xref: /qemu/include/qemu/bitops.h (revision 727385c4)
1 /*
2  * Bitops Module
3  *
4  * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
5  *
6  * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h
7  *
8  * This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
9  * See the COPYING.LIB file in the top-level directory.
10  */
11 
12 #ifndef BITOPS_H
13 #define BITOPS_H
14 
15 
16 #include "host-utils.h"
17 #include "atomic.h"
18 
19 #define BITS_PER_BYTE           CHAR_BIT
20 #define BITS_PER_LONG           (sizeof (unsigned long) * BITS_PER_BYTE)
21 
22 #define BIT(nr)                 (1UL << (nr))
23 #define BIT_ULL(nr)             (1ULL << (nr))
24 #define BIT_MASK(nr)            (1UL << ((nr) % BITS_PER_LONG))
25 #define BIT_WORD(nr)            ((nr) / BITS_PER_LONG)
26 #define BITS_TO_LONGS(nr)       DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
27 
28 #define MAKE_64BIT_MASK(shift, length) \
29     (((~0ULL) >> (64 - (length))) << (shift))
30 
31 /**
32  * set_bit - Set a bit in memory
33  * @nr: the bit to set
34  * @addr: the address to start counting from
35  */
36 static inline void set_bit(long nr, unsigned long *addr)
37 {
38     unsigned long mask = BIT_MASK(nr);
39     unsigned long *p = addr + BIT_WORD(nr);
40 
41     *p  |= mask;
42 }
43 
44 /**
45  * set_bit_atomic - Set a bit in memory atomically
46  * @nr: the bit to set
47  * @addr: the address to start counting from
48  */
49 static inline void set_bit_atomic(long nr, unsigned long *addr)
50 {
51     unsigned long mask = BIT_MASK(nr);
52     unsigned long *p = addr + BIT_WORD(nr);
53 
54     qatomic_or(p, mask);
55 }
56 
57 /**
58  * clear_bit - Clears a bit in memory
59  * @nr: Bit to clear
60  * @addr: Address to start counting from
61  */
62 static inline void clear_bit(long nr, unsigned long *addr)
63 {
64     unsigned long mask = BIT_MASK(nr);
65     unsigned long *p = addr + BIT_WORD(nr);
66 
67     *p &= ~mask;
68 }
69 
70 /**
71  * change_bit - Toggle a bit in memory
72  * @nr: Bit to change
73  * @addr: Address to start counting from
74  */
75 static inline void change_bit(long nr, unsigned long *addr)
76 {
77     unsigned long mask = BIT_MASK(nr);
78     unsigned long *p = addr + BIT_WORD(nr);
79 
80     *p ^= mask;
81 }
82 
83 /**
84  * test_and_set_bit - Set a bit and return its old value
85  * @nr: Bit to set
86  * @addr: Address to count from
87  */
88 static inline int test_and_set_bit(long nr, unsigned long *addr)
89 {
90     unsigned long mask = BIT_MASK(nr);
91     unsigned long *p = addr + BIT_WORD(nr);
92     unsigned long old = *p;
93 
94     *p = old | mask;
95     return (old & mask) != 0;
96 }
97 
98 /**
99  * test_and_clear_bit - Clear a bit and return its old value
100  * @nr: Bit to clear
101  * @addr: Address to count from
102  */
103 static inline int test_and_clear_bit(long nr, unsigned long *addr)
104 {
105     unsigned long mask = BIT_MASK(nr);
106     unsigned long *p = addr + BIT_WORD(nr);
107     unsigned long old = *p;
108 
109     *p = old & ~mask;
110     return (old & mask) != 0;
111 }
112 
113 /**
114  * test_and_change_bit - Change a bit and return its old value
115  * @nr: Bit to change
116  * @addr: Address to count from
117  */
118 static inline int test_and_change_bit(long nr, unsigned long *addr)
119 {
120     unsigned long mask = BIT_MASK(nr);
121     unsigned long *p = addr + BIT_WORD(nr);
122     unsigned long old = *p;
123 
124     *p = old ^ mask;
125     return (old & mask) != 0;
126 }
127 
128 /**
129  * test_bit - Determine whether a bit is set
130  * @nr: bit number to test
131  * @addr: Address to start counting from
132  */
133 static inline int test_bit(long nr, const unsigned long *addr)
134 {
135     return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
136 }
137 
138 /**
139  * find_last_bit - find the last set bit in a memory region
140  * @addr: The address to start the search at
141  * @size: The maximum size to search
142  *
143  * Returns the bit number of the last set bit,
144  * or @size if there is no set bit in the bitmap.
