xref: /qemu/include/qemu/atomic.h (revision 2e8f72ac)
1 /*
2  * Simple interface for atomic operations.
3  *
4  * Copyright (C) 2013 Red Hat, Inc.
5  *
6  * Author: Paolo Bonzini <pbonzini@redhat.com>
7  *
8  * This work is licensed under the terms of the GNU GPL, version 2 or later.
9  * See the COPYING file in the top-level directory.
10  *
11  * See docs/devel/atomics.txt for discussion about the guarantees each
12  * atomic primitive is meant to provide.
13  */
14 
15 #ifndef QEMU_ATOMIC_H
16 #define QEMU_ATOMIC_H
17 
18 /* Compiler barrier */
19 #define barrier()   ({ asm volatile("" ::: "memory"); (void)0; })
20 
21 /* The variable that receives the old value of an atomically-accessed
22  * variable must be non-qualified, because atomic builtins return values
23  * through a pointer-type argument as in __atomic_load(&var, &old, MODEL).
24  *
25  * This macro has to handle types smaller than int manually, because of
26  * implicit promotion.  int and larger types, as well as pointers, can be
27  * converted to a non-qualified type just by applying a binary operator.
28  */
29 #define typeof_strip_qual(expr)                                                    \
30   typeof(                                                                          \
31     __builtin_choose_expr(                                                         \
32       __builtin_types_compatible_p(typeof(expr), bool) ||                          \
33         __builtin_types_compatible_p(typeof(expr), const bool) ||                  \
34         __builtin_types_compatible_p(typeof(expr), volatile bool) ||               \
35         __builtin_types_compatible_p(typeof(expr), const volatile bool),           \
36         (bool)1,                                                                   \
37     __builtin_choose_expr(                                                         \
38       __builtin_types_compatible_p(typeof(expr), signed char) ||                   \
39         __builtin_types_compatible_p(typeof(expr), const signed char) ||           \
40         __builtin_types_compatible_p(typeof(expr), volatile signed char) ||        \
41         __builtin_types_compatible_p(typeof(expr), const volatile signed char),    \
42         (signed char)1,                                                            \
43     __builtin_choose_expr(                                                         \
44       __builtin_types_compatible_p(typeof(expr), unsigned char) ||                 \
45         __builtin_types_compatible_p(typeof(expr), const unsigned char) ||         \
46         __builtin_types_compatible_p(typeof(expr), volatile unsigned char) ||      \
47         __builtin_types_compatible_p(typeof(expr), const volatile unsigned char),  \
48         (unsigned char)1,                                                          \
49     __builtin_choose_expr(                                                         \
50       __builtin_types_compatible_p(typeof(expr), signed short) ||                  \
51         __builtin_types_compatible_p(typeof(expr), const signed short) ||          \
52         __builtin_types_compatible_p(typeof(expr), volatile signed short) ||       \
53         __builtin_types_compatible_p(typeof(expr), const volatile signed short),   \
54         (signed short)1,                                                           \
55     __builtin_choose_expr(                                                         \
56       __builtin_types_compatible_p(typeof(expr), unsigned short) ||                \
57         __builtin_types_compatible_p(typeof(expr), const unsigned short) ||        \
58         __builtin_types_compatible_p(typeof(expr), volatile unsigned short) ||     \
59         __builtin_types_compatible_p(typeof(expr), const volatile unsigned short), \
60         (unsigned short)1,                                                         \
61       (expr)+0))))))
62 
63 #ifdef __ATOMIC_RELAXED
64 /* For C11 atomic ops */
65 
66 /* Manual memory barriers
67  *
68  *__atomic_thread_fence does not include a compiler barrier; instead,
69  * the barrier is part of __atomic_load/__atomic_store's "volatile-like"
70  * semantics. If smp_wmb() is a no-op, absence of the barrier means that
71  * the compiler is free to reorder stores on each side of the barrier.
72  * Add one here, and similarly in smp_rmb() and smp_read_barrier_depends().
