xref: /qemu/include/hw/core/cpu.h (revision 4a1babe5)
1 /*
2  * QEMU CPU model
3  *
4  * Copyright (c) 2012 SUSE LINUX Products GmbH
5  *
6  * This program is free software; you can redistribute it and/or
7  * modify it under the terms of the GNU General Public License
8  * as published by the Free Software Foundation; either version 2
9  * of the License, or (at your option) any later version.
10  *
11  * This program is distributed in the hope that it will be useful,
12  * but WITHOUT ANY WARRANTY; without even the implied warranty of
13  * MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE.  See the
14  * GNU General Public License for more details.
15  *
16  * You should have received a copy of the GNU General Public License
17  * along with this program; if not, see
18  * <http://www.gnu.org/licenses/gpl-2.0.html>
19  */
20 #ifndef QEMU_CPU_H
21 #define QEMU_CPU_H
22 
23 #include "hw/qdev-core.h"
24 #include "disas/dis-asm.h"
25 #include "exec/hwaddr.h"
26 #include "exec/vaddr.h"
27 #include "exec/memattrs.h"
28 #include "exec/tlb-common.h"
29 #include "qapi/qapi-types-run-state.h"
30 #include "qemu/bitmap.h"
31 #include "qemu/rcu_queue.h"
32 #include "qemu/queue.h"
33 #include "qemu/thread.h"
34 #include "qom/object.h"
35 
36 typedef int (*WriteCoreDumpFunction)(const void *buf, size_t size,
37                                      void *opaque);
38 
39 /**
40  * SECTION:cpu
41  * @section_id: QEMU-cpu
42  * @title: CPU Class
43  * @short_description: Base class for all CPUs
44  */
45 
46 #define TYPE_CPU "cpu"
47 
48 /* Since this macro is used a lot in hot code paths and in conjunction with
49  * FooCPU *foo_env_get_cpu(), we deviate from usual QOM practice by using
50  * an unchecked cast.
51  */
52 #define CPU(obj) ((CPUState *)(obj))
53 
54 /*
55  * The class checkers bring in CPU_GET_CLASS() which is potentially
56  * expensive given the eventual call to
57  * object_class_dynamic_cast_assert(). Because of this the CPUState
58  * has a cached value for the class in cs->cc which is set up in
59  * cpu_exec_realizefn() for use in hot code paths.
60  */
61 typedef struct CPUClass CPUClass;
62 DECLARE_CLASS_CHECKERS(CPUClass, CPU,
63                        TYPE_CPU)
64 
65 /**
66  * OBJECT_DECLARE_CPU_TYPE:
67  * @CpuInstanceType: instance struct name
68  * @CpuClassType: class struct name
69  * @CPU_MODULE_OBJ_NAME: the CPU name in uppercase with underscore separators
70  *
71  * This macro is typically used in "cpu-qom.h" header file, and will:
72  *
73  *   - create the typedefs for the CPU object and class structs
74  *   - register the type for use with g_autoptr
75  *   - provide three standard type cast functions
76  *
77  * The object struct and class struct need to be declared manually.
78  */
79 #define OBJECT_DECLARE_CPU_TYPE(CpuInstanceType, CpuClassType, CPU_MODULE_OBJ_NAME) \
80     typedef struct ArchCPU CpuInstanceType; \
81     OBJECT_DECLARE_TYPE(ArchCPU, CpuClassType, CPU_MODULE_OBJ_NAME);
82 
83 typedef enum MMUAccessType {
84     MMU_DATA_LOAD  = 0,
85     MMU_DATA_STORE = 1,
86     MMU_INST_FETCH = 2
87 #define MMU_ACCESS_COUNT 3
88 } MMUAccessType;
89 
90 typedef struct CPUWatchpoint CPUWatchpoint;
91 
92 /* see accel-cpu.h */
93 struct AccelCPUClass;
94 
95 /* see sysemu-cpu-ops.h */
96 struct SysemuCPUOps;
97 
98 /**
99  * CPUClass:
100  * @class_by_name: Callback to map -cpu command line model name to an
101  *                 instantiatable CPU type.
102  * @parse_features: Callback to parse command line arguments.
103  * @reset_dump_flags: #CPUDumpFlags to use for reset logging.
104  * @has_work: Callback for checking if there is work to do.
105  * @mmu_index: Callback for choosing softmmu mmu index;
106  *       may be used internally by memory_rw_debug without TCG.
107  * @memory_rw_debug: Callback for GDB memory access.
108  * @dump_state: Callback for dumping state.
109  * @query_cpu_fast:
110  *       Fill in target specific information for the "query-cpus-fast"
111  *       QAPI call.
112  * @get_arch_id: Callback for getting architecture-dependent CPU ID.
113  * @set_pc: Callback for setting the Program Counter register. This
114  *       should have the semantics used by the target architecture when
115  *       setting the PC from a source such as an ELF file entry point;
116  *       for example on Arm it will also set the Thumb mode bit based
117  *       on the least significant bit of the new PC value.
118  *       If the target behaviour here is anything other than "set
119  *       the PC register to the value passed in" then the target must
120  *       also implement the synchronize_from_tb hook.
121  * @get_pc: Callback for getting the Program Counter register.
122  *       As above, with the semantics of the target architecture.
123  * @gdb_read_register: Callback for letting GDB read a register.
124  * @gdb_write_register: Callback for letting GDB write a register.
125  * @gdb_adjust_breakpoint: Callback for adjusting the address of a
126  *       breakpoint.  Used by AVR to handle a gdb mis-feature with
127  *       its Harvard architecture split code and data.
128  * @gdb_num_core_regs: Number of core registers accessible to GDB or 0 to infer
129  *                     from @gdb_core_xml_file.
130  * @gdb_core_xml_file: File name for core registers GDB XML description.
131  * @gdb_stop_before_watchpoint: Indicates whether GDB expects the CPU to stop
132  *           before the insn which triggers a watchpoint rather than after it.
