xref: /qemu/include/qemu/bitops.h (revision d73415a3)
1 /*
2  * Bitops Module
3  *
4  * Copyright (C) 2010 Corentin Chary <corentin.chary@gmail.com>
5  *
6  * Mostly inspired by (stolen from) linux/bitmap.h and linux/bitops.h
7  *
8  * This work is licensed under the terms of the GNU LGPL, version 2.1 or later.
9  * See the COPYING.LIB file in the top-level directory.
10  */
11 
12 #ifndef BITOPS_H
13 #define BITOPS_H
14 
15 
16 #include "host-utils.h"
17 #include "atomic.h"
18 
19 #define BITS_PER_BYTE           CHAR_BIT
20 #define BITS_PER_LONG           (sizeof (unsigned long) * BITS_PER_BYTE)
21 
22 #define BIT(nr)                 (1UL << (nr))
23 #define BIT_ULL(nr)             (1ULL << (nr))
24 #define BIT_MASK(nr)            (1UL << ((nr) % BITS_PER_LONG))
25 #define BIT_WORD(nr)            ((nr) / BITS_PER_LONG)
26 #define BITS_TO_LONGS(nr)       DIV_ROUND_UP(nr, BITS_PER_BYTE * sizeof(long))
27 
28 #define MAKE_64BIT_MASK(shift, length) \
29     (((~0ULL) >> (64 - (length))) << (shift))
30 
31 /**
32  * set_bit - Set a bit in memory
33  * @nr: the bit to set
34  * @addr: the address to start counting from
35  */
36 static inline void set_bit(long nr, unsigned long *addr)
37 {
38     unsigned long mask = BIT_MASK(nr);
39     unsigned long *p = addr + BIT_WORD(nr);
40 
41     *p  |= mask;
42 }
43 
44 /**
45  * set_bit_atomic - Set a bit in memory atomically
46  * @nr: the bit to set
47  * @addr: the address to start counting from
48  */
49 static inline void set_bit_atomic(long nr, unsigned long *addr)
50 {
51     unsigned long mask = BIT_MASK(nr);
52     unsigned long *p = addr + BIT_WORD(nr);
53 
54     qatomic_or(p, mask);
55 }
56 
57 /**
58  * clear_bit - Clears a bit in memory
59  * @nr: Bit to clear
60  * @addr: Address to start counting from
61  */
62 static inline void clear_bit(long nr, unsigned long *addr)
63 {
64     unsigned long mask = BIT_MASK(nr);
65     unsigned long *p = addr + BIT_WORD(nr);
66 
67     *p &= ~mask;
68 }
69 
70 /**
71  * change_bit - Toggle a bit in memory
72  * @nr: Bit to change
73  * @addr: Address to start counting from
74  */
75 static inline void change_bit(long nr, unsigned long *addr)
76 {
77     unsigned long mask = BIT_MASK(nr);
78     unsigned long *p = addr + BIT_WORD(nr);
79 
80     *p ^= mask;
81 }
82 
83 /**
84  * test_and_set_bit - Set a bit and return its old value
85  * @nr: Bit to set
86  * @addr: Address to count from
87  */
88 static inline int test_and_set_bit(long nr, unsigned long *addr)
89 {
90     unsigned long mask = BIT_MASK(nr);
91     unsigned long *p = addr + BIT_WORD(nr);
92     unsigned long old = *p;
93 
94     *p = old | mask;
95     return (old & mask) != 0;
96 }
97 
98 /**
99  * test_and_clear_bit - Clear a bit and return its old value
100  * @nr: Bit to clear
101  * @addr: Address to count from
102  */
103 static inline int test_and_clear_bit(long nr, unsigned long *addr)
104 {
105     unsigned long mask = BIT_MASK(nr);
106     unsigned long *p = addr + BIT_WORD(nr);
107     unsigned long old = *p;
108 
109     *p = old & ~mask;
110     return (old & mask) != 0;
111 }
112 
113 /**
114  * test_and_change_bit - Change a bit and return its old value
115  * @nr: Bit to change
116  * @addr: Address to count from
117  */
118 static inline int test_and_change_bit(long nr, unsigned long *addr)
119 {
120     unsigned long mask = BIT_MASK(nr);
121     unsigned long *p = addr + BIT_WORD(nr);
122     unsigned long old = *p;
123 
124     *p = old ^ mask;
125     return (old & mask) != 0;
126 }
127 
128 /**
129  * test_bit - Determine whether a bit is set
130  * @nr: bit number to test
131  * @addr: Address to start counting from
132  */
133 static inline int test_bit(long nr, const unsigned long *addr)
134 {
135     return 1UL & (addr[BIT_WORD(nr)] >> (nr & (BITS_PER_LONG-1)));
136 }
137 
138 /**
139  * find_last_bit - find the last set bit in a memory region
140  * @addr: The address to start the search at
141  * @size: The maximum size to search
142  *
143  * Returns the bit number of the first set bit, or size.