73  */
74 
75 #define smp_mb()                     ({ barrier(); __atomic_thread_fence(__ATOMIC_SEQ_CST); })
76 #define smp_mb_release()             ({ barrier(); __atomic_thread_fence(__ATOMIC_RELEASE); })
77 #define smp_mb_acquire()             ({ barrier(); __atomic_thread_fence(__ATOMIC_ACQUIRE); })
78 
79 /* Most compilers currently treat consume and acquire the same, but really
80  * no processors except Alpha need a barrier here.  Leave it in if
81  * using Thread Sanitizer to avoid warnings, otherwise optimize it away.
82  */
83 #if defined(__SANITIZE_THREAD__)
84 #define smp_read_barrier_depends()   ({ barrier(); __atomic_thread_fence(__ATOMIC_CONSUME); })
85 #elif defined(__alpha__)
86 #define smp_read_barrier_depends()   asm volatile("mb":::"memory")
87 #else
88 #define smp_read_barrier_depends()   barrier()
89 #endif
90 
91 /*
92  * A signal barrier forces all pending local memory ops to be observed before
93  * a SIGSEGV is delivered to the *same* thread.  In practice this is exactly
94  * the same as barrier(), but since we have the correct builtin, use it.
95  */
96 #define signal_barrier()    __atomic_signal_fence(__ATOMIC_SEQ_CST)
97 
98 /* Sanity check that the size of an atomic operation isn't "overly large".
99  * Despite the fact that e.g. i686 has 64-bit atomic operations, we do not
100  * want to use them because we ought not need them, and this lets us do a
101  * bit of sanity checking that other 32-bit hosts might build.
102  *
103  * That said, we have a problem on 64-bit ILP32 hosts in that in order to
104  * sync with TCG_OVERSIZED_GUEST, this must match TCG_TARGET_REG_BITS.
105  * We'd prefer not want to pull in everything else TCG related, so handle
106  * those few cases by hand.
107  *
108  * Note that x32 is fully detected with __x86_64__ + _ILP32, and that for
109  * Sparc we always force the use of sparcv9 in configure. MIPS n32 (ILP32) &
110  * n64 (LP64) ABIs are both detected using __mips64.
111  */
112 #if defined(__x86_64__) || defined(__sparc__) || defined(__mips64)
113 # define ATOMIC_REG_SIZE  8
114 #else
115 # define ATOMIC_REG_SIZE  sizeof(void *)
116 #endif
117 
118 /* Weak atomic operations prevent the compiler moving other
119  * loads/stores past the atomic operation load/store. However there is
120  * no explicit memory barrier for the processor.
121  *
122  * The C11 memory model says that variables that are accessed from
123  * different threads should at least be done with __ATOMIC_RELAXED
124  * primitives or the result is undefined. Generally this has little to
125  * no effect on the generated code but not using the atomic primitives
126  * will get flagged by sanitizers as a violation.
127  */
128 #define qatomic_read__nocheck(ptr) \
129     __atomic_load_n(ptr, __ATOMIC_RELAXED)
130 
131 #define qatomic_read(ptr)                              \
132     ({                                                 \
133     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
134     qatomic_read__nocheck(ptr);                        \
135     })
136 
137 #define qatomic_set__nocheck(ptr, i) \
138     __atomic_store_n(ptr, i, __ATOMIC_RELAXED)
139 
140 #define qatomic_set(ptr, i)  do {                      \
141     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
142     qatomic_set__nocheck(ptr, i);                      \
143 } while(0)
144 
145 /* See above: most compilers currently treat consume and acquire the
146  * same, but this slows down qatomic_rcu_read unnecessarily.
