @gdb_regs: Additional GDB registers.
346  * @gdb_num_regs: Number of total registers accessible to GDB.
347  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
348  * @next_cpu: Next CPU sharing TB cache.
349  * @opaque: User data.
350  * @mem_io_pc: Host Program Counter at which the memory was accessed.
351  * @kvm_fd: vCPU file descriptor for KVM.
352  * @work_mutex: Lock to prevent multiple access to @work_list.
353  * @work_list: List of pending asynchronous work.
354  * @trace_dstate_delayed: Delayed changes to trace_dstate (includes all changes
355  *                        to @trace_dstate).
356  * @trace_dstate: Dynamic tracing state of events for this vCPU (bitmask).
357  * @plugin_mask: Plugin event bitmap. Modified only via async work.
358  * @ignore_memory_transaction_failures: Cached copy of the MachineState
359  *    flag of the same name: allows the board to suppress calling of the
360  *    CPU do_transaction_failed hook function.
361  *
362  * State of one CPU core or thread.
363  */
364 struct CPUState {
365     /*< private >*/
366     DeviceState parent_obj;
367     /*< public >*/
368 
369     int nr_cores;
370     int nr_threads;
371 
372     struct QemuThread *thread;
373 #ifdef _WIN32
374     HANDLE hThread;
375 #endif
376     int thread_id;
377     bool running, has_waiter;
378     struct QemuCond *halt_cond;
379     bool thread_kicked;
380     bool created;
381     bool stop;
382     bool stopped;
383 
384     /* Should CPU start in powered-off state? */
385     bool start_powered_off;
386 
387     bool unplug;
388     bool crash_occurred;
389     bool exit_request;
390     bool in_exclusive_context;
391     uint32_t cflags_next_tb;
392     /* updates protected by BQL */
393     uint32_t interrupt_request;
394     int singlestep_enabled;
395     int64_t icount_budget;
396     int64_t icount_extra;
397     uint64_t random_seed;
398     sigjmp_buf jmp_env;
399 
400     QemuMutex work_mutex;
401     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
402 
403     CPUAddressSpace *cpu_ases;
404     int num_ases;
405     AddressSpace *as;
406     MemoryRegion *memory;
407 
408     void *env_ptr; /* CPUArchState */
409     IcountDecr *icount_decr_ptr;
410 
411     /* Accessed in parallel; all accesses must be atomic */
412     struct TranslationBlock *tb_jmp_cache[TB_JMP_CACHE_SIZE];
413 
414     struct GDBRegisterState *gdb_regs;
415     int gdb_num_regs;
416     int gdb_num_g_regs;
417     QTAILQ_ENTRY(CPUState) node;
418 
419     /* ice debug support */
420     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
421 
422     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
423     CPUWatchpoint *watchpoint_hit;
424 
425     void *opaque;
426 
427     /* In order to avoid passing too many arguments to the MMIO helpers,
428      * we store some rarely used information in the CPU context.
429      */
430     uintptr_t mem_io_pc;
431 
432     int kvm_fd;
433     struct KVMState *kvm_state;
434     struct kvm_run *kvm_run;
435 
436     /* Used for events with 'vcpu' and *without* the 'disabled' properties */
437     DECLARE_BITMAP(trace_dstate_delayed, CPU_TRACE_DSTATE_MAX_EVENTS);
438     DECLARE_BITMAP(trace_dstate, CPU_TRACE_DSTATE_MAX_EVENTS);
439 
440     DECLARE_BITMAP(plugin_mask, QEMU_PLUGIN_EV_MAX);
441 
442 #ifdef CONFIG_PLUGIN
443     GArray *plugin_mem_cbs;
444     /* saved iotlb data from io_writex */
445     SavedIOTLB saved_iotlb;
446 #endif
447 
448     /* TODO Move common fields from CPUArchState here. */
449     int cpu_index;
450     int cluster_index;
451     uint32_t halted;
452     uint32_t can_do_io;
453     int32_t exception_index;
454 
455     /* shared by kvm, hax and hvf */
456     bool vcpu_dirty;
457 
458     /* Used to keep track of an outstanding cpu throttle thread for migration
459      * autoconverge
460      */
461     bool throttle_thread_scheduled;
462 
463     bool ignore_memory_transaction_failures;
464 
465     struct hax_vcpu_state *hax_vcpu;
466 
467     int hvf_fd;
468 
469     /* track IOMMUs whose translations we've cached in the TCG TLB */
470     GArray *iommu_notifiers;
471 };
472 
473 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
474 extern CPUTailQ cpus;
475 
476 #define first_cpu        QTAILQ_FIRST_RCU(&cpus)
477 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
478 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus, node)
479 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
480     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus, node, next_cpu)
481 
482 extern __thread CPUState *current_cpu;
483 
484 static inline void cpu_tb_jmp_cache_clear(CPUState *cpu)
485 {
486     unsigned int i;
487 
488     for (i = 0; i < TB_JMP_CACHE_SIZE; i++) {
489         qatomic_set(&cpu->tb_jmp_cache[i], NULL);
490     }
491 }
492 
493 /**
494  * qemu_tcg_mttcg_enabled:
495  * Check whether we are running MultiThread TCG or not.