133  * @gdb_arch_name: Optional callback that returns the architecture name known
134  * to GDB. The caller must free the returned string with g_free.
135  * @disas_set_info: Setup architecture specific components of disassembly info
136  * @adjust_watchpoint_address: Perform a target-specific adjustment to an
137  * address before attempting to match it against watchpoints.
138  * @deprecation_note: If this CPUClass is deprecated, this field provides
139  *                    related information.
140  *
141  * Represents a CPU family or model.
142  */
143 struct CPUClass {
144     /*< private >*/
145     DeviceClass parent_class;
146     /*< public >*/
147 
148     ObjectClass *(*class_by_name)(const char *cpu_model);
149     void (*parse_features)(const char *typename, char *str, Error **errp);
150 
151     bool (*has_work)(CPUState *cpu);
152     int (*mmu_index)(CPUState *cpu, bool ifetch);
153     int (*memory_rw_debug)(CPUState *cpu, vaddr addr,
154                            uint8_t *buf, int len, bool is_write);
155     void (*dump_state)(CPUState *cpu, FILE *, int flags);
156     void (*query_cpu_fast)(CPUState *cpu, CpuInfoFast *value);
157     int64_t (*get_arch_id)(CPUState *cpu);
158     void (*set_pc)(CPUState *cpu, vaddr value);
159     vaddr (*get_pc)(CPUState *cpu);
160     int (*gdb_read_register)(CPUState *cpu, GByteArray *buf, int reg);
161     int (*gdb_write_register)(CPUState *cpu, uint8_t *buf, int reg);
162     vaddr (*gdb_adjust_breakpoint)(CPUState *cpu, vaddr addr);
163 
164     const char *gdb_core_xml_file;
165     const gchar * (*gdb_arch_name)(CPUState *cpu);
166 
167     void (*disas_set_info)(CPUState *cpu, disassemble_info *info);
168 
169     const char *deprecation_note;
170     struct AccelCPUClass *accel_cpu;
171 
172     /* when system emulation is not available, this pointer is NULL */
173     const struct SysemuCPUOps *sysemu_ops;
174 
175     /* when TCG is not available, this pointer is NULL */
176     const TCGCPUOps *tcg_ops;
177 
178     /*
179      * if not NULL, this is called in order for the CPUClass to initialize
180      * class data that depends on the accelerator, see accel/accel-common.c.
181      */
182     void (*init_accel_cpu)(struct AccelCPUClass *accel_cpu, CPUClass *cc);
183 
184     /*
185      * Keep non-pointer data at the end to minimize holes.
186      */
187     int reset_dump_flags;
188     int gdb_num_core_regs;
189     bool gdb_stop_before_watchpoint;
190 };
191 
192 /*
193  * Fix the number of mmu modes to 16, which is also the maximum
194  * supported by the softmmu tlb api.
195  */
196 #define NB_MMU_MODES 16
197 
198 /* Use a fully associative victim tlb of 8 entries. */
199 #define CPU_VTLB_SIZE 8
200 
201 /*
202  * The full TLB entry, which is not accessed by generated TCG code,
203  * so the layout is not as critical as that of CPUTLBEntry. This is
204  * also why we don't want to combine the two structs.
205  */
206 typedef struct CPUTLBEntryFull {
207     /*
208      * @xlat_section contains:
209      *  - in the lower TARGET_PAGE_BITS, a physical section number
210      *  - with the lower TARGET_PAGE_BITS masked off, an offset which
211      *    must be added to the virtual address to obtain:
212      *     + the ram_addr_t of the target RAM (if the physical section
213      *       number is PHYS_SECTION_NOTDIRTY or PHYS_SECTION_ROM)
214      *     + the offset within the target MemoryRegion (otherwise)
215      */
216     hwaddr xlat_section;
217 
218     /*
219      * @phys_addr contains the physical address in the address space
220      * given by cpu_asidx_from_attrs(cpu, @attrs).
221      */
222     hwaddr phys_addr;
223 
224     /* @attrs contains the memory transaction attributes for the page. */
225     MemTxAttrs attrs;
226 
227     /* @prot contains the complete protections for the page. */
228     uint8_t prot;
229 
230     /* @lg_page_size contains the log2 of the page size. */
231     uint8_t lg_page_size;
232 
233     /* Additional tlb flags requested by tlb_fill. */
234     uint8_t tlb_fill_flags;
235 
236     /*
237      * Additional tlb flags for use by the slow path. If non-zero,
238      * the corresponding CPUTLBEntry comparator must have TLB_FORCE_SLOW.
239      */
240     uint8_t slow_flags[MMU_ACCESS_COUNT];
241 
242     /*
243      * Allow target-specific additions to this structure.
244      * This may be used to cache items from the guest cpu
245      * page tables for later use by the implementation.
246      */
247     union {
248         /*
249          * Cache the attrs and shareability fields from the page table entry.
250          *
251          * For ARMMMUIdx_Stage2*, pte_attrs is the S2 descriptor bits [5:2].
252          * Otherwise, pte_attrs is the same as the MAIR_EL1 8-bit format.
253          * For shareability and guarded, as in the SH and GP fields respectively
254          * of the VMSAv8-64 PTEs.
255          */
256         struct {
257             uint8_t pte_attrs;
258             uint8_t shareability;
259             bool guarded;
260         } arm;
261     } extra;
262 } CPUTLBEntryFull;
263 
264 /*
265  * Data elements that are per MMU mode, minus the bits accessed by
266  * the TCG fast path.
267  */
268 typedef struct CPUTLBDesc {
269     /*
270      * Describe a region covering all of the large pages allocated
271      * into the tlb.  When any page within this region is flushed,
272      * we must flush the entire tlb.  The region is matched if
273      * (addr & large_page_mask) == large_page_addr.