147  */
148 #ifdef __SANITIZE_THREAD__
149 #define qatomic_rcu_read__nocheck(ptr, valptr)           \
150     __atomic_load(ptr, valptr, __ATOMIC_CONSUME);
151 #else
152 #define qatomic_rcu_read__nocheck(ptr, valptr)           \
153     __atomic_load(ptr, valptr, __ATOMIC_RELAXED);        \
154     smp_read_barrier_depends();
155 #endif
156 
157 #define qatomic_rcu_read(ptr)                          \
158     ({                                                 \
159     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
160     typeof_strip_qual(*ptr) _val;                      \
161     qatomic_rcu_read__nocheck(ptr, &_val);             \
162     _val;                                              \
163     })
164 
165 #define qatomic_rcu_set(ptr, i) do {                   \
166     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE); \
167     __atomic_store_n(ptr, i, __ATOMIC_RELEASE);        \
168 } while(0)
169 
170 #define qatomic_load_acquire(ptr)                       \
171     ({                                                  \
172     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);  \
173     typeof_strip_qual(*ptr) _val;                       \
174     __atomic_load(ptr, &_val, __ATOMIC_ACQUIRE);        \
175     _val;                                               \
176     })
177 
178 #define qatomic_store_release(ptr, i)  do {             \
179     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);  \
180     __atomic_store_n(ptr, i, __ATOMIC_RELEASE);         \
181 } while(0)
182 
183 
184 /* All the remaining operations are fully sequentially consistent */
185 
186 #define qatomic_xchg__nocheck(ptr, i)    ({                 \
187     __atomic_exchange_n(ptr, (i), __ATOMIC_SEQ_CST);        \
188 })
189 
190 #define qatomic_xchg(ptr, i)    ({                          \
191     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);      \
192     qatomic_xchg__nocheck(ptr, i);                          \
193 })
194 
195 /* Returns the eventual value, failed or not */
196 #define qatomic_cmpxchg__nocheck(ptr, old, new)    ({                   \
197     typeof_strip_qual(*ptr) _old = (old);                               \
198     (void)__atomic_compare_exchange_n(ptr, &_old, new, false,           \
199                               __ATOMIC_SEQ_CST, __ATOMIC_SEQ_CST);      \
200     _old;                                                               \
201 })
202 
203 #define qatomic_cmpxchg(ptr, old, new)    ({                            \
204     QEMU_BUILD_BUG_ON(sizeof(*ptr) > ATOMIC_REG_SIZE);                  \
205     qatomic_cmpxchg__nocheck(ptr, old, new);                            \
206 })
207 
208 /* Provide shorter names for GCC atomic builtins, return old value */
209 #define qatomic_fetch_inc(ptr)  __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST)
210 #define qatomic_fetch_dec(ptr)  __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST)
211 
212 #define qatomic_fetch_add(ptr, n) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST)
213 #define qatomic_fetch_sub(ptr, n) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST)
214 #define qatomic_fetch_and(ptr, n) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST)
215 #define qatomic_fetch_or(ptr, n)  __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST)
216 #define qatomic_fetch_xor(ptr, n) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST)
217 
218 #define qatomic_inc_fetch(ptr)    __atomic_add_fetch(ptr, 1, __ATOMIC_SEQ_CST)
219 #define qatomic_dec_fetch(ptr)    __atomic_sub_fetch(ptr, 1, __ATOMIC_SEQ_CST)
220 #define qatomic_add_fetch(ptr, n) __atomic_add_fetch(ptr, n, __ATOMIC_SEQ_CST)
221 #define qatomic_sub_fetch(ptr, n) __atomic_sub_fetch(ptr, n, __ATOMIC_SEQ_CST)
222 #define qatomic_and_fetch(ptr, n) __atomic_and_fetch(ptr, n, __ATOMIC_SEQ_CST)
223 #define qatomic_or_fetch(ptr, n)  __atomic_or_fetch(ptr, n, __ATOMIC_SEQ_CST)
224 #define qatomic_xor_fetch(ptr, n) __atomic_xor_fetch(ptr, n, __ATOMIC_SEQ_CST)
225 
226 /* And even shorter names that return void.  */
227 #define qatomic_inc(ptr) \
228     ((void) __atomic_fetch_add(ptr, 1, __ATOMIC_SEQ_CST))
229 #define qatomic_dec(ptr) \
230     ((void) __atomic_fetch_sub(ptr, 1, __ATOMIC_SEQ_CST))
231 #define qatomic_add(ptr, n) \
232     ((void) __atomic_fetch_add(ptr, n, __ATOMIC_SEQ_CST))
233 #define qatomic_sub(ptr, n) \
234     ((void) __atomic_fetch_sub(ptr, n, __ATOMIC_SEQ_CST))
235 #define qatomic_and(ptr, n) \
236     ((void) __atomic_fetch_and(ptr, n, __ATOMIC_SEQ_CST))
237 #define qatomic_or(ptr, n) \
238     ((void) __atomic_fetch_or(ptr, n, __ATOMIC_SEQ_CST))
239 #define qatomic_xor(ptr, n) \
240     ((void) __atomic_fetch_xor(ptr, n, __ATOMIC_SEQ_CST))
241 
242 #else /* __ATOMIC_RELAXED */
243 
244 #ifdef __alpha__
245 #define smp_read_barrier_depends()   asm volatile("mb":::"memory")
246 #endif
247 
248 #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
249 
250 /*
251  * Because of the strongly ordered storage model, wmb() and rmb() are nops
252  * here (a compiler barrier only).  QEMU doesn't do accesses to write-combining
253  * qemu memory or non-temporal load/stores from C code.
