xref: /qemu/include/qemu/bswap.h (revision bfa3ab61)
1 #ifndef BSWAP_H
2 #define BSWAP_H
3 
4 #include "config-host.h"
5 #include <inttypes.h>
6 #include <limits.h>
7 #include <string.h>
8 #include "fpu/softfloat.h"
9 
10 #ifdef CONFIG_MACHINE_BSWAP_H
11 # include <sys/endian.h>
12 # include <sys/types.h>
13 # include <machine/bswap.h>
14 #elif defined(__FreeBSD__)
15 # include <sys/endian.h>
16 #elif defined(CONFIG_BYTESWAP_H)
17 # include <byteswap.h>
18 
19 static inline uint16_t bswap16(uint16_t x)
20 {
21     return bswap_16(x);
22 }
23 
24 static inline uint32_t bswap32(uint32_t x)
25 {
26     return bswap_32(x);
27 }
28 
29 static inline uint64_t bswap64(uint64_t x)
30 {
31     return bswap_64(x);
32 }
33 # else
34 static inline uint16_t bswap16(uint16_t x)
35 {
36     return (((x & 0x00ff) << 8) |
37             ((x & 0xff00) >> 8));
38 }
39 
40 static inline uint32_t bswap32(uint32_t x)
41 {
42     return (((x & 0x000000ffU) << 24) |
43             ((x & 0x0000ff00U) <<  8) |
44             ((x & 0x00ff0000U) >>  8) |
45             ((x & 0xff000000U) >> 24));
46 }
47 
48 static inline uint64_t bswap64(uint64_t x)
49 {
50     return (((x & 0x00000000000000ffULL) << 56) |
51             ((x & 0x000000000000ff00ULL) << 40) |
52             ((x & 0x0000000000ff0000ULL) << 24) |
53             ((x & 0x00000000ff000000ULL) <<  8) |
54             ((x & 0x000000ff00000000ULL) >>  8) |
55             ((x & 0x0000ff0000000000ULL) >> 24) |
56             ((x & 0x00ff000000000000ULL) >> 40) |
57             ((x & 0xff00000000000000ULL) >> 56));
58 }
59 #endif /* ! CONFIG_MACHINE_BSWAP_H */
60 
61 static inline void bswap16s(uint16_t *s)
62 {
63     *s = bswap16(*s);
64 }
65 
66 static inline void bswap32s(uint32_t *s)
67 {
68     *s = bswap32(*s);
69 }
70 
71 static inline void bswap64s(uint64_t *s)
72 {
73     *s = bswap64(*s);
74 }
75 
76 #if defined(HOST_WORDS_BIGENDIAN)
77 #define be_bswap(v, size) (v)
78 #define le_bswap(v, size) glue(bswap, size)(v)
79 #define be_bswaps(v, size)
80 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
81 #else
82 #define le_bswap(v, size) (v)
83 #define be_bswap(v, size) glue(bswap, size)(v)
84 #define le_bswaps(v, size)
85 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
86 #endif
87 
88 #define CPU_CONVERT(endian, size, type)\
89 static inline type endian ## size ## _to_cpu(type v)\
90 {\
91     return glue(endian, _bswap)(v, size);\
92 }\
93 \
94 static inline type cpu_to_ ## endian ## size(type v)\
95 {\
96     return glue(endian, _bswap)(v, size);\
97 }\
98 \
99 static inline void endian ## size ## _to_cpus(type *p)\
100 {\
101     glue(endian, _bswaps)(p, size);\
102 }\
103 \
104 static inline void cpu_to_ ## endian ## size ## s(type *p)\
105 {\
106     glue(endian, _bswaps)(p, size);\
107 }\
108 \
109 static inline type endian ## size ## _to_cpup(const type *p)\
110 {\
111     return glue(glue(endian, size), _to_cpu)(*p);\
112 }\
113 \
114 static inline void cpu_to_ ## endian ## size ## w(type *p, type v)\
115 {\
116     *p = glue(glue(cpu_to_, endian), size)(v);\
117 }
118 
119 CPU_CONVERT(be, 16, uint16_t)
120 CPU_CONVERT(be, 32, uint32_t)
121 CPU_CONVERT(be, 64, uint64_t)
122 
123 CPU_CONVERT(le, 16, uint16_t)
124 CPU_CONVERT(le, 32, uint32_t)
125 CPU_CONVERT(le, 64, uint64_t)
126 
127 /* len must be one of 1, 2, 4 */
128 static inline uint32_t qemu_bswap_len(uint32_t value, int len)
129 {
130     return bswap32(value) >> (32 - 8 * len);
131 }
132 
133 /* Unions for reinterpreting between floats and integers.  */
134 
135 typedef union {
136     float32 f;
137     uint32_t l;
138 } CPU_FloatU;
139 
140 typedef union {
141     float64 d;
142 #if defined(HOST_WORDS_BIGENDIAN)
143     struct {
144         uint32_t upper;
145         uint32_t lower;
146     } l;
147 #else
148     struct {
149         uint32_t lower;
150         uint32_t upper;
151     } l;
152 #endif