274      */
275     vaddr large_page_addr;
276     vaddr large_page_mask;
277     /* host time (in ns) at the beginning of the time window */
278     int64_t window_begin_ns;
279     /* maximum number of entries observed in the window */
280     size_t window_max_entries;
281     size_t n_used_entries;
282     /* The next index to use in the tlb victim table.  */
283     size_t vindex;
284     /* The tlb victim table, in two parts.  */
285     CPUTLBEntry vtable[CPU_VTLB_SIZE];
286     CPUTLBEntryFull vfulltlb[CPU_VTLB_SIZE];
287     CPUTLBEntryFull *fulltlb;
288 } CPUTLBDesc;
289 
290 /*
291  * Data elements that are shared between all MMU modes.
292  */
293 typedef struct CPUTLBCommon {
294     /* Serialize updates to f.table and d.vtable, and others as noted. */
295     QemuSpin lock;
296     /*
297      * Within dirty, for each bit N, modifications have been made to
298      * mmu_idx N since the last time that mmu_idx was flushed.
299      * Protected by tlb_c.lock.
300      */
301     uint16_t dirty;
302     /*
303      * Statistics.  These are not lock protected, but are read and
304      * written atomically.  This allows the monitor to print a snapshot
305      * of the stats without interfering with the cpu.
306      */
307     size_t full_flush_count;
308     size_t part_flush_count;
309     size_t elide_flush_count;
310 } CPUTLBCommon;
311 
312 /*
313  * The entire softmmu tlb, for all MMU modes.
314  * The meaning of each of the MMU modes is defined in the target code.
315  * Since this is placed within CPUNegativeOffsetState, the smallest
316  * negative offsets are at the end of the struct.
317  */
318 typedef struct CPUTLB {
319 #ifdef CONFIG_TCG
320     CPUTLBCommon c;
321     CPUTLBDesc d[NB_MMU_MODES];
322     CPUTLBDescFast f[NB_MMU_MODES];
323 #endif
324 } CPUTLB;
325 
326 /*
327  * Low 16 bits: number of cycles left, used only in icount mode.
328  * High 16 bits: Set to -1 to force TCG to stop executing linked TBs
329  * for this CPU and return to its top level loop (even in non-icount mode).
330  * This allows a single read-compare-cbranch-write sequence to test
331  * for both decrementer underflow and exceptions.
332  */
333 typedef union IcountDecr {
334     uint32_t u32;
335     struct {
336 #if HOST_BIG_ENDIAN
337         uint16_t high;
338         uint16_t low;
339 #else
340         uint16_t low;
341         uint16_t high;
342 #endif
343     } u16;
344 } IcountDecr;
345 
346 /*
347  * Elements of CPUState most efficiently accessed from CPUArchState,
348  * via small negative offsets.
349  */
350 typedef struct CPUNegativeOffsetState {
351     CPUTLB tlb;
352     IcountDecr icount_decr;
353     bool can_do_io;
354 } CPUNegativeOffsetState;
355 
356 typedef struct CPUBreakpoint {
357     vaddr pc;
358     int flags; /* BP_* */
359     QTAILQ_ENTRY(CPUBreakpoint) entry;
360 } CPUBreakpoint;
361 
362 struct CPUWatchpoint {
363     vaddr vaddr;
364     vaddr len;
365     vaddr hitaddr;
366     MemTxAttrs hitattrs;
367     int flags; /* BP_* */
368     QTAILQ_ENTRY(CPUWatchpoint) entry;
369 };
370 
371 struct KVMState;
372 struct kvm_run;
373 
374 /* work queue */
375 
376 /* The union type allows passing of 64 bit target pointers on 32 bit
377  * hosts in a single parameter
378  */
379 typedef union {
380     int           host_int;
381     unsigned long host_ulong;
382     void         *host_ptr;
383     vaddr         target_ptr;
384 } run_on_cpu_data;
385 
386 #define RUN_ON_CPU_HOST_PTR(p)    ((run_on_cpu_data){.host_ptr = (p)})
387 #define RUN_ON_CPU_HOST_INT(i)    ((run_on_cpu_data){.host_int = (i)})
388 #define RUN_ON_CPU_HOST_ULONG(ul) ((run_on_cpu_data){.host_ulong = (ul)})
389 #define RUN_ON_CPU_TARGET_PTR(v)  ((run_on_cpu_data){.target_ptr = (v)})
390 #define RUN_ON_CPU_NULL           RUN_ON_CPU_HOST_PTR(NULL)
391 
392 typedef void (*run_on_cpu_func)(CPUState *cpu, run_on_cpu_data data);
393 
394 struct qemu_work_item;
395 
396 #define CPU_UNSET_NUMA_NODE_ID -1
397 
398 /**
399  * CPUState:
400  * @cpu_index: CPU index (informative).
401  * @cluster_index: Identifies which cluster this CPU is in.
402  *   For boards which don't define clusters or for "loose" CPUs not assigned
403  *   to a cluster this will be UNASSIGNED_CLUSTER_INDEX; otherwise it will
404  *   be the same as the cluster-id property of the CPU object's TYPE_CPU_CLUSTER
405  *   QOM parent.
406  *   Under TCG this value is propagated to @tcg_cflags.
407  *   See TranslationBlock::TCG CF_CLUSTER_MASK.
408  * @tcg_cflags: Pre-computed cflags for this cpu.
409  * @nr_cores: Number of cores within this CPU package.
410  * @nr_threads: Number of threads within this CPU core.
411  * @running: #true if CPU is currently running (lockless).
412  * @has_waiter: #true if a CPU is currently waiting for the cpu_exec_end;
413  * valid under cpu_list_lock.
414  * @created: Indicates whether the CPU thread has been successfully created.
415  * @interrupt_request: Indicates a pending interrupt request.
416  * @halted: Nonzero if the CPU is in suspended state.
417  * @stop: Indicates a pending stop request.
418  * @stopped: Indicates the CPU has been artificially stopped.