254  */
255 #define smp_mb_release()   barrier()
256 #define smp_mb_acquire()   barrier()
257 
258 /*
259  * __sync_lock_test_and_set() is documented to be an acquire barrier only,
260  * but it is a full barrier at the hardware level.  Add a compiler barrier
261  * to make it a full barrier also at the compiler level.
262  */
263 #define qatomic_xchg(ptr, i)    (barrier(), __sync_lock_test_and_set(ptr, i))
264 
265 #elif defined(_ARCH_PPC)
266 
267 /*
268  * We use an eieio() for wmb() on powerpc.  This assumes we don't
269  * need to order cacheable and non-cacheable stores with respect to
270  * each other.
271  *
272  * smp_mb has the same problem as on x86 for not-very-new GCC
273  * (http://patchwork.ozlabs.org/patch/126184/, Nov 2011).
274  */
275 #define smp_wmb()          ({ asm volatile("eieio" ::: "memory"); (void)0; })
276 #if defined(__powerpc64__)
277 #define smp_mb_release()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
278 #define smp_mb_acquire()   ({ asm volatile("lwsync" ::: "memory"); (void)0; })
279 #else
280 #define smp_mb_release()   ({ asm volatile("sync" ::: "memory"); (void)0; })
281 #define smp_mb_acquire()   ({ asm volatile("sync" ::: "memory"); (void)0; })
282 #endif
283 #define smp_mb()           ({ asm volatile("sync" ::: "memory"); (void)0; })
284 
285 #endif /* _ARCH_PPC */
286 
287 /*
288  * For (host) platforms we don't have explicit barrier definitions
289  * for, we use the gcc __sync_synchronize() primitive to generate a
290  * full barrier.  This should be safe on all platforms, though it may
291  * be overkill for smp_mb_acquire() and smp_mb_release().
292  */
293 #ifndef smp_mb
294 #define smp_mb()           __sync_synchronize()
295 #endif
296 
297 #ifndef smp_mb_acquire
298 #define smp_mb_acquire()   __sync_synchronize()
299 #endif
300 
301 #ifndef smp_mb_release
302 #define smp_mb_release()   __sync_synchronize()
303 #endif
304 
305 #ifndef smp_read_barrier_depends
306 #define smp_read_barrier_depends()   barrier()
307 #endif
308 
309 #ifndef signal_barrier
310 #define signal_barrier()    barrier()
311 #endif
312 
313 /* These will only be atomic if the processor does the fetch or store
314  * in a single issue memory operation
315  */
316 #define qatomic_read__nocheck(p)   (*(__typeof__(*(p)) volatile*) (p))
317 #define qatomic_set__nocheck(p, i) ((*(__typeof__(*(p)) volatile*) (p)) = (i))
318 
319 #define qatomic_read(ptr)       qatomic_read__nocheck(ptr)
320 #define qatomic_set(ptr, i)     qatomic_set__nocheck(ptr,i)
321 
322 /**
323  * qatomic_rcu_read - reads a RCU-protected pointer to a local variable
324  * into a RCU read-side critical section. The pointer can later be safely
325  * dereferenced within the critical section.
