xref: /qemu/include/qemu/bswap.h (revision 6402cbbb)
1 #ifndef BSWAP_H
2 #define BSWAP_H
3 
4 #include "fpu/softfloat.h"
5 
6 #ifdef CONFIG_MACHINE_BSWAP_H
7 # include <sys/endian.h>
8 # include <machine/bswap.h>
9 #elif defined(__FreeBSD__)
10 # include <sys/endian.h>
11 #elif defined(CONFIG_BYTESWAP_H)
12 # include <byteswap.h>
13 
14 static inline uint16_t bswap16(uint16_t x)
15 {
16     return bswap_16(x);
17 }
18 
19 static inline uint32_t bswap32(uint32_t x)
20 {
21     return bswap_32(x);
22 }
23 
24 static inline uint64_t bswap64(uint64_t x)
25 {
26     return bswap_64(x);
27 }
28 # else
29 static inline uint16_t bswap16(uint16_t x)
30 {
31     return (((x & 0x00ff) << 8) |
32             ((x & 0xff00) >> 8));
33 }
34 
35 static inline uint32_t bswap32(uint32_t x)
36 {
37     return (((x & 0x000000ffU) << 24) |
38             ((x & 0x0000ff00U) <<  8) |
39             ((x & 0x00ff0000U) >>  8) |
40             ((x & 0xff000000U) >> 24));
41 }
42 
43 static inline uint64_t bswap64(uint64_t x)
44 {
45     return (((x & 0x00000000000000ffULL) << 56) |
46             ((x & 0x000000000000ff00ULL) << 40) |
47             ((x & 0x0000000000ff0000ULL) << 24) |
48             ((x & 0x00000000ff000000ULL) <<  8) |
49             ((x & 0x000000ff00000000ULL) >>  8) |
50             ((x & 0x0000ff0000000000ULL) >> 24) |
51             ((x & 0x00ff000000000000ULL) >> 40) |
52             ((x & 0xff00000000000000ULL) >> 56));
53 }
54 #endif /* ! CONFIG_MACHINE_BSWAP_H */
55 
56 static inline void bswap16s(uint16_t *s)
57 {
58     *s = bswap16(*s);
59 }
60 
61 static inline void bswap32s(uint32_t *s)
62 {
63     *s = bswap32(*s);
64 }
65 
66 static inline void bswap64s(uint64_t *s)
67 {
68     *s = bswap64(*s);
69 }
70 
71 #if defined(HOST_WORDS_BIGENDIAN)
72 #define be_bswap(v, size) (v)
73 #define le_bswap(v, size) glue(bswap, size)(v)
74 #define be_bswaps(v, size)
75 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
76 #else
77 #define le_bswap(v, size) (v)
78 #define be_bswap(v, size) glue(bswap, size)(v)
79 #define le_bswaps(v, size)
80 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
81 #endif
82 
83 /**
84  * Endianness conversion functions between host cpu and specified endianness.
85  * (We list the complete set of prototypes produced by the macros below
86  * to assist people who search the headers to find their definitions.)
87  *
88  * uint16_t le16_to_cpu(uint16_t v);
89  * uint32_t le32_to_cpu(uint32_t v);
90  * uint64_t le64_to_cpu(uint64_t v);
91  * uint16_t be16_to_cpu(uint16_t v);
92  * uint32_t be32_to_cpu(uint32_t v);
93  * uint64_t be64_to_cpu(uint64_t v);
94  *
95  * Convert the value @v from the specified format to the native
96  * endianness of the host CPU by byteswapping if necessary, and
97  * return the converted value.
98  *
99  * uint16_t cpu_to_le16(uint16_t v);
100  * uint32_t cpu_to_le32(uint32_t v);
101  * uint64_t cpu_to_le64(uint64_t v);
102  * uint16_t cpu_to_be16(uint16_t v);
103  * uint32_t cpu_to_be32(uint32_t v);
104  * uint64_t cpu_to_be64(uint64_t v);
105  *
106  * Convert the value @v from the native endianness of the host CPU to
107  * the specified format by byteswapping if necessary, and return
108  * the converted value.