496  *
497  * Returns: %true if we are in MTTCG mode %false otherwise.
498  */
499 extern bool mttcg_enabled;
500 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
501 
502 /**
503  * cpu_paging_enabled:
504  * @cpu: The CPU whose state is to be inspected.
505  *
506  * Returns: %true if paging is enabled, %false otherwise.
507  */
508 bool cpu_paging_enabled(const CPUState *cpu);
509 
510 /**
511  * cpu_get_memory_mapping:
512  * @cpu: The CPU whose memory mappings are to be obtained.
513  * @list: Where to write the memory mappings to.
514  * @errp: Pointer for reporting an #Error.
515  */
516 void cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
517                             Error **errp);
518 
519 #if !defined(CONFIG_USER_ONLY)
520 
521 /**
522  * cpu_write_elf64_note:
523  * @f: pointer to a function that writes memory to a file
524  * @cpu: The CPU whose memory is to be dumped
525  * @cpuid: ID number of the CPU
526  * @opaque: pointer to the CPUState struct
527  */
528 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
529                          int cpuid, void *opaque);
530 
531 /**
532  * cpu_write_elf64_qemunote:
533  * @f: pointer to a function that writes memory to a file
534  * @cpu: The CPU whose memory is to be dumped
535  * @cpuid: ID number of the CPU
536  * @opaque: pointer to the CPUState struct
537  */
538 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
539                              void *opaque);
540 
541 /**
542  * cpu_write_elf32_note:
543  * @f: pointer to a function that writes memory to a file
544  * @cpu: The CPU whose memory is to be dumped
545  * @cpuid: ID number of the CPU
546  * @opaque: pointer to the CPUState struct
547  */
548 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
549                          int cpuid, void *opaque);
550 
551 /**
552  * cpu_write_elf32_qemunote:
553  * @f: pointer to a function that writes memory to a file
554  * @cpu: The CPU whose memory is to be dumped
555  * @cpuid: ID number of the CPU
556  * @opaque: pointer to the CPUState struct
557  */
558 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
559                              void *opaque);
560 
561 /**
562  * cpu_get_crash_info:
563  * @cpu: The CPU to get crash information for
564  *
565  * Gets the previously saved crash information.
566  * Caller is responsible for freeing the data.
567  */
568 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
569 
570 #endif /* !CONFIG_USER_ONLY */
571 
572 /**
573  * CPUDumpFlags:
574  * @CPU_DUMP_CODE:
575  * @CPU_DUMP_FPU: dump FPU register state, not just integer
576  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
577  */
578 enum CPUDumpFlags {
579     CPU_DUMP_CODE = 0x00010000,
580     CPU_DUMP_FPU  = 0x00020000,
581     CPU_DUMP_CCOP = 0x00040000,
582 };
583 
584 /**
585  * cpu_dump_state:
586  * @cpu: The CPU whose state is to be dumped.
587  * @f: If non-null, dump to this stream, else to current print sink.
588  *
589  * Dumps CPU state.
590  */
591 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
592 
593 /**
594  * cpu_dump_statistics:
595  * @cpu: The CPU whose state is to be dumped.
596  * @flags: Flags what to dump.
597  *
598  * Dump CPU statistics to the current monitor if we have one, else to
599  * stdout.
600  */
601 void cpu_dump_statistics(CPUState *cpu, int flags);
602 
603 #ifndef CONFIG_USER_ONLY
604 /**
605  * cpu_get_phys_page_attrs_debug:
606  * @cpu: The CPU to obtain the physical page address for.