145  */
146 unsigned long find_last_bit(const unsigned long *addr,
147                             unsigned long size);
148 
149 /**
150  * find_next_bit - find the next set bit in a memory region
151  * @addr: The address to base the search on
152  * @offset: The bitnumber to start searching at
153  * @size: The bitmap size in bits
154  *
155  * Returns the bit number of the next set bit,
156  * or @size if there are no further set bits in the bitmap.
157  */
158 unsigned long find_next_bit(const unsigned long *addr,
159                             unsigned long size,
160                             unsigned long offset);
161 
162 /**
163  * find_next_zero_bit - find the next cleared bit in a memory region
164  * @addr: The address to base the search on
165  * @offset: The bitnumber to start searching at
166  * @size: The bitmap size in bits
167  *
168  * Returns the bit number of the next cleared bit,
169  * or @size if there are no further clear bits in the bitmap.
170  */
171 
172 unsigned long find_next_zero_bit(const unsigned long *addr,
173                                  unsigned long size,
174                                  unsigned long offset);
175 
176 /**
177  * find_first_bit - find the first set bit in a memory region
178  * @addr: The address to start the search at
179  * @size: The maximum size to search
180  *
181  * Returns the bit number of the first set bit,
182  * or @size if there is no set bit in the bitmap.
183  */
184 static inline unsigned long find_first_bit(const unsigned long *addr,
185                                            unsigned long size)
186 {
187     unsigned long result, tmp;
188 
189     for (result = 0; result < size; result += BITS_PER_LONG) {
190         tmp = *addr++;
191         if (tmp) {
192             result += ctzl(tmp);
193             return result < size ? result : size;
194         }
195     }
196     /* Not found */
197     return size;
198 }
199 
200 /**
201  * find_first_zero_bit - find the first cleared bit in a memory region
202  * @addr: The address to start the search at
203  * @size: The maximum size to search
204  *
205  * Returns the bit number of the first cleared bit,
206  * or @size if there is no clear bit in the bitmap.
207  */
208 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
209                                                 unsigned long size)
210 {
211     return find_next_zero_bit(addr, size, 0);
212 }
213 
214 /**
215  * rol8 - rotate an 8-bit value left
216  * @word: value to rotate
217  * @shift: bits to roll
218  */
219 static inline uint8_t rol8(uint8_t word, unsigned int shift)
220 {
221     return (word << shift) | (word >> ((8 - shift) & 7));
222 }
223 
224 /**
225  * ror8 - rotate an 8-bit value right
226  * @word: value to rotate
227  * @shift: bits to roll
228  */
229 static inline uint8_t ror8(uint8_t word, unsigned int shift)
230 {
231     return (word >> shift) | (word << ((8 - shift) & 7));
232 }
233 
234 /**
235  * rol16 - rotate a 16-bit value left
236  * @word: value to rotate
237  * @shift: bits to roll
238  */
239 static inline uint16_t rol16(uint16_t word, unsigned int shift)
240 {
241     return (word << shift) | (word >> ((16 - shift) & 15));
242 }
243 
244 /**
245  * ror16 - rotate a 16-bit value right
246  * @word: value to rotate
247  * @shift: bits to roll
248  */
249 static inline uint16_t ror16(uint16_t word, unsigned int shift)
250 {
251     return (word >> shift) | (word << ((16 - shift) & 15));
252 }
253 
254 /**
255  * rol32 - rotate a 32-bit value left
256  * @word: value to rotate
257  * @shift: bits to roll
258  */
259 static inline uint32_t rol32(uint32_t word, unsigned int shift)
260 {
261     return (word << shift) | (word >> ((32 - shift) & 31));
262 }
263 
264 /**
265  * ror32 - rotate a 32-bit value right
266  * @word: value to rotate
267  * @shift: bits to roll
268  */
269 static inline uint32_t ror32(uint32_t word, unsigned int shift)
270 {
271     return (word >> shift) | (word << ((32 - shift) & 31));
272 }