419  * @unplug: Indicates a pending CPU unplug request.
420  * @crash_occurred: Indicates the OS reported a crash (panic) for this CPU
421  * @singlestep_enabled: Flags for single-stepping.
422  * @icount_extra: Instructions until next timer event.
423  * @neg.can_do_io: True if memory-mapped IO is allowed.
424  * @cpu_ases: Pointer to array of CPUAddressSpaces (which define the
425  *            AddressSpaces this CPU has)
426  * @num_ases: number of CPUAddressSpaces in @cpu_ases
427  * @as: Pointer to the first AddressSpace, for the convenience of targets which
428  *      only have a single AddressSpace
429  * @gdb_regs: Additional GDB registers.
430  * @gdb_num_regs: Number of total registers accessible to GDB.
431  * @gdb_num_g_regs: Number of registers in GDB 'g' packets.
432  * @node: QTAILQ of CPUs sharing TB cache.
433  * @opaque: User data.
434  * @mem_io_pc: Host Program Counter at which the memory was accessed.
435  * @accel: Pointer to accelerator specific state.
436  * @kvm_fd: vCPU file descriptor for KVM.
437  * @work_mutex: Lock to prevent multiple access to @work_list.
438  * @work_list: List of pending asynchronous work.
439  * @plugin_mem_cbs: active plugin memory callbacks
440  * @plugin_state: per-CPU plugin state
441  * @ignore_memory_transaction_failures: Cached copy of the MachineState
442  *    flag of the same name: allows the board to suppress calling of the
443  *    CPU do_transaction_failed hook function.
444  * @kvm_dirty_gfns: Points to the KVM dirty ring for this CPU when KVM dirty
445  *    ring is enabled.
446  * @kvm_fetch_index: Keeps the index that we last fetched from the per-vCPU
447  *    dirty ring structure.
448  *
449  * State of one CPU core or thread.
450  *
451  * Align, in order to match possible alignment required by CPUArchState,
452  * and eliminate a hole between CPUState and CPUArchState within ArchCPU.
453  */
454 struct CPUState {
455     /*< private >*/
456     DeviceState parent_obj;
457     /* cache to avoid expensive CPU_GET_CLASS */
458     CPUClass *cc;
459     /*< public >*/
460 
461     int nr_cores;
462     int nr_threads;
463 
464     struct QemuThread *thread;
465 #ifdef _WIN32
466     QemuSemaphore sem;
467 #endif
468     int thread_id;
469     bool running, has_waiter;
470     struct QemuCond *halt_cond;
471     bool thread_kicked;
472     bool created;
473     bool stop;
474     bool stopped;
475 
476     /* Should CPU start in powered-off state? */
477     bool start_powered_off;
478 
479     bool unplug;
480     bool crash_occurred;
481     bool exit_request;
482     int exclusive_context_count;
483     uint32_t cflags_next_tb;
484     /* updates protected by BQL */
485     uint32_t interrupt_request;
486     int singlestep_enabled;
487     int64_t icount_budget;
488     int64_t icount_extra;
489     uint64_t random_seed;
490     sigjmp_buf jmp_env;
491 
492     QemuMutex work_mutex;
493     QSIMPLEQ_HEAD(, qemu_work_item) work_list;
494 
495     CPUAddressSpace *cpu_ases;
496     int num_ases;
497     AddressSpace *as;
498     MemoryRegion *memory;
499 
500     CPUJumpCache *tb_jmp_cache;
501 
502     GArray *gdb_regs;
503     int gdb_num_regs;
504     int gdb_num_g_regs;
505     QTAILQ_ENTRY(CPUState) node;
506 
507     /* ice debug support */
508     QTAILQ_HEAD(, CPUBreakpoint) breakpoints;
509 
510     QTAILQ_HEAD(, CPUWatchpoint) watchpoints;
511     CPUWatchpoint *watchpoint_hit;
512 
513     void *opaque;
514 
515     /* In order to avoid passing too many arguments to the MMIO helpers,
516      * we store some rarely used information in the CPU context.
517      */
518     uintptr_t mem_io_pc;
519 
520     /* Only used in KVM */
521     int kvm_fd;
522     struct KVMState *kvm_state;
523     struct kvm_run *kvm_run;
524     struct kvm_dirty_gfn *kvm_dirty_gfns;
525     uint32_t kvm_fetch_index;
526     uint64_t dirty_pages;
527     int kvm_vcpu_stats_fd;
528 
529     /* Use by accel-block: CPU is executing an ioctl() */
530     QemuLockCnt in_ioctl_lock;
531 
532 #ifdef CONFIG_PLUGIN
533     /*
534      * The callback pointer stays in the main CPUState as it is
535      * accessed via TCG (see gen_empty_mem_helper).
536      */
537     GArray *plugin_mem_cbs;
538     CPUPluginState *plugin_state;
539 #endif
540 
541     /* TODO Move common fields from CPUArchState here. */
542     int cpu_index;
543     int cluster_index;
544     uint32_t tcg_cflags;
545     uint32_t halted;
546     int32_t exception_index;
547 
548     AccelCPUState *accel;
549     /* shared by kvm and hvf */
550     bool vcpu_dirty;
551 
552     /* Used to keep track of an outstanding cpu throttle thread for migration
553      * autoconverge
554      */
555     bool throttle_thread_scheduled;
556 
557     /*
558      * Sleep throttle_us_per_full microseconds once dirty ring is full
559      * if dirty page rate limit is enabled.
560      */
561     int64_t throttle_us_per_full;
562 
563     bool ignore_memory_transaction_failures;
564 
565     /* Used for user-only emulation of prctl(PR_SET_UNALIGN). */
566     bool prctl_unalign_sigbus;
567 
568     /* track IOMMUs whose translations we've cached in the TCG TLB */
569     GArray *iommu_notifiers;
570 
571     /*
572      * MUST BE LAST in order to minimize the displacement to CPUArchState.