607  * @addr: The virtual address.
608  * @attrs: Updated on return with the memory transaction attributes to use
609  *         for this access.
610  *
611  * Obtains the physical page corresponding to a virtual one, together
612  * with the corresponding memory transaction attributes to use for the access.
613  * Use it only for debugging because no protection checks are done.
614  *
615  * Returns: Corresponding physical page address or -1 if no page found.
616  */
617 static inline hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
618                                                    MemTxAttrs *attrs)
619 {
620     CPUClass *cc = CPU_GET_CLASS(cpu);
621 
622     if (cc->get_phys_page_attrs_debug) {
623         return cc->get_phys_page_attrs_debug(cpu, addr, attrs);
624     }
625     /* Fallback for CPUs which don't implement the _attrs_ hook */
626     *attrs = MEMTXATTRS_UNSPECIFIED;
627     return cc->get_phys_page_debug(cpu, addr);
628 }
629 
630 /**
631  * cpu_get_phys_page_debug:
632  * @cpu: The CPU to obtain the physical page address for.
633  * @addr: The virtual address.
634  *
635  * Obtains the physical page corresponding to a virtual one.
636  * Use it only for debugging because no protection checks are done.
637  *
638  * Returns: Corresponding physical page address or -1 if no page found.
639  */
640 static inline hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr)
641 {
642     MemTxAttrs attrs = {};
643 
644     return cpu_get_phys_page_attrs_debug(cpu, addr, &attrs);
645 }
646 
647 /** cpu_asidx_from_attrs:
648  * @cpu: CPU
649  * @attrs: memory transaction attributes
650  *
651  * Returns the address space index specifying the CPU AddressSpace
652  * to use for a memory access with the given transaction attributes.
653  */
654 static inline int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs)
655 {
656     CPUClass *cc = CPU_GET_CLASS(cpu);
657     int ret = 0;
658 
659     if (cc->asidx_from_attrs) {
660         ret = cc->asidx_from_attrs(cpu, attrs);
661         assert(ret < cpu->num_ases && ret >= 0);
662     }
663     return ret;
664 }
665 
666 #endif /* CONFIG_USER_ONLY */
667 
668 /**
669  * cpu_list_add:
670  * @cpu: The CPU to be added to the list of CPUs.
671  */
672 void cpu_list_add(CPUState *cpu);
673 
674 /**
675  * cpu_list_remove:
676  * @cpu: The CPU to be removed from the list of CPUs.
677  */
678 void cpu_list_remove(CPUState *cpu);
679 
680 /**
681  * cpu_reset:
682  * @cpu: The CPU whose state is to be reset.
683  */
684 void cpu_reset(CPUState *cpu);
685 
686 /**
687  * cpu_class_by_name:
688  * @typename: The CPU base type.
689  * @cpu_model: The model string without any parameters.
690  *
691  * Looks up a CPU #ObjectClass matching name @cpu_model.
692  *
693  * Returns: A #CPUClass or %NULL if not matching class is found.
694  */
695 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
696 
697 /**
698  * cpu_create:
699  * @typename: The CPU type.
700  *
701  * Instantiates a CPU and realizes the CPU.
702  *
703  * Returns: A #CPUState or %NULL if an error occurred.
704  */
705 CPUState *cpu_create(const char *typename);
706 
707 /**
708  * parse_cpu_option:
709  * @cpu_option: The -cpu option including optional parameters.
710  *
711  * processes optional parameters and registers them as global properties
712  *
713  * Returns: type of CPU to create or prints error and terminates process
714  *          if an error occurred.
715  */
716 const char *parse_cpu_option(const char *cpu_option);
717 
718 /**
719  * cpu_has_work:
720  * @cpu: The vCPU to check.
721  *
722  * Checks whether the CPU has work to do.
723  *
724  * Returns: %true if the CPU has work, %false otherwise.
725  */
726 static inline bool cpu_has_work(CPUState *cpu)
727 {
728     CPUClass *cc = CPU_GET_CLASS(cpu);
729 
730     g_assert(cc->has_work);
731     return cc->has_work(cpu);
732 }
733 
734 /**
735  * qemu_cpu_is_self:
736  * @cpu: The vCPU to check against.