144  */
145 unsigned long find_last_bit(const unsigned long *addr,
146                             unsigned long size);
147 
148 /**
149  * find_next_bit - find the next set bit in a memory region
150  * @addr: The address to base the search on
151  * @offset: The bitnumber to start searching at
152  * @size: The bitmap size in bits
153  */
154 unsigned long find_next_bit(const unsigned long *addr,
155                             unsigned long size,
156                             unsigned long offset);
157 
158 /**
159  * find_next_zero_bit - find the next cleared bit in a memory region
160  * @addr: The address to base the search on
161  * @offset: The bitnumber to start searching at
162  * @size: The bitmap size in bits
163  */
164 
165 unsigned long find_next_zero_bit(const unsigned long *addr,
166                                  unsigned long size,
167                                  unsigned long offset);
168 
169 /**
170  * find_first_bit - find the first set bit in a memory region
171  * @addr: The address to start the search at
172  * @size: The maximum size to search
173  *
174  * Returns the bit number of the first set bit.
175  */
176 static inline unsigned long find_first_bit(const unsigned long *addr,
177                                            unsigned long size)
178 {
179     unsigned long result, tmp;
180 
181     for (result = 0; result < size; result += BITS_PER_LONG) {
182         tmp = *addr++;
183         if (tmp) {
184             result += ctzl(tmp);
185             return result < size ? result : size;
186         }
187     }
188     /* Not found */
189     return size;
190 }
191 
192 /**
193  * find_first_zero_bit - find the first cleared bit in a memory region
194  * @addr: The address to start the search at
195  * @size: The maximum size to search
196  *
197  * Returns the bit number of the first cleared bit.
198  */
199 static inline unsigned long find_first_zero_bit(const unsigned long *addr,
200                                                 unsigned long size)
201 {
202     return find_next_zero_bit(addr, size, 0);
203 }
204 
205 /**
206  * rol8 - rotate an 8-bit value left
207  * @word: value to rotate
208  * @shift: bits to roll
209  */
210 static inline uint8_t rol8(uint8_t word, unsigned int shift)
211 {
212     return (word << shift) | (word >> ((8 - shift) & 7));
213 }
214 
215 /**
216  * ror8 - rotate an 8-bit value right
217  * @word: value to rotate
218  * @shift: bits to roll
219  */
220 static inline uint8_t ror8(uint8_t word, unsigned int shift)
221 {
222     return (word >> shift) | (word << ((8 - shift) & 7));
223 }
224 
225 /**
226  * rol16 - rotate a 16-bit value left
227  * @word: value to rotate
228  * @shift: bits to roll
229  */
230 static inline uint16_t rol16(uint16_t word, unsigned int shift)
231 {
232     return (word << shift) | (word >> ((16 - shift) & 15));
233 }
234 
235 /**
236  * ror16 - rotate a 16-bit value right
237  * @word: value to rotate
238  * @shift: bits to roll
239  */
240 static inline uint16_t ror16(uint16_t word, unsigned int shift)
241 {
242     return (word >> shift) | (word << ((16 - shift) & 15));
243 }
244 
245 /**
246  * rol32 - rotate a 32-bit value left
247  * @word: value to rotate
248  * @shift: bits to roll
249  */
250 static inline uint32_t rol32(uint32_t word, unsigned int shift)
251 {
252     return (word << shift) | (word >> ((32 - shift) & 31));
253 }
254 
255 /**
256  * ror32 - rotate a 32-bit value right
257  * @word: value to rotate
258  * @shift: bits to roll
259  */
260 static inline uint32_t ror32(uint32_t word, unsigned int shift)
261 {
262     return (word >> shift) | (word << ((32 - shift) & 31));
263 }
264 
265 /**
266  * rol64 - rotate a 64-bit value left
267  * @word: value to rotate
268  * @shift: bits to roll
269  */
270 static inline uint64_t rol64(uint64_t word, unsigned int shift)
271 {
272     return (word << shift) | (word >> ((64 - shift) & 63));
273 }
274 
275 /**