573      */
574     char neg_align[-sizeof(CPUNegativeOffsetState) % 16] QEMU_ALIGNED(16);
575     CPUNegativeOffsetState neg;
576 };
577 
578 /* Validate placement of CPUNegativeOffsetState. */
579 QEMU_BUILD_BUG_ON(offsetof(CPUState, neg) !=
580                   sizeof(CPUState) - sizeof(CPUNegativeOffsetState));
581 
582 static inline CPUArchState *cpu_env(CPUState *cpu)
583 {
584     /* We validate that CPUArchState follows CPUState in cpu-all.h. */
585     return (CPUArchState *)(cpu + 1);
586 }
587 
588 typedef QTAILQ_HEAD(CPUTailQ, CPUState) CPUTailQ;
589 extern CPUTailQ cpus_queue;
590 
591 #define first_cpu        QTAILQ_FIRST_RCU(&cpus_queue)
592 #define CPU_NEXT(cpu)    QTAILQ_NEXT_RCU(cpu, node)
593 #define CPU_FOREACH(cpu) QTAILQ_FOREACH_RCU(cpu, &cpus_queue, node)
594 #define CPU_FOREACH_SAFE(cpu, next_cpu) \
595     QTAILQ_FOREACH_SAFE_RCU(cpu, &cpus_queue, node, next_cpu)
596 
597 extern __thread CPUState *current_cpu;
598 
599 /**
600  * qemu_tcg_mttcg_enabled:
601  * Check whether we are running MultiThread TCG or not.
602  *
603  * Returns: %true if we are in MTTCG mode %false otherwise.
604  */
605 extern bool mttcg_enabled;
606 #define qemu_tcg_mttcg_enabled() (mttcg_enabled)
607 
608 /**
609  * cpu_paging_enabled:
610  * @cpu: The CPU whose state is to be inspected.
611  *
612  * Returns: %true if paging is enabled, %false otherwise.
613  */
614 bool cpu_paging_enabled(const CPUState *cpu);
615 
616 /**
617  * cpu_get_memory_mapping:
618  * @cpu: The CPU whose memory mappings are to be obtained.
619  * @list: Where to write the memory mappings to.
620  * @errp: Pointer for reporting an #Error.
621  *
622  * Returns: %true on success, %false otherwise.
623  */
624 bool cpu_get_memory_mapping(CPUState *cpu, MemoryMappingList *list,
625                             Error **errp);
626 
627 #if !defined(CONFIG_USER_ONLY)
628 
629 /**
630  * cpu_write_elf64_note:
631  * @f: pointer to a function that writes memory to a file
632  * @cpu: The CPU whose memory is to be dumped
633  * @cpuid: ID number of the CPU
634  * @opaque: pointer to the CPUState struct
635  */
636 int cpu_write_elf64_note(WriteCoreDumpFunction f, CPUState *cpu,
637                          int cpuid, void *opaque);
638 
639 /**
640  * cpu_write_elf64_qemunote:
641  * @f: pointer to a function that writes memory to a file
642  * @cpu: The CPU whose memory is to be dumped
643  * @cpuid: ID number of the CPU
644  * @opaque: pointer to the CPUState struct
645  */
646 int cpu_write_elf64_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
647                              void *opaque);
648 
649 /**
650  * cpu_write_elf32_note:
651  * @f: pointer to a function that writes memory to a file
652  * @cpu: The CPU whose memory is to be dumped
653  * @cpuid: ID number of the CPU
654  * @opaque: pointer to the CPUState struct
655  */
656 int cpu_write_elf32_note(WriteCoreDumpFunction f, CPUState *cpu,
657                          int cpuid, void *opaque);
658 
659 /**
660  * cpu_write_elf32_qemunote:
661  * @f: pointer to a function that writes memory to a file
662  * @cpu: The CPU whose memory is to be dumped
663  * @cpuid: ID number of the CPU
664  * @opaque: pointer to the CPUState struct
665  */
666 int cpu_write_elf32_qemunote(WriteCoreDumpFunction f, CPUState *cpu,
667                              void *opaque);
668 
669 /**
670  * cpu_get_crash_info:
671  * @cpu: The CPU to get crash information for
672  *
673  * Gets the previously saved crash information.
674  * Caller is responsible for freeing the data.
675  */
676 GuestPanicInformation *cpu_get_crash_info(CPUState *cpu);
677 
678 #endif /* !CONFIG_USER_ONLY */
679 
680 /**
681  * CPUDumpFlags:
682  * @CPU_DUMP_CODE:
683  * @CPU_DUMP_FPU: dump FPU register state, not just integer
684  * @CPU_DUMP_CCOP: dump info about TCG QEMU's condition code optimization state
685  * @CPU_DUMP_VPU: dump VPU registers
686  */
687 enum CPUDumpFlags {
688     CPU_DUMP_CODE = 0x00010000,
689     CPU_DUMP_FPU  = 0x00020000,
690     CPU_DUMP_CCOP = 0x00040000,
691     CPU_DUMP_VPU  = 0x00080000,
692 };
693 
694 /**
695  * cpu_dump_state:
696  * @cpu: The CPU whose state is to be dumped.
697  * @f: If non-null, dump to this stream, else to current print sink.
698  *
699  * Dumps CPU state.
700  */
701 void cpu_dump_state(CPUState *cpu, FILE *f, int flags);
702 
703 #ifndef CONFIG_USER_ONLY
704 /**
705  * cpu_get_phys_page_attrs_debug:
706  * @cpu: The CPU to obtain the physical page address for.
707  * @addr: The virtual address.
708  * @attrs: Updated on return with the memory transaction attributes to use
709  *         for this access.
710  *
711  * Obtains the physical page corresponding to a virtual one, together
712  * with the corresponding memory transaction attributes to use for the access.
713  * Use it only for debugging because no protection checks are done.