737  *
738  * Checks whether the caller is executing on the vCPU thread.
739  *
740  * Returns: %true if called from @cpu's thread, %false otherwise.
741  */
742 bool qemu_cpu_is_self(CPUState *cpu);
743 
744 /**
745  * qemu_cpu_kick:
746  * @cpu: The vCPU to kick.
747  *
748  * Kicks @cpu's thread.
749  */
750 void qemu_cpu_kick(CPUState *cpu);
751 
752 /**
753  * cpu_is_stopped:
754  * @cpu: The CPU to check.
755  *
756  * Checks whether the CPU is stopped.
757  *
758  * Returns: %true if run state is not running or if artificially stopped;
759  * %false otherwise.
760  */
761 bool cpu_is_stopped(CPUState *cpu);
762 
763 /**
764  * do_run_on_cpu:
765  * @cpu: The vCPU to run on.
766  * @func: The function to be executed.
767  * @data: Data to pass to the function.
768  * @mutex: Mutex to release while waiting for @func to run.
769  *
770  * Used internally in the implementation of run_on_cpu.
771  */
772 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
773                    QemuMutex *mutex);
774 
775 /**
776  * run_on_cpu:
777  * @cpu: The vCPU to run on.
778  * @func: The function to be executed.
779  * @data: Data to pass to the function.
780  *
781  * Schedules the function @func for execution on the vCPU @cpu.
782  */
783 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
784 
785 /**
786  * async_run_on_cpu:
787  * @cpu: The vCPU to run on.
788  * @func: The function to be executed.
789  * @data: Data to pass to the function.
790  *
791  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
792  */
793 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
794 
795 /**
796  * async_safe_run_on_cpu:
797  * @cpu: The vCPU to run on.
798  * @func: The function to be executed.
799  * @data: Data to pass to the function.
800  *
801  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
802  * while all other vCPUs are sleeping.
803  *
804  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
805  * BQL.
806  */
807 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
808 
809 /**
810  * cpu_in_exclusive_context()
811  * @cpu: The vCPU to check
812  *
813  * Returns true if @cpu is an exclusive context, for example running
814  * something which has previously been queued via async_safe_run_on_cpu().
815  */
816 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
817 {
818     return cpu->in_exclusive_context;
819 }
820 
821 /**
822  * qemu_get_cpu:
823  * @index: The CPUState@cpu_index value of the CPU to obtain.
824  *
825  * Gets a CPU matching @index.
826  *
827  * Returns: The CPU or %NULL if there is no matching CPU.
828  */
829 CPUState *qemu_get_cpu(int index);
830 
831 /**
832  * cpu_exists:
833  * @id: Guest-exposed CPU ID to lookup.
834  *
835  * Search for CPU with specified ID.
836  *
837  * Returns: %true - CPU is found, %false - CPU isn't found.
838  */
839 bool cpu_exists(int64_t id);
840 
841 /**
842  * cpu_by_arch_id:
843  * @id: Guest-exposed CPU ID of the CPU to obtain.
844  *
845  * Get a CPU with matching @id.
846  *
847  * Returns: The CPU or %NULL if there is no matching CPU.
848  */
849 CPUState *cpu_by_arch_id(int64_t id);
850 
851 /**
852  * cpu_interrupt:
853  * @cpu: The CPU to set an interrupt on.
854  * @mask: The interrupts to set.
855  *
856  * Invokes the interrupt handler.
857  */
858 
859 void cpu_interrupt(CPUState *cpu, int mask);
860 
861 #ifdef NEED_CPU_H
862 
863 #ifdef CONFIG_SOFTMMU
864 static inline void cpu_unaligned_access(CPUState *cpu, vaddr addr,
865                                         MMUAccessType access_type,
866                                         int mmu_idx, uintptr_t retaddr)
867 {
868     CPUClass *cc = CPU_GET_CLASS(cpu);
869 
870     cc->do_unaligned_access(cpu, addr, access_type, mmu_idx, retaddr);
871 }
872 
873 static inline void cpu_transaction_failed(CPUState *cpu, hwaddr physaddr,
874                                           vaddr addr, unsigned size,
875                                           MMUAccessType access_type,
876                                           int mmu_idx, MemTxAttrs attrs,
877                                           MemTxResult response,
878                                           uintptr_t retaddr)
879 {
880     CPUClass *cc = CPU_GET_CLASS(cpu);
881 
882     if (!cpu->ignore_memory_transaction_failures && cc->do_transaction_failed) {
883         cc->do_transaction_failed(cpu, physaddr, addr, size, access_type,
884                                   mmu_idx, attrs, response, retaddr);
885     }
886 }
887 #endif
888 
889 #endif /* NEED_CPU_H */
890 
891 /**
892  * cpu_set_pc:
893  * @cpu: The CPU to set the program counter for.