276  * ror64 - rotate a 64-bit value right
277  * @word: value to rotate
278  * @shift: bits to roll
279  */
280 static inline uint64_t ror64(uint64_t word, unsigned int shift)
281 {
282     return (word >> shift) | (word << ((64 - shift) & 63));
283 }
284 
285 /**
286  * extract32:
287  * @value: the value to extract the bit field from
288  * @start: the lowest bit in the bit field (numbered from 0)
289  * @length: the length of the bit field
290  *
291  * Extract from the 32 bit input @value the bit field specified by the
292  * @start and @length parameters, and return it. The bit field must
293  * lie entirely within the 32 bit word. It is valid to request that
294  * all 32 bits are returned (ie @length 32 and @start 0).
295  *
296  * Returns: the value of the bit field extracted from the input value.
297  */
298 static inline uint32_t extract32(uint32_t value, int start, int length)
299 {
300     assert(start >= 0 && length > 0 && length <= 32 - start);
301     return (value >> start) & (~0U >> (32 - length));
302 }
303 
304 /**
305  * extract8:
306  * @value: the value to extract the bit field from
307  * @start: the lowest bit in the bit field (numbered from 0)
308  * @length: the length of the bit field
309  *
310  * Extract from the 8 bit input @value the bit field specified by the
311  * @start and @length parameters, and return it. The bit field must
312  * lie entirely within the 8 bit word. It is valid to request that
313  * all 8 bits are returned (ie @length 8 and @start 0).
314  *
315  * Returns: the value of the bit field extracted from the input value.
316  */
317 static inline uint8_t extract8(uint8_t value, int start, int length)
318 {
319     assert(start >= 0 && length > 0 && length <= 8 - start);
320     return extract32(value, start, length);
321 }
322 
323 /**
324  * extract16:
325  * @value: the value to extract the bit field from
326  * @start: the lowest bit in the bit field (numbered from 0)
327  * @length: the length of the bit field
328  *
329  * Extract from the 16 bit input @value the bit field specified by the
330  * @start and @length parameters, and return it. The bit field must
331  * lie entirely within the 16 bit word. It is valid to request that
332  * all 16 bits are returned (ie @length 16 and @start 0).
333  *
334  * Returns: the value of the bit field extracted from the input value.
335  */
336 static inline uint16_t extract16(uint16_t value, int start, int length)
337 {
338     assert(start >= 0 && length > 0 && length <= 16 - start);
339     return extract32(value, start, length);
340 }
341 
342 /**
343  * extract64:
344  * @value: the value to extract the bit field from
345  * @start: the lowest bit in the bit field (numbered from 0)
346  * @length: the length of the bit field
347  *
348  * Extract from the 64 bit input @value the bit field specified by the
349  * @start and @length parameters, and return it. The bit field must
350  * lie entirely within the 64 bit word. It is valid to request that
351  * all 64 bits are returned (ie @length 64 and @start 0).
352  *
353  * Returns: the value of the bit field extracted from the input value.
354  */
355 static inline uint64_t extract64(uint64_t value, int start, int length)
356 {
357     assert(start >= 0 && length > 0 && length <= 64 - start);
358     return (value >> start) & (~0ULL >> (64 - length));
359 }
360 
361 /**
362  * sextract32:
363  * @value: the value to extract the bit field from
364  * @start: the lowest bit in the bit field (numbered from 0)
365  * @length: the length of the bit field
366  *
367  * Extract from the 32 bit input @value the bit field specified by the
368  * @start and @length parameters, and return it, sign extended to
369  * an int32_t (ie with the most significant bit of the field propagated
370  * to all the upper bits of the return value). The bit field must lie
371  * entirely within the 32 bit word. It is valid to request that
372  * all 32 bits are returned (ie @length 32 and @start 0).