714  *
715  * Returns: Corresponding physical page address or -1 if no page found.
716  */
717 hwaddr cpu_get_phys_page_attrs_debug(CPUState *cpu, vaddr addr,
718                                      MemTxAttrs *attrs);
719 
720 /**
721  * cpu_get_phys_page_debug:
722  * @cpu: The CPU to obtain the physical page address for.
723  * @addr: The virtual address.
724  *
725  * Obtains the physical page corresponding to a virtual one.
726  * Use it only for debugging because no protection checks are done.
727  *
728  * Returns: Corresponding physical page address or -1 if no page found.
729  */
730 hwaddr cpu_get_phys_page_debug(CPUState *cpu, vaddr addr);
731 
732 /** cpu_asidx_from_attrs:
733  * @cpu: CPU
734  * @attrs: memory transaction attributes
735  *
736  * Returns the address space index specifying the CPU AddressSpace
737  * to use for a memory access with the given transaction attributes.
738  */
739 int cpu_asidx_from_attrs(CPUState *cpu, MemTxAttrs attrs);
740 
741 /**
742  * cpu_virtio_is_big_endian:
743  * @cpu: CPU
744 
745  * Returns %true if a CPU which supports runtime configurable endianness
746  * is currently big-endian.
747  */
748 bool cpu_virtio_is_big_endian(CPUState *cpu);
749 
750 #endif /* CONFIG_USER_ONLY */
751 
752 /**
753  * cpu_list_add:
754  * @cpu: The CPU to be added to the list of CPUs.
755  */
756 void cpu_list_add(CPUState *cpu);
757 
758 /**
759  * cpu_list_remove:
760  * @cpu: The CPU to be removed from the list of CPUs.
761  */
762 void cpu_list_remove(CPUState *cpu);
763 
764 /**
765  * cpu_reset:
766  * @cpu: The CPU whose state is to be reset.
767  */
768 void cpu_reset(CPUState *cpu);
769 
770 /**
771  * cpu_class_by_name:
772  * @typename: The CPU base type.
773  * @cpu_model: The model string without any parameters.
774  *
775  * Looks up a concrete CPU #ObjectClass matching name @cpu_model.
776  *
777  * Returns: A concrete #CPUClass or %NULL if no matching class is found
778  *          or if the matching class is abstract.
779  */
780 ObjectClass *cpu_class_by_name(const char *typename, const char *cpu_model);
781 
782 /**
783  * cpu_model_from_type:
784  * @typename: The CPU type name
785  *
786  * Extract the CPU model name from the CPU type name. The
787  * CPU type name is either the combination of the CPU model
788  * name and suffix, or same to the CPU model name.
789  *
790  * Returns: CPU model name or NULL if the CPU class doesn't exist
791  *          The user should g_free() the string once no longer needed.
792  */
793 char *cpu_model_from_type(const char *typename);
794 
795 /**
796  * cpu_create:
797  * @typename: The CPU type.
798  *
799  * Instantiates a CPU and realizes the CPU.
800  *
801  * Returns: A #CPUState or %NULL if an error occurred.
802  */
803 CPUState *cpu_create(const char *typename);
804 
805 /**
806  * parse_cpu_option:
807  * @cpu_option: The -cpu option including optional parameters.
808  *
809  * processes optional parameters and registers them as global properties
810  *
811  * Returns: type of CPU to create or prints error and terminates process
812  *          if an error occurred.
813  */
814 const char *parse_cpu_option(const char *cpu_option);
815 
816 /**
817  * cpu_has_work:
818  * @cpu: The vCPU to check.
819  *
820  * Checks whether the CPU has work to do.
821  *
822  * Returns: %true if the CPU has work, %false otherwise.
823  */
824 static inline bool cpu_has_work(CPUState *cpu)
825 {
826     CPUClass *cc = CPU_GET_CLASS(cpu);
827 
828     g_assert(cc->has_work);
829     return cc->has_work(cpu);
830 }
831 
832 /**
833  * qemu_cpu_is_self:
834  * @cpu: The vCPU to check against.
835  *
836  * Checks whether the caller is executing on the vCPU thread.
837  *
838  * Returns: %true if called from @cpu's thread, %false otherwise.
839  */
840 bool qemu_cpu_is_self(CPUState *cpu);
841 
842 /**
843  * qemu_cpu_kick:
844  * @cpu: The vCPU to kick.
845  *
846  * Kicks @cpu's thread.
847  */
848 void qemu_cpu_kick(CPUState *cpu);
849 
850 /**
851  * cpu_is_stopped:
852  * @cpu: The CPU to check.
853  *
854  * Checks whether the CPU is stopped.
855  *
856  * Returns: %true if run state is not running or if artificially stopped;
857  * %false otherwise.
858  */
859 bool cpu_is_stopped(CPUState *cpu);
860 
861 /**
862  * do_run_on_cpu:
863  * @cpu: The vCPU to run on.
864  * @func: The function to be executed.
865  * @data: Data to pass to the function.
866  * @mutex: Mutex to release while waiting for @func to run.
867  *
868  * Used internally in the implementation of run_on_cpu.
869  */
870 void do_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data,
871                    QemuMutex *mutex);
872 
873 /**
874  * run_on_cpu:
875  * @cpu: The vCPU to run on.
876  * @func: The function to be executed.
877  * @data: Data to pass to the function.
878  *
879  * Schedules the function @func for execution on the vCPU @cpu.
880  */
881 void run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
882 
883 /**
884  * async_run_on_cpu:
885  * @cpu: The vCPU to run on.
886  * @func: The function to be executed.
887  * @data: Data to pass to the function.
888  *
889  * Schedules the function @func for execution on the vCPU @cpu asynchronously.
890  */
891 void async_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
892 
893 /**
894  * async_safe_run_on_cpu:
895  * @cpu: The vCPU to run on.
896  * @func: The function to be executed.