894  * @addr: Program counter value.
895  *
896  * Sets the program counter for a CPU.
897  */
898 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
899 {
900     CPUClass *cc = CPU_GET_CLASS(cpu);
901 
902     cc->set_pc(cpu, addr);
903 }
904 
905 /**
906  * cpu_reset_interrupt:
907  * @cpu: The CPU to clear the interrupt on.
908  * @mask: The interrupt mask to clear.
909  *
910  * Resets interrupts on the vCPU @cpu.
911  */
912 void cpu_reset_interrupt(CPUState *cpu, int mask);
913 
914 /**
915  * cpu_exit:
916  * @cpu: The CPU to exit.
917  *
918  * Requests the CPU @cpu to exit execution.
919  */
920 void cpu_exit(CPUState *cpu);
921 
922 /**
923  * cpu_resume:
924  * @cpu: The CPU to resume.
925  *
926  * Resumes CPU, i.e. puts CPU into runnable state.
927  */
928 void cpu_resume(CPUState *cpu);
929 
930 /**
931  * cpu_remove_sync:
932  * @cpu: The CPU to remove.
933  *
934  * Requests the CPU to be removed and waits till it is removed.
935  */
936 void cpu_remove_sync(CPUState *cpu);
937 
938 /**
939  * process_queued_cpu_work() - process all items on CPU work queue
940  * @cpu: The CPU which work queue to process.
941  */
942 void process_queued_cpu_work(CPUState *cpu);
943 
944 /**
945  * cpu_exec_start:
946  * @cpu: The CPU for the current thread.
947  *
948  * Record that a CPU has started execution and can be interrupted with
949  * cpu_exit.
950  */
951 void cpu_exec_start(CPUState *cpu);
952 
953 /**
954  * cpu_exec_end:
955  * @cpu: The CPU for the current thread.
956  *
957  * Record that a CPU has stopped execution and exclusive sections
958  * can be executed without interrupting it.
959  */
960 void cpu_exec_end(CPUState *cpu);
961 
962 /**
963  * start_exclusive:
964  *
965  * Wait for a concurrent exclusive section to end, and then start
966  * a section of work that is run while other CPUs are not running
967  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
968  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
969  * during the exclusive section go to sleep until this CPU calls
970  * end_exclusive.
971  */
972 void start_exclusive(void);
973 
974 /**
975  * end_exclusive:
976  *
977  * Concludes an exclusive execution section started by start_exclusive.
978  */
979 void end_exclusive(void);
980 
981 /**
982  * qemu_init_vcpu:
983  * @cpu: The vCPU to initialize.
984  *
985  * Initializes a vCPU.
986  */
987 void qemu_init_vcpu(CPUState *cpu);
988 
989 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
990 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
991 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
992 
993 /**
994  * cpu_single_step:
995  * @cpu: CPU to the flags for.
996  * @enabled: Flags to enable.
997  *
998  * Enables or disables single-stepping for @cpu.