273 
274 /**
275  * rol64 - rotate a 64-bit value left
276  * @word: value to rotate
277  * @shift: bits to roll
278  */
279 static inline uint64_t rol64(uint64_t word, unsigned int shift)
280 {
281     return (word << shift) | (word >> ((64 - shift) & 63));
282 }
283 
284 /**
285  * ror64 - rotate a 64-bit value right
286  * @word: value to rotate
287  * @shift: bits to roll
288  */
289 static inline uint64_t ror64(uint64_t word, unsigned int shift)
290 {
291     return (word >> shift) | (word << ((64 - shift) & 63));
292 }
293 
294 /**
295  * hswap32 - swap 16-bit halfwords within a 32-bit value
296  * @h: value to swap
297  */
298 static inline uint32_t hswap32(uint32_t h)
299 {
300     return rol32(h, 16);
301 }
302 
303 /**
304  * hswap64 - swap 16-bit halfwords within a 64-bit value
305  * @h: value to swap
306  */
307 static inline uint64_t hswap64(uint64_t h)
308 {
309     uint64_t m = 0x0000ffff0000ffffull;
310     h = rol64(h, 32);
311     return ((h & m) << 16) | ((h >> 16) & m);
312 }
313 
314 /**
315  * wswap64 - swap 32-bit words within a 64-bit value
316  * @h: value to swap
317  */
318 static inline uint64_t wswap64(uint64_t h)
319 {
320     return rol64(h, 32);
321 }
322 
323 /**
324  * extract32:
325  * @value: the value to extract the bit field from
326  * @start: the lowest bit in the bit field (numbered from 0)
327  * @length: the length of the bit field
328  *
329  * Extract from the 32 bit input @value the bit field specified by the
330  * @start and @length parameters, and return it. The bit field must
331  * lie entirely within the 32 bit word. It is valid to request that
332  * all 32 bits are returned (ie @length 32 and @start 0).
333  *
334  * Returns: the value of the bit field extracted from the input value.
335  */
336 static inline uint32_t extract32(uint32_t value, int start, int length)
337 {
338     assert(start >= 0 && length > 0 && length <= 32 - start);
339     return (value >> start) & (~0U >> (32 - length));
340 }
341 
342 /**
343  * extract8:
344  * @value: the value to extract the bit field from
345  * @start: the lowest bit in the bit field (numbered from 0)
346  * @length: the length of the bit field
347  *
348  * Extract from the 8 bit input @value the bit field specified by the
349  * @start and @length parameters, and return it. The bit field must
350  * lie entirely within the 8 bit word. It is valid to request that
351  * all 8 bits are returned (ie @length 8 and @start 0).
352  *
353  * Returns: the value of the bit field extracted from the input value.
354  */
355 static inline uint8_t extract8(uint8_t value, int start, int length)
356 {
357     assert(start >= 0 && length > 0 && length <= 8 - start);
358     return extract32(value, start, length);
359 }
360 
361 /**
362  * extract16:
363  * @value: the value to extract the bit field from
364  * @start: the lowest bit in the bit field (numbered from 0)
365  * @length: the length of the bit field
366  *
367  * Extract from the 16 bit input @value the bit field specified by the
368  * @start and @length parameters, and return it. The bit field must
369  * lie entirely within the 16 bit word. It is valid to request that
370  * all 16 bits are returned (ie @length 16 and @start 0).
371  *
372  * Returns: the value of the bit field extracted from the input value.
373  */
374 static inline uint16_t extract16(uint16_t value, int start, int length)
375 {
376     assert(start >= 0 && length > 0 && length <= 16 - start);
377     return extract32(value, start, length);
378 }
379 
380 /**
381  * extract64:
382  * @value: the value to extract the bit field from
383  * @start: the lowest bit in the bit field (numbered from 0)
384  * @length: the length of the bit field
385  *
386  * Extract from the 64 bit input @value the bit field specified by the
387  * @start and @length parameters, and return it. The bit field must
388  * lie entirely within the 64 bit word. It is valid to request that
389  * all 64 bits are returned (ie @length 64 and @start 0).