897  * @data: Data to pass to the function.
898  *
899  * Schedules the function @func for execution on the vCPU @cpu asynchronously,
900  * while all other vCPUs are sleeping.
901  *
902  * Unlike run_on_cpu and async_run_on_cpu, the function is run outside the
903  * BQL.
904  */
905 void async_safe_run_on_cpu(CPUState *cpu, run_on_cpu_func func, run_on_cpu_data data);
906 
907 /**
908  * cpu_in_exclusive_context()
909  * @cpu: The vCPU to check
910  *
911  * Returns true if @cpu is an exclusive context, for example running
912  * something which has previously been queued via async_safe_run_on_cpu().
913  */
914 static inline bool cpu_in_exclusive_context(const CPUState *cpu)
915 {
916     return cpu->exclusive_context_count;
917 }
918 
919 /**
920  * qemu_get_cpu:
921  * @index: The CPUState@cpu_index value of the CPU to obtain.
922  *
923  * Gets a CPU matching @index.
924  *
925  * Returns: The CPU or %NULL if there is no matching CPU.
926  */
927 CPUState *qemu_get_cpu(int index);
928 
929 /**
930  * cpu_exists:
931  * @id: Guest-exposed CPU ID to lookup.
932  *
933  * Search for CPU with specified ID.
934  *
935  * Returns: %true - CPU is found, %false - CPU isn't found.
936  */
937 bool cpu_exists(int64_t id);
938 
939 /**
940  * cpu_by_arch_id:
941  * @id: Guest-exposed CPU ID of the CPU to obtain.
942  *
943  * Get a CPU with matching @id.
944  *
945  * Returns: The CPU or %NULL if there is no matching CPU.
946  */
947 CPUState *cpu_by_arch_id(int64_t id);
948 
949 /**
950  * cpu_interrupt:
951  * @cpu: The CPU to set an interrupt on.
952  * @mask: The interrupts to set.
953  *
954  * Invokes the interrupt handler.
955  */
956 
957 void cpu_interrupt(CPUState *cpu, int mask);
958 
959 /**
960  * cpu_set_pc:
961  * @cpu: The CPU to set the program counter for.
962  * @addr: Program counter value.
963  *
964  * Sets the program counter for a CPU.
965  */
966 static inline void cpu_set_pc(CPUState *cpu, vaddr addr)
967 {
968     CPUClass *cc = CPU_GET_CLASS(cpu);
969 
970     cc->set_pc(cpu, addr);
971 }
972 
973 /**
974  * cpu_reset_interrupt:
975  * @cpu: The CPU to clear the interrupt on.
976  * @mask: The interrupt mask to clear.
977  *
978  * Resets interrupts on the vCPU @cpu.
979  */
980 void cpu_reset_interrupt(CPUState *cpu, int mask);
981 
982 /**
983  * cpu_exit:
984  * @cpu: The CPU to exit.
985  *
986  * Requests the CPU @cpu to exit execution.
987  */
988 void cpu_exit(CPUState *cpu);
989 
990 /**
991  * cpu_resume:
992  * @cpu: The CPU to resume.
993  *
994  * Resumes CPU, i.e. puts CPU into runnable state.
995  */
996 void cpu_resume(CPUState *cpu);
997 
998 /**
999  * cpu_remove_sync:
1000  * @cpu: The CPU to remove.
1001  *
1002  * Requests the CPU to be removed and waits till it is removed.
1003  */
1004 void cpu_remove_sync(CPUState *cpu);
1005 
1006 /**
1007  * process_queued_cpu_work() - process all items on CPU work queue
1008  * @cpu: The CPU which work queue to process.
1009  */
1010 void process_queued_cpu_work(CPUState *cpu);
1011 
1012 /**
1013  * cpu_exec_start:
1014  * @cpu: The CPU for the current thread.
1015  *
1016  * Record that a CPU has started execution and can be interrupted with
1017  * cpu_exit.
1018  */
1019 void cpu_exec_start(CPUState *cpu);
1020 
1021 /**
1022  * cpu_exec_end:
1023  * @cpu: The CPU for the current thread.
1024  *
1025  * Record that a CPU has stopped execution and exclusive sections
1026  * can be executed without interrupting it.
1027  */
1028 void cpu_exec_end(CPUState *cpu);
1029 
1030 /**
1031  * start_exclusive:
1032  *
1033  * Wait for a concurrent exclusive section to end, and then start
1034  * a section of work that is run while other CPUs are not running
1035  * between cpu_exec_start and cpu_exec_end.  CPUs that are running
1036  * cpu_exec are exited immediately.  CPUs that call cpu_exec_start
1037  * during the exclusive section go to sleep until this CPU calls
1038  * end_exclusive.
1039  */
1040 void start_exclusive(void);
1041 
1042 /**
1043  * end_exclusive:
1044  *
1045  * Concludes an exclusive execution section started by start_exclusive.
1046  */
1047 void end_exclusive(void);
1048 
1049 /**
1050  * qemu_init_vcpu:
1051  * @cpu: The vCPU to initialize.
1052  *
1053  * Initializes a vCPU.
1054  */
1055 void qemu_init_vcpu(CPUState *cpu);
1056 
1057 #define SSTEP_ENABLE  0x1  /* Enable simulated HW single stepping */
1058 #define SSTEP_NOIRQ   0x2  /* Do not use IRQ while single stepping */
1059 #define SSTEP_NOTIMER 0x4  /* Do not Timers while single stepping */
1060 
1061 /**
1062  * cpu_single_step:
1063  * @cpu: CPU to the flags for.
1064  * @enabled: Flags to enable.
1065  *
1066  * Enables or disables single-stepping for @cpu.