109  *
110  * void le16_to_cpus(uint16_t *v);
111  * void le32_to_cpus(uint32_t *v);
112  * void le64_to_cpus(uint64_t *v);
113  * void be16_to_cpus(uint16_t *v);
114  * void be32_to_cpus(uint32_t *v);
115  * void be64_to_cpus(uint64_t *v);
116  *
117  * Do an in-place conversion of the value pointed to by @v from the
118  * specified format to the native endianness of the host CPU.
119  *
120  * void cpu_to_le16s(uint16_t *v);
121  * void cpu_to_le32s(uint32_t *v);
122  * void cpu_to_le64s(uint64_t *v);
123  * void cpu_to_be16s(uint16_t *v);
124  * void cpu_to_be32s(uint32_t *v);
125  * void cpu_to_be64s(uint64_t *v);
126  *
127  * Do an in-place conversion of the value pointed to by @v from the
128  * native endianness of the host CPU to the specified format.
129  *
130  * Both X_to_cpu() and cpu_to_X() perform the same operation; you
131  * should use whichever one is better documenting of the function your
132  * code is performing.
133  *
134  * Do not use these functions for conversion of values which are in guest
135  * memory, since the data may not be sufficiently aligned for the host CPU's
136  * load and store instructions. Instead you should use the ld*_p() and
137  * st*_p() functions, which perform loads and stores of data of any
138  * required size and endianness and handle possible misalignment.
139  */
140 
141 #define CPU_CONVERT(endian, size, type)\
142 static inline type endian ## size ## _to_cpu(type v)\
143 {\
144     return glue(endian, _bswap)(v, size);\
145 }\
146 \
147 static inline type cpu_to_ ## endian ## size(type v)\
148 {\
149     return glue(endian, _bswap)(v, size);\
150 }\
151 \
152 static inline void endian ## size ## _to_cpus(type *p)\
153 {\
154     glue(endian, _bswaps)(p, size);\
155 }\
156 \
157 static inline void cpu_to_ ## endian ## size ## s(type *p)\
158 {\
159     glue(endian, _bswaps)(p, size);\
160 }
161 
162 CPU_CONVERT(be, 16, uint16_t)
163 CPU_CONVERT(be, 32, uint32_t)
164 CPU_CONVERT(be, 64, uint64_t)
165 
166 CPU_CONVERT(le, 16, uint16_t)
167 CPU_CONVERT(le, 32, uint32_t)
168 CPU_CONVERT(le, 64, uint64_t)
169 
170 /* len must be one of 1, 2, 4 */
171 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
172 {
173     return bswap32(value) >> (32 - 8 * len);
174 }
175 
176 /*
177  * Same as cpu_to_le{16,32}, except that gcc will figure the result is
178  * a compile-time constant if you pass in a constant.  So this can be
179  * used to initialize static variables.