326  *
327  * This ensures that the pointer copy is invariant thorough the whole critical
328  * section.
329  *
330  * Inserts memory barriers on architectures that require them (currently only
331  * Alpha) and documents which pointers are protected by RCU.
332  *
333  * qatomic_rcu_read also includes a compiler barrier to ensure that
334  * value-speculative optimizations (e.g. VSS: Value Speculation
335  * Scheduling) does not perform the data read before the pointer read
336  * by speculating the value of the pointer.
337  *
338  * Should match qatomic_rcu_set(), qatomic_xchg(), qatomic_cmpxchg().
339  */
340 #define qatomic_rcu_read(ptr)    ({               \
341     typeof(*ptr) _val = qatomic_read(ptr);        \
342     smp_read_barrier_depends();                   \
343     _val;                                         \
344 })
345 
346 /**
347  * qatomic_rcu_set - assigns (publicizes) a pointer to a new data structure
348  * meant to be read by RCU read-side critical sections.
349  *
350  * Documents which pointers will be dereferenced by RCU read-side critical
351  * sections and adds the required memory barriers on architectures requiring
352  * them. It also makes sure the compiler does not reorder code initializing the
353  * data structure before its publication.
354  *
355  * Should match qatomic_rcu_read().
356  */
357 #define qatomic_rcu_set(ptr, i)  do {             \
358     smp_wmb();                                    \
359     qatomic_set(ptr, i);                          \
360 } while (0)
361 
362 #define qatomic_load_acquire(ptr)    ({     \
363     typeof(*ptr) _val = qatomic_read(ptr);  \
364     smp_mb_acquire();                       \
365     _val;                                   \
366 })
367 
368 #define qatomic_store_release(ptr, i)  do { \
369     smp_mb_release();                       \
370     qatomic_set(ptr, i);                    \
371 } while (0)
372 
373 #ifndef qatomic_xchg
374 #if defined(__clang__)
375 #define qatomic_xchg(ptr, i)    __sync_swap(ptr, i)
376 #else
377 /* __sync_lock_test_and_set() is documented to be an acquire barrier only.  */
378 #define qatomic_xchg(ptr, i)    (smp_mb(), __sync_lock_test_and_set(ptr, i))
379 #endif
380 #endif
381 #define qatomic_xchg__nocheck  qatomic_xchg
382 
383 /* Provide shorter names for GCC atomic builtins.  */
384 #define qatomic_fetch_inc(ptr)  __sync_fetch_and_add(ptr, 1)
385 #define qatomic_fetch_dec(ptr)  __sync_fetch_and_add(ptr, -1)
386 
387 #define qatomic_fetch_add(ptr, n) __sync_fetch_and_add(ptr, n)
388 #define qatomic_fetch_sub(ptr, n) __sync_fetch_and_sub(ptr, n)
389 #define qatomic_fetch_and(ptr, n) __sync_fetch_and_and(ptr, n)
390 #define qatomic_fetch_or(ptr, n) __sync_fetch_and_or(ptr, n)
391 #define qatomic_fetch_xor(ptr, n) __sync_fetch_and_xor(ptr, n)
392 
393 #define qatomic_inc_fetch(ptr)  __sync_add_and_fetch(ptr, 1)
394 #define qatomic_dec_fetch(ptr)  __sync_add_and_fetch(ptr, -1)
395 #define qatomic_add_fetch(ptr, n) __sync_add_and_fetch(ptr, n)
396 #define qatomic_sub_fetch(ptr, n) __sync_sub_and_fetch(ptr, n)
397 #define qatomic_and_fetch(ptr, n) __sync_and_and_fetch(ptr, n)
398 #define qatomic_or_fetch(ptr, n) __sync_or_and_fetch(ptr, n)
399 #define qatomic_xor_fetch(ptr, n) __sync_xor_and_fetch(ptr, n)
400 
401 #define qatomic_cmpxchg(ptr, old, new) \
402     __sync_val_compare_and_swap(ptr, old, new)