1067  */
1068 void cpu_single_step(CPUState *cpu, int enabled);
1069 
1070 /* Breakpoint/watchpoint flags */
1071 #define BP_MEM_READ           0x01
1072 #define BP_MEM_WRITE          0x02
1073 #define BP_MEM_ACCESS         (BP_MEM_READ | BP_MEM_WRITE)
1074 #define BP_STOP_BEFORE_ACCESS 0x04
1075 /* 0x08 currently unused */
1076 #define BP_GDB                0x10
1077 #define BP_CPU                0x20
1078 #define BP_ANY                (BP_GDB | BP_CPU)
1079 #define BP_HIT_SHIFT          6
1080 #define BP_WATCHPOINT_HIT_READ  (BP_MEM_READ << BP_HIT_SHIFT)
1081 #define BP_WATCHPOINT_HIT_WRITE (BP_MEM_WRITE << BP_HIT_SHIFT)
1082 #define BP_WATCHPOINT_HIT       (BP_MEM_ACCESS << BP_HIT_SHIFT)
1083 
1084 int cpu_breakpoint_insert(CPUState *cpu, vaddr pc, int flags,
1085                           CPUBreakpoint **breakpoint);
1086 int cpu_breakpoint_remove(CPUState *cpu, vaddr pc, int flags);
1087 void cpu_breakpoint_remove_by_ref(CPUState *cpu, CPUBreakpoint *breakpoint);
1088 void cpu_breakpoint_remove_all(CPUState *cpu, int mask);
1089 
1090 /* Return true if PC matches an installed breakpoint.  */
1091 static inline bool cpu_breakpoint_test(CPUState *cpu, vaddr pc, int mask)
1092 {
1093     CPUBreakpoint *bp;
1094 
1095     if (unlikely(!QTAILQ_EMPTY(&cpu->breakpoints))) {
1096         QTAILQ_FOREACH(bp, &cpu->breakpoints, entry) {
1097             if (bp->pc == pc && (bp->flags & mask)) {
1098                 return true;
1099             }
1100         }
1101     }
1102     return false;
1103 }
1104 
1105 #if defined(CONFIG_USER_ONLY)
1106 static inline int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1107                                         int flags, CPUWatchpoint **watchpoint)
1108 {
1109     return -ENOSYS;
1110 }
1111 
1112 static inline int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1113                                         vaddr len, int flags)
1114 {
1115     return -ENOSYS;
1116 }
1117 
1118 static inline void cpu_watchpoint_remove_by_ref(CPUState *cpu,
1119                                                 CPUWatchpoint *wp)
1120 {
1121 }
1122 
1123 static inline void cpu_watchpoint_remove_all(CPUState *cpu, int mask)
1124 {
1125 }
1126 #else
1127 int cpu_watchpoint_insert(CPUState *cpu, vaddr addr, vaddr len,
1128                           int flags, CPUWatchpoint **watchpoint);
1129 int cpu_watchpoint_remove(CPUState *cpu, vaddr addr,
1130                           vaddr len, int flags);
1131 void cpu_watchpoint_remove_by_ref(CPUState *cpu, CPUWatchpoint *watchpoint);
1132 void cpu_watchpoint_remove_all(CPUState *cpu, int mask);
1133 #endif
1134 
1135 /**
1136  * cpu_plugin_mem_cbs_enabled() - are plugin memory callbacks enabled?
1137  * @cs: CPUState pointer
1138  *
1139  * The memory callbacks are installed if a plugin has instrumented an
1140  * instruction for memory. This can be useful to know if you want to
1141  * force a slow path for a series of memory accesses.
1142  */
1143 static inline bool cpu_plugin_mem_cbs_enabled(const CPUState *cpu)
1144 {
1145 #ifdef CONFIG_PLUGIN
1146     return !!cpu->plugin_mem_cbs;
1147 #else
1148     return false;
1149 #endif
1150 }
1151 
1152 /**
1153  * cpu_get_address_space:
1154  * @cpu: CPU to get address space from
1155  * @asidx: index identifying which address space to get
1156  *
1157  * Return the requested address space of this CPU. @asidx
1158  * specifies which address space to read.
1159  */
1160 AddressSpace *cpu_get_address_space(CPUState *cpu, int asidx);
1161 
1162 G_NORETURN void cpu_abort(CPUState *cpu, const char *fmt, ...)
1163     G_GNUC_PRINTF(2, 3);
1164 
1165 /* $(top_srcdir)/cpu.c */
1166 void cpu_class_init_props(DeviceClass *dc);
1167 void cpu_exec_initfn(CPUState *cpu);
1168 bool cpu_exec_realizefn(CPUState *cpu, Error **errp);
1169 void cpu_exec_unrealizefn(CPUState *cpu);
1170 void cpu_exec_reset_hold(CPUState *cpu);
1171 
1172 /**
1173  * target_words_bigendian:
1174  * Returns true if the (default) endianness of the target is big endian,
1175  * false otherwise. Note that in target-specific code, you can use
1176  * TARGET_BIG_ENDIAN directly instead. On the other hand, common
1177  * code should normally never need to know about the endianness of the
1178  * target, so please do *not* use this function unless you know very well
1179  * what you are doing!
1180  */
1181 bool target_words_bigendian(void);
1182 
1183 const char *target_name(void);
1184 
1185 #ifdef NEED_CPU_H
1186 
1187 #ifndef CONFIG_USER_ONLY
1188 
1189 extern const VMStateDescription vmstate_cpu_common;
1190 
1191 #define VMSTATE_CPU() {                                                     \
1192     .name = "parent_obj",                                                   \
1193     .size = sizeof(CPUState),                                               \
1194     .vmsd = &vmstate_cpu_common,                                            \
1195     .flags = VMS_STRUCT,                                                    \
1196     .offset = 0,                                                            \
1197 }
1198 #endif /* !CONFIG_USER_ONLY */
1199 
1200 #endif /* NEED_CPU_H */
1201 
1202 #define UNASSIGNED_CPU_INDEX -1
1203 #define UNASSIGNED_CLUSTER_INDEX -1
1204 
1205 #endif
1206