373  *
374  * Returns: the sign extended value of the bit field extracted from the
375  * input value.
376  */
377 static inline int32_t sextract32(uint32_t value, int start, int length)
378 {
379     assert(start >= 0 && length > 0 && length <= 32 - start);
380     /* Note that this implementation relies on right shift of signed
381      * integers being an arithmetic shift.
382      */
383     return ((int32_t)(value << (32 - length - start))) >> (32 - length);
384 }
385 
386 /**
387  * sextract64:
388  * @value: the value to extract the bit field from
389  * @start: the lowest bit in the bit field (numbered from 0)
390  * @length: the length of the bit field
391  *
392  * Extract from the 64 bit input @value the bit field specified by the
393  * @start and @length parameters, and return it, sign extended to
394  * an int64_t (ie with the most significant bit of the field propagated
395  * to all the upper bits of the return value). The bit field must lie
396  * entirely within the 64 bit word. It is valid to request that
397  * all 64 bits are returned (ie @length 64 and @start 0).
398  *
399  * Returns: the sign extended value of the bit field extracted from the
400  * input value.
401  */
402 static inline int64_t sextract64(uint64_t value, int start, int length)
403 {
404     assert(start >= 0 && length > 0 && length <= 64 - start);
405     /* Note that this implementation relies on right shift of signed
406      * integers being an arithmetic shift.
407      */
408     return ((int64_t)(value << (64 - length - start))) >> (64 - length);
409 }
410 
411 /**
412  * deposit32:
413  * @value: initial value to insert bit field into
414  * @start: the lowest bit in the bit field (numbered from 0)
415  * @length: the length of the bit field
416  * @fieldval: the value to insert into the bit field
417  *
418  * Deposit @fieldval into the 32 bit @value at the bit field specified
419  * by the @start and @length parameters, and return the modified
420  * @value. Bits of @value outside the bit field are not modified.
421  * Bits of @fieldval above the least significant @length bits are
422  * ignored. The bit field must lie entirely within the 32 bit word.
423  * It is valid to request that all 32 bits are modified (ie @length
424  * 32 and @start 0).
425  *
426  * Returns: the modified @value.
427  */
428 static inline uint32_t deposit32(uint32_t value, int start, int length,
429                                  uint32_t fieldval)
430 {
431     uint32_t mask;
432     assert(start >= 0 && length > 0 && length <= 32 - start);
433     mask = (~0U >> (32 - length)) << start;
434     return (value & ~mask) | ((fieldval << start) & mask);
435 }
436 
437 /**
438  * deposit64:
439  * @value: initial value to insert bit field into
440  * @start: the lowest bit in the bit field (numbered from 0)
441  * @length: the length of the bit field
442  * @fieldval: the value to insert into the bit field
443  *
444  * Deposit @fieldval into the 64 bit @value at the bit field specified
445  * by the @start and @length parameters, and return the modified
446  * @value. Bits of @value outside the bit field are not modified.
447  * Bits of @fieldval above the least significant @length bits are
448  * ignored. The bit field must lie entirely within the 64 bit word.
449  * It is valid to request that all 64 bits are modified (ie @length
450  * 64 and @start 0).
451  *
452  * Returns: the modified @value.
453  */
454 static inline uint64_t deposit64(uint64_t value, int start, int length,
455                                  uint64_t fieldval)
456 {
457     uint64_t mask;
458     assert(start >= 0 && length > 0 && length <= 64 - start);
459     mask = (~0ULL >> (64 - length)) << start;
460     return (value & ~mask) | ((fieldval << start) & mask);
461 }
462 
463 /**
464  * half_shuffle32:
465  * @x: 32-bit value (of which only the bottom 16 bits are of interest)
466  *
467  * Given an input value::
468  *
469  *   xxxx xxxx xxxx xxxx ABCD EFGH IJKL MNOP
470  *
471  * return the value where the bottom 16 bits are spread out into
472  * the odd bits in the word, and the even bits are zeroed::
473  *
474  *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N 0O0P
475  *
476  * Any bits set in the top half of the input are ignored.