999  */
1000 void cpu_single_step(CPUState *cpu, int enabled);
1001 
1002 /* Breakpoint/watchpoint flags */
1003 #define BP_MEM_READ           0x01
1004 #define BP_MEM_WRITE          0x02
1005 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1006 #define BP_STOP_BEFORE_ACCESS 0x04
1007 /* 0x08 currently unused */
1008 #define BP_GDB                0x10
1009 #define BP_CPU                0x20
1010 #define BP_ANY                (BP_GDB | BP_CPU)
1011 #define BP_WATCHPOINT_HIT_READ 0x40
1012 #define BP_WATCHPOINT_HIT_WRITE 0x80
1013 #define BP_WATCHPOINT_HIT (BP_WATCHPOINT_HIT_READ | BP_WATCHPOINT_HIT_WRITE)
1014 
1015 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1016                           CPUBreakpoint **breakpoint);
1017 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1018 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1019 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1020 
1021 /* Return true if PC matches an installed breakpoint.  */
1022 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1023 {
1024     CPUBreakpoint *bp;
1025 
1026     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1027         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1028             if (bp->pc == pc && (bp->flags & mask)) {
1029                 return true;
1030             }
1031         }
1032     }
1033     return false;
1034 }
1035 
1036 #ifdef CONFIG_USER_ONLY
1037 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1038                                         int flags, CPUWatchpoint **watchpoint)
1039 {
1040     return -ENOSYS;
1041 }
1042 
1043 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1044                                         vaddr len, int flags)
1045 {
1046     return -ENOSYS;
1047 }
1048 
1049 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1050                                                 CPUWatchpoint *wp)
1051 {
1052 }
1053 
1054 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1055 {
1056 }
1057 
1058 static inline void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1059                                         MemTxAttrs atr, int fl, uintptr_t ra)
1060 {
1061 }
1062 
1063 static inline int cpu_watchpoint_address_matches(CPUState *cpu,
1064                                                  vaddr addr, vaddr len)
1065 {
1066     return 0;
1067 }
1068 #else
1069 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1070                           int flags, CPUWatchpoint **watchpoint);
1071 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1072                           vaddr len, int flags);
1073 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1074 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1075 
1076 /**
1077  * cpu_check_watchpoint:
1078  * @cpu: cpu context
1079  * @addr: guest virtual address
1080  * @len: access length
1081  * @attrs: memory access attributes
1082  * @flags: watchpoint access type
1083  * @ra: unwind return address
1084  *
1085  * Check for a watchpoint hit in [addr, addr+len) of the type
1086  * specified by @flags.  Exit via exception with a hit.
1087  */
1088 void cpu_check_watchpoint(CPUState *cpu, vaddr addr, vaddr len,
1089                           MemTxAttrs attrs, int flags, uintptr_t ra);
1090 
1091 /**
1092  * cpu_watchpoint_address_matches:
1093  * @cpu: cpu context
1094  * @addr: guest virtual address
1095  * @len: access length
1096  *
1097  * Return the watchpoint flags that apply to [addr, addr+len).
1098  * If no watchpoint is registered for the range, the result is 0.
1099  */
1100 int cpu_watchpoint_address_matches(CPUState *cpu, vaddr addr, vaddr len);
1101 #endif
1102 
1103 /**
1104  * cpu_get_address_space:
1105  * @cpu: CPU to get address space from
1106  * @asidx: index identifying which address space to get
1107  *
1108  * Return the requested address space of this CPU. @asidx
1109  * specifies which address space to read.
1110  */
1111 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1112 
1113 void QEMU_NORETURN cpu_abort(CPUState *cpu, const char *fmt, ...)
1114     GCC_FMT_ATTR(2, 3);
1115 void cpu_exec_initfn(CPUState *cpu);
1116 void cpu_exec_realizefn(CPUState *cpu, Error **errp);
1117 void cpu_exec_unrealizefn(CPUState *cpu);
1118 
1119 /**
1120  * target_words_bigendian:
1121  * Returns true if the (default) endianness of the target is big endian,
1122  * false otherwise. Note that in target-specific code, you can use
1123  * TARGET_WORDS_BIGENDIAN directly instead. On the other hand, common
1124  * code should normally never need to know about the endianness of the
1125  * target, so please do *not* use this function unless you know very well
1126  * what you are doing!
1127  */
1128 bool target_words_bigendian(void);
1129 
1130 #ifdef NEED_CPU_H
1131 
1132 #ifdef CONFIG_SOFTMMU
1133 extern const VMStateDescription vmstate_cpu_common;
1134 #else
1135 #define vmstate_cpu_common vmstate_dummy
1136 #endif
1137 
1138 #define VMSTATE_CPU() {                                                     \
1139     .name = "parent_obj",                                                   \
1140     .size = sizeof(CPUState),                                               \
1141     .vmsd = &vmstate_cpu_common,                                            \
1142     .flags = VMS_STRUCT,                                                    \
1143     .offset = 0,                                                            \
1144 }
1145 
1146 #endif /* NEED_CPU_H */
1147 
1148 #define UNASSIGNED_CPU_INDEX -1
1149 #define UNASSIGNED_CLUSTER_INDEX -1
1150 
1151 #endif
1152