180  */
181 #if defined(HOST_WORDS_BIGENDIAN)
182 # define const_le32(_x)                          \
183     ((((_x) & 0x000000ffU) << 24) |              \
184      (((_x) & 0x0000ff00U) <<  8) |              \
185      (((_x) & 0x00ff0000U) >>  8) |              \
186      (((_x) & 0xff000000U) >> 24))
187 # define const_le16(_x)                          \
188     ((((_x) & 0x00ff) << 8) |                    \
189      (((_x) & 0xff00) >> 8))
190 #else
191 # define const_le32(_x) (_x)
192 # define const_le16(_x) (_x)
193 #endif
194 
195 /* Unions for reinterpreting between floats and integers.  */
196 
197 typedef union {
198     float32 f;
199     uint32_t l;
200 } CPU_FloatU;
201 
202 typedef union {
203     float64 d;
204 #if defined(HOST_WORDS_BIGENDIAN)
205     struct {
206         uint32_t upper;
207         uint32_t lower;
208     } l;
209 #else
210     struct {
211         uint32_t lower;
212         uint32_t upper;
213     } l;
214 #endif
215     uint64_t ll;
216 } CPU_DoubleU;
217 
218 typedef union {
219      floatx80 d;
220      struct {
221          uint64_t lower;
222          uint16_t upper;
223      } l;
224 } CPU_LDoubleU;
225 
226 typedef union {
227     float128 q;
228 #if defined(HOST_WORDS_BIGENDIAN)
229     struct {
230         uint32_t upmost;
231         uint32_t upper;
232         uint32_t lower;
233         uint32_t lowest;
234     } l;
235     struct {
236         uint64_t upper;
237         uint64_t lower;
238     } ll;
239 #else
240     struct {
241         uint32_t lowest;
242         uint32_t lower;
243         uint32_t upper;
244         uint32_t upmost;
245     } l;
246     struct {
247         uint64_t lower;
248         uint64_t upper;
249     } ll;
250 #endif
251 } CPU_QuadU;
252 
253 /* unaligned/endian-independent pointer access */
254 
255 /*
256  * the generic syntax is:
257  *
258  * load: ld{type}{sign}{size}{endian}_p(ptr)
259  *
260  * store: st{type}{size}{endian}_p(ptr, val)
261  *
262  * Note there are small differences with the softmmu access API!
263  *
264  * type is:
265  * (empty): integer access
266  *   f    : float access
267  *
268  * sign is:
269  * (empty): for 32 or 64 bit sizes (including floats and doubles)
270  *   u    : unsigned
271  *   s    : signed
272  *
273  * size is:
274  *   b: 8 bits
275  *   w: 16 bits
276  *   l: 32 bits
277  *   q: 64 bits
278  *
279  * endian is:
280  *   he   : host endian
281  *   be   : big endian
282  *   le   : little endian
283  *   te   : target endian
284  * (except for byte accesses, which have no endian infix).
285  *
286  * The target endian accessors are obviously only available to source
287  * files which are built per-target; they are defined in cpu-all.h.
288  *
289  * In all cases these functions take a host pointer.
290  * For accessors that take a guest address rather than a
291  * host address, see the cpu_{ld,st}_* accessors defined in
292  * cpu_ldst.h.
293  */
294 
295 static inline int ldub_p(const void *ptr)
296 {
297     return *(uint8_t *)ptr;
298 }
299 
300 static inline int ldsb_p(const void *ptr)
301 {
302     return *(int8_t *)ptr;
303 }
304 
305 static inline void stb_p(void *ptr, uint8_t v)
306 {
307     *(uint8_t *)ptr = v;
308 }
309 
310 /* Any compiler worth its salt will turn these memcpy into native unaligned
311    operations.  Thus we don't need to play games with packed attributes, or
312    inline byte-by-byte stores.  */
313 
314 static inline int lduw_he_p(const void *ptr)
315 {
316     uint16_t r;
317     memcpy(&r, ptr, sizeof(r));
318     return r;
319 }
320 
321 static inline int ldsw_he_p(const void *ptr)
322 {
323     int16_t r;
324     memcpy(&r, ptr, sizeof(r));
325     return r;
326 }
327 
328 static inline void stw_he_p(void *ptr, uint16_t v)