477  *
478  * Returns: the shuffled bits.
479  */
480 static inline uint32_t half_shuffle32(uint32_t x)
481 {
482     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
483      * It ignores any bits set in the top half of the input.
484      */
485     x = ((x & 0xFF00) << 8) | (x & 0x00FF);
486     x = ((x << 4) | x) & 0x0F0F0F0F;
487     x = ((x << 2) | x) & 0x33333333;
488     x = ((x << 1) | x) & 0x55555555;
489     return x;
490 }
491 
492 /**
493  * half_shuffle64:
494  * @x: 64-bit value (of which only the bottom 32 bits are of interest)
495  *
496  * Given an input value::
497  *
498  *   xxxx xxxx xxxx .... xxxx xxxx ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
499  *
500  * return the value where the bottom 32 bits are spread out into
501  * the odd bits in the word, and the even bits are zeroed::
502  *
503  *   0A0B 0C0D 0E0F 0G0H 0I0J 0K0L 0M0N .... 0U0V 0W0X 0Y0Z 0a0b 0c0d 0e0f
504  *
505  * Any bits set in the top half of the input are ignored.
506  *
507  * Returns: the shuffled bits.
508  */
509 static inline uint64_t half_shuffle64(uint64_t x)
510 {
511     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
512      * It ignores any bits set in the top half of the input.
513      */
514     x = ((x & 0xFFFF0000ULL) << 16) | (x & 0xFFFF);
515     x = ((x << 8) | x) & 0x00FF00FF00FF00FFULL;
516     x = ((x << 4) | x) & 0x0F0F0F0F0F0F0F0FULL;
517     x = ((x << 2) | x) & 0x3333333333333333ULL;
518     x = ((x << 1) | x) & 0x5555555555555555ULL;
519     return x;
520 }
521 
522 /**
523  * half_unshuffle32:
524  * @x: 32-bit value (of which only the odd bits are of interest)
525  *
526  * Given an input value::
527  *
528  *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN xOxP
529  *
530  * return the value where all the odd bits are compressed down
531  * into the low half of the word, and the high half is zeroed::
532  *
533  *   0000 0000 0000 0000 ABCD EFGH IJKL MNOP
534  *
535  * Any even bits set in the input are ignored.
536  *
537  * Returns: the unshuffled bits.
538  */
539 static inline uint32_t half_unshuffle32(uint32_t x)
540 {
541     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
542      * where it is called an inverse half shuffle.
543      */
544     x &= 0x55555555;
545     x = ((x >> 1) | x) & 0x33333333;
546     x = ((x >> 2) | x) & 0x0F0F0F0F;
547     x = ((x >> 4) | x) & 0x00FF00FF;
548     x = ((x >> 8) | x) & 0x0000FFFF;
549     return x;
550 }
551 
552 /**
553  * half_unshuffle64:
554  * @x: 64-bit value (of which only the odd bits are of interest)
555  *
556  * Given an input value::
557  *
558  *   xAxB xCxD xExF xGxH xIxJ xKxL xMxN .... xUxV xWxX xYxZ xaxb xcxd xexf
559  *
560  * return the value where all the odd bits are compressed down
561  * into the low half of the word, and the high half is zeroed::
562  *
563  *   0000 0000 0000 .... 0000 0000 ABCD EFGH IJKL MNOP QRST UVWX YZab cdef
564  *
565  * Any even bits set in the input are ignored.
566  *
567  * Returns: the unshuffled bits.
568  */
569 static inline uint64_t half_unshuffle64(uint64_t x)
570 {
571     /* This algorithm is from _Hacker's Delight_ section 7-2 "Shuffling Bits".
572      * where it is called an inverse half shuffle.
573      */
574     x &= 0x5555555555555555ULL;
575     x = ((x >> 1) | x) & 0x3333333333333333ULL;
576     x = ((x >> 2) | x) & 0x0F0F0F0F0F0F0F0FULL;
577     x = ((x >> 4) | x) & 0x00FF00FF00FF00FFULL;
578     x = ((x >> 8) | x) & 0x0000FFFF0000FFFFULL;
579     x = ((x >> 16) | x) & 0x00000000FFFFFFFFULL;
580     return x;
581 }
582 
583 #endif
584