390  *
391  * Returns: the value of the bit field extracted from the input value.
392  */
393 static inline uint64_t extract64(uint64_t value, int start, int length)
394 {
395     assert(start >= 0 && length > 0 && length <= 64 - start);
396     return (value >> start) & (~0ULL >> (64 - length));
397 }
398 
399 /**
400  * sextract32:
401  * @value: the value to extract the bit field from
402  * @start: the lowest bit in the bit field (numbered from 0)
403  * @length: the length of the bit field
404  *
405  * Extract from the 32 bit input @value the bit field specified by the
406  * @start and @length parameters, and return it, sign extended to
407  * an int32_t (ie with the most significant bit of the field propagated
408  * to all the upper bits of the return value). The bit field must lie
409  * entirely within the 32 bit word. It is valid to request that
410  * all 32 bits are returned (ie @length 32 and @start 0).
411  *
412  * Returns: the sign extended value of the bit field extracted from the
413  * input value.
414  */
415 static inline int32_t sextract32(uint32_t value, int start, int length)
416 {
417     assert(start >= 0 && length > 0 && length <= 32 - start);
418     /* Note that this implementation relies on right shift of signed
419      * integers being an arithmetic shift.
420      */
421     return ((int32_t)(value << (32 - length - start))) >> (32 - length);
422 }
423 
424 /**
425  * sextract64:
426  * @value: the value to extract the bit field from
427  * @start: the lowest bit in the bit field (numbered from 0)
428  * @length: the length of the bit field
429  *
430  * Extract from the 64 bit input @value the bit field specified by the
431  * @start and @length parameters, and return it, sign extended to
432  * an int64_t (ie with the most significant bit of the field propagated
433  * to all the upper bits of the return value). The bit field must lie
434  * entirely within the 64 bit word. It is valid to request that
435  * all 64 bits are returned (ie @length 64 and @start 0).
436  *
437  * Returns: the sign extended value of the bit field extracted from the
438  * input value.
439  */
440 static inline int64_t sextract64(uint64_t value, int start, int length)
441 {
442     assert(start >= 0 && length > 0 && length <= 64 - start);
443     /* Note that this implementation relies on right shift of signed
444      * integers being an arithmetic shift.
445      */
446     return ((int64_t)(value << (64 - length - start))) >> (64 - length);
447 }
448 
449 /**
450  * deposit32:
451  * @value: initial value to insert bit field into
452  * @start: the lowest bit in the bit field (numbered from 0)
453  * @length: the length of the bit field
454  * @fieldval: the value to insert into the bit field
455  *
456  * Deposit @fieldval into the 32 bit @value at the bit field specified
457  * by the @start and @length parameters, and return the modified
458  * @value. Bits of @value outside the bit field are not modified.
459  * Bits of @fieldval above the least significant @length bits are
460  * ignored. The bit field must lie entirely within the 32 bit word.
461  * It is valid to request that all 32 bits are modified (ie @length
462  * 32 and @start 0).
463  *
464  * Returns: the modified @value.
465  */
466 static inline uint32_t deposit32(uint32_t value, int start, int length,
467                                  uint32_t fieldval)
468 {
469     uint32_t mask;
470     assert(start >= 0 && length > 0 && length <= 32 - start);
471     mask = (~0U >> (32 - length)) << start;
472     return (value & ~mask) | ((fieldval << start) & mask);
473 }
474 
475 /**
476  * deposit64:
477  * @value: initial value to insert bit field into
478  * @start: the lowest bit in the bit field (numbered from 0)
479  * @length: the length of the bit field
480  * @fieldval: the value to insert into the bit field
481  *
482  * Deposit @fieldval into the 64 bit @value at the bit field specified
483  * by the @start and @length parameters, and return the modified
484  * @value. Bits of @value outside the bit field are not modified.