329 {
330     memcpy(ptr, &v, sizeof(v));
331 }
332 
333 static inline int ldl_he_p(const void *ptr)
334 {
335     int32_t r;
336     memcpy(&r, ptr, sizeof(r));
337     return r;
338 }
339 
340 static inline void stl_he_p(void *ptr, uint32_t v)
341 {
342     memcpy(ptr, &v, sizeof(v));
343 }
344 
345 static inline uint64_t ldq_he_p(const void *ptr)
346 {
347     uint64_t r;
348     memcpy(&r, ptr, sizeof(r));
349     return r;
350 }
351 
352 static inline void stq_he_p(void *ptr, uint64_t v)
353 {
354     memcpy(ptr, &v, sizeof(v));
355 }
356 
357 static inline int lduw_le_p(const void *ptr)
358 {
359     return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
360 }
361 
362 static inline int ldsw_le_p(const void *ptr)
363 {
364     return (int16_t)le_bswap(lduw_he_p(ptr), 16);
365 }
366 
367 static inline int ldl_le_p(const void *ptr)
368 {
369     return le_bswap(ldl_he_p(ptr), 32);
370 }
371 
372 static inline uint64_t ldq_le_p(const void *ptr)
373 {
374     return le_bswap(ldq_he_p(ptr), 64);
375 }
376 
377 static inline void stw_le_p(void *ptr, uint16_t v)
378 {
379     stw_he_p(ptr, le_bswap(v, 16));
380 }
381 
382 static inline void stl_le_p(void *ptr, uint32_t v)
383 {
384     stl_he_p(ptr, le_bswap(v, 32));
385 }
386 
387 static inline void stq_le_p(void *ptr, uint64_t v)
388 {
389     stq_he_p(ptr, le_bswap(v, 64));
390 }
391 
392 /* float access */
393 
394 static inline float32 ldfl_le_p(const void *ptr)
395 {
396     CPU_FloatU u;
397     u.l = ldl_le_p(ptr);
398     return u.f;
399 }
400 
401 static inline void stfl_le_p(void *ptr, float32 v)
402 {
403     CPU_FloatU u;
404     u.f = v;
405     stl_le_p(ptr, u.l);
406 }
407 
408 static inline float64 ldfq_le_p(const void *ptr)
409 {
410     CPU_DoubleU u;
411     u.ll = ldq_le_p(ptr);
412     return u.d;
413 }
414 
415 static inline void stfq_le_p(void *ptr, float64 v)
416 {
417     CPU_DoubleU u;
418     u.d = v;
419     stq_le_p(ptr, u.ll);
420 }
421 
422 static inline int lduw_be_p(const void *ptr)
423 {
424     return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
425 }
426 
427 static inline int ldsw_be_p(const void *ptr)
428 {
429     return (int16_t)be_bswap(lduw_he_p(ptr), 16);
430 }
431 
432 static inline int ldl_be_p(const void *ptr)
433 {
434     return be_bswap(ldl_he_p(ptr), 32);
435 }
436 
437 static inline uint64_t ldq_be_p(const void *ptr)
438 {
439     return be_bswap(ldq_he_p(ptr), 64);
440 }
441 
442 static inline void stw_be_p(void *ptr, uint16_t v)
443 {
444     stw_he_p(ptr, be_bswap(v, 16));
445 }
446 
447 static inline void stl_be_p(void *ptr, uint32_t v)
448 {
449     stl_he_p(ptr, be_bswap(v, 32));
450 }
451 
452 static inline void stq_be_p(void *ptr, uint64_t v)
453 {
454     stq_he_p(ptr, be_bswap(v, 64));
455 }
456 
457 /* float access */
458 
459 static inline float32 ldfl_be_p(const void *ptr)
460 {
461     CPU_FloatU u;
462     u.l = ldl_be_p(ptr);
463     return u.f;
464 }
465 
466 static inline void stfl_be_p(void *ptr, float32 v)
467 {
468     CPU_FloatU u;
469     u.f = v;
470     stl_be_p(ptr, u.l);
471 }
472 
473 static inline float64 ldfq_be_p(const void *ptr)
474 {
475     CPU_DoubleU u;
476     u.ll = ldq_be_p(ptr);
477     return u.d;
478 }
479 
480 static inline void stfq_be_p(void *ptr, float64 v)
481 {
482     CPU_DoubleU u;
483     u.d = v;
484     stq_be_p(ptr, u.ll);
485 }
486 
487 static inline unsigned long leul_to_cpu(unsigned long v)
488 {
489 #if HOST_LONG_BITS == 32
490     return le_bswap(v, 32);
491 #elif HOST_LONG_BITS == 64
492     return le_bswap(v, 64);
493 #else
494 # error Unknown sizeof long
495 #endif
496 }
497 
498 #undef le_bswap
499 #undef be_bswap
500 #undef le_bswaps
501 #undef be_bswaps
502 
503 #endif /* BSWAP_H */
504