403 #define qatomic_cmpxchg__nocheck(ptr, old, new)  qatomic_cmpxchg(ptr, old, new)
404 
405 /* And even shorter names that return void.  */
406 #define qatomic_inc(ptr)        ((void) __sync_fetch_and_add(ptr, 1))
407 #define qatomic_dec(ptr)        ((void) __sync_fetch_and_add(ptr, -1))
408 #define qatomic_add(ptr, n)     ((void) __sync_fetch_and_add(ptr, n))
409 #define qatomic_sub(ptr, n)     ((void) __sync_fetch_and_sub(ptr, n))
410 #define qatomic_and(ptr, n)     ((void) __sync_fetch_and_and(ptr, n))
411 #define qatomic_or(ptr, n)      ((void) __sync_fetch_and_or(ptr, n))
412 #define qatomic_xor(ptr, n)     ((void) __sync_fetch_and_xor(ptr, n))
413 
414 #endif /* __ATOMIC_RELAXED */
415 
416 #ifndef smp_wmb
417 #define smp_wmb()   smp_mb_release()
418 #endif
419 #ifndef smp_rmb
420 #define smp_rmb()   smp_mb_acquire()
421 #endif
422 
423 /* This is more efficient than a store plus a fence.  */
424 #if !defined(__SANITIZE_THREAD__)
425 #if defined(__i386__) || defined(__x86_64__) || defined(__s390x__)
426 #define qatomic_mb_set(ptr, i)  ((void)qatomic_xchg(ptr, i))
427 #endif
428 #endif
429 
430 /* qatomic_mb_read/set semantics map Java volatile variables. They are
431  * less expensive on some platforms (notably POWER) than fully
432  * sequentially consistent operations.
433  *
434  * As long as they are used as paired operations they are safe to
435  * use. See docs/devel/atomics.txt for more discussion.
436  */
437 
438 #ifndef qatomic_mb_read
439 #define qatomic_mb_read(ptr)                             \
440     qatomic_load_acquire(ptr)
441 #endif
442 
443 #ifndef qatomic_mb_set
444 #define qatomic_mb_set(ptr, i)  do {                    \
445     qatomic_store_release(ptr, i);                      \
446     smp_mb();                                           \
447 } while(0)
448 #endif
449 
450 #define qatomic_fetch_inc_nonzero(ptr) ({                               \
451     typeof_strip_qual(*ptr) _oldn = qatomic_read(ptr);                  \
452     while (_oldn && qatomic_cmpxchg(ptr, _oldn, _oldn + 1) != _oldn) {  \
453         _oldn = qatomic_read(ptr);                                      \
454     }                                                                   \
455     _oldn;                                                              \
456 })
457 
458 /* Abstractions to access atomically (i.e. "once") i64/u64 variables */
459 #ifdef CONFIG_ATOMIC64
460 static inline int64_t qatomic_read_i64(const int64_t *ptr)
461 {
462     /* use __nocheck because sizeof(void *) might be < sizeof(u64) */
463     return qatomic_read__nocheck(ptr);
464 }
465 
466 static inline uint64_t qatomic_read_u64(const uint64_t *ptr)
467 {
468     return qatomic_read__nocheck(ptr);
469 }
470 
471 static inline void qatomic_set_i64(int64_t *ptr, int64_t val)
472 {
473     qatomic_set__nocheck(ptr, val);
474 }
475 
476 static inline void qatomic_set_u64(uint64_t *ptr, uint64_t val)
477 {
478     qatomic_set__nocheck(ptr, val);
479 }
480 
481 static inline void qatomic64_init(void)
482 {
483 }
484 #else /* !CONFIG_ATOMIC64 */
485 int64_t  qatomic_read_i64(const int64_t *ptr);
486 uint64_t qatomic_read_u64(const uint64_t *ptr);
487 void qatomic_set_i64(int64_t *ptr, int64_t val);
488 void qatomic_set_u64(uint64_t *ptr, uint64_t val);
489 void qatomic64_init(void);
490 #endif /* !CONFIG_ATOMIC64 */
491 
492 #endif /* QEMU_ATOMIC_H */
493