485  * Bits of @fieldval above the least significant @length bits are
486  * ignored. The bit field must lie entirely within the 64 bit word.
487  * It is valid to request that all 64 bits are modified (ie @length
488  * 64 and @start 0).
489  *
490  * Returns: the modified @value.
491  */
492 static inline uint64_t deposit64(uint64_t value, int start, int length,
493                                  uint64_t fieldval)
494 {
495     uint64_t mask;
496     assert(start >= 0 && length > 0 && length <= 64 - start);
497     mask = (~0ULL >> (64 - length)) << start;
498     return (value & ~mask) | ((fieldval << start) & mask);
499 }
500 
501 /**
502  * half_shuffle32:
503  * @x: 32-bit value (of which only the bottom 16 bits are of interest)
504  *
505  * Given an input value::
506  *
507  *   xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP
508  *
509  * return the value where the bottom 16 bits are spread out into
510  * the odd bits in the word, and the even bits are zeroed::
511  *
512  *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
513  *
514  * Any bits set in the top half of the input are ignored.
515  *
516  * Returns: the shuffled bits.
517  */
518 static inline uint32_t half_shuffle32(uint32_t x)
519 {
520     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
521      * It ignores any bits set in the top half of the input.
522      */
523     x = ((x & 0xFF00) << 8) | (x & 0x00FF);
524     x = ((x << 4) | x) & 0x0F0F0F0F;
525     x = ((x << 2) | x) & 0x33333333;
526     x = ((x << 1) | x) & 0x55555555;
527     return x;
528 }
529 
530 /**
531  * half_shuffle64:
532  * @x: 64-bit value (of which only the bottom 32 bits are of interest)
533  *
534  * Given an input value::
535  *
536  *   xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
537  *
538  * return the value where the bottom 32 bits are spread out into
539  * the odd bits in the word, and the even bits are zeroed::
540  *
541  *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f
542  *
543  * Any bits set in the top half of the input are ignored.
544  *
545  * Returns: the shuffled bits.
546  */
547 static inline uint64_t half_shuffle64(uint64_t x)
548 {
549     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
550      * It ignores any bits set in the top half of the input.
551      */
552     x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF);
553     x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL;
554     x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL;
555     x = ((x << 2) | x) & 0x3333333333333333ULL;
556     x = ((x << 1) | x) & 0x5555555555555555ULL;
557     return x;
558 }
559 
560 /**
561  * half_unshuffle32:
562  * @x: 32-bit value (of which only the odd bits are of interest)
563  *
564  * Given an input value::
565  *
566  *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP
567  *
568  * return the value where all the odd bits are compressed down
569  * into the low half of the word, and the high half is zeroed::
570  *
571  *   0000 0000 0000 0000 ABCD EFGH IJKL MNOP
572  *
573  * Any even bits set in the input are ignored.
574  *
575  * Returns: the unshuffled bits.
576  */
577 static inline uint32_t half_unshuffle32(uint32_t x)
578 {
579     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
580      * where it is called an inverse half shuffle.
581      */
582     x &= 0x55555555;
583     x = ((x >> 1) | x) & 0x33333333;
584     x = ((x >> 2) | x) & 0x0F0F0F0F;
585     x = ((x >> 4) | x) & 0x00FF00FF;
586     x = ((x >> 8) | x) & 0x0000FFFF;
587     return x;
588 }
589 
590 /**
591  * half_unshuffle64:
592  * @x: 64-bit value (of which only the odd bits are of interest)
593  *
594  * Given an input value::
595  *
596  *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf
597  *
598  * return the value where all the odd bits are compressed down
599  * into the low half of the word, and the high half is zeroed::
600  *
601  *   0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
602  *
603  * Any even bits set in the input are ignored.
604  *
605  * Returns: the unshuffled bits.
606  */
607 static inline uint64_t half_unshuffle64(uint64_t x)
608 {
609     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
610      * where it is called an inverse half shuffle.
611      */
612     x &= 0x5555555555555555ULL;
613     x = ((x >> 1) | x) & 0x3333333333333333ULL;
614     x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL;
615     x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL;
616     x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL;
617     x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL;
618     return x;
619 }
620 
621 #endif
622