153     uint64_t ll;
154 } CPU_DoubleU;
155 
156 typedef union {
157      floatx80 d;
158      struct {
159          uint64_t lower;
160          uint16_t upper;
161      } l;
162 } CPU_LDoubleU;
163 
164 typedef union {
165     float128 q;
166 #if defined(HOST_WORDS_BIGENDIAN)
167     struct {
168         uint32_t upmost;
169         uint32_t upper;
170         uint32_t lower;
171         uint32_t lowest;
172     } l;
173     struct {
174         uint64_t upper;
175         uint64_t lower;
176     } ll;
177 #else
178     struct {
179         uint32_t lowest;
180         uint32_t lower;
181         uint32_t upper;
182         uint32_t upmost;
183     } l;
184     struct {
185         uint64_t lower;
186         uint64_t upper;
187     } ll;
188 #endif
189 } CPU_QuadU;
190 
191 /* unaligned/endian-independent pointer access */
192 
193 /*
194  * the generic syntax is:
195  *
196  * load: ld{type}{sign}{size}{endian}_p(ptr)
197  *
198  * store: st{type}{size}{endian}_p(ptr, val)
199  *
200  * Note there are small differences with the softmmu access API!
201  *
202  * type is:
203  * (empty): integer access
204  *   f    : float access
205  *
206  * sign is:
207  * (empty): for 32 or 64 bit sizes (including floats and doubles)
208  *   u    : unsigned
209  *   s    : signed
210  *
211  * size is:
212  *   b: 8 bits
213  *   w: 16 bits
214  *   l: 32 bits
215  *   q: 64 bits
216  *
217  * endian is:
218  *   he   : host endian
219  *   be   : big endian
220  *   le   : little endian
221  *   te   : target endian
222  * (except for byte accesses, which have no endian infix).
223  *
224  * The target endian accessors are obviously only available to source
225  * files which are built per-target; they are defined in cpu-all.h.
226  *
227  * In all cases these functions take a host pointer.
228  * For accessors that take a guest address rather than a
229  * host address, see the cpu_{ld,st}_* accessors defined in
230  * cpu_ldst.h.
231  */
232 
233 static inline int ldub_p(const void *ptr)
234 {
235     return *(uint8_t *)ptr;
236 }
237 
238 static inline int ldsb_p(const void *ptr)
239 {
240     return *(int8_t *)ptr;
241 }
242 
243 static inline void stb_p(void *ptr, uint8_t v)
244 {
245     *(uint8_t *)ptr = v;
246 }
247 
248 /* Any compiler worth its salt will turn these memcpy into native unaligned
249    operations.  Thus we don't need to play games with packed attributes, or
250    inline byte-by-byte stores.  */
251 
252 static inline int lduw_he_p(const void *ptr)
253 {
254     uint16_t r;
255     memcpy(&r, ptr, sizeof(r));
256     return r;
257 }
258 
259 static inline int ldsw_he_p(const void *ptr)
260 {
261     int16_t r;
262     memcpy(&r, ptr, sizeof(r));
263     return r;
264 }
265 
266 static inline void stw_he_p(void *ptr, uint16_t v)
267 {
268     memcpy(ptr, &v, sizeof(v));
269 }
270 
271 static inline int ldl_he_p(const void *ptr)
272 {
273     int32_t r;
274     memcpy(&r, ptr, sizeof(r));
275     return r;
276 }
277 
278 static inline void stl_he_p(void *ptr, uint32_t v)
279 {
280     memcpy(ptr, &v, sizeof(v));
281 }
282 
283 static inline uint64_t ldq_he_p(const void *ptr)
284 {
285     uint64_t r;
286     memcpy(&r, ptr, sizeof(r));
287     return r;
288 }
289 
290 static inline void stq_he_p(void *ptr, uint64_t v)
291 {
292     memcpy(ptr, &v, sizeof(v));
293 }
294 
295 static inline int lduw_le_p(const void *ptr)
296 {
297     return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
298 }
299 
300 static inline int ldsw_le_p(const void *ptr)
301 {
302     return (int16_t)le_bswap(lduw_he_p(ptr), 16);
303 }
304 
305 static inline int ldl_le_p(const void *ptr)
306 {
307     return le_bswap(ldl_he_p(ptr), 32);
308 }
309 
310 static inline uint64_t ldq_le_p(const void *ptr)
311 {
312     return le_bswap(ldq_he_p(ptr), 64);
313 }
314 
315 static inline void stw_le_p(void *ptr, uint16_t v)
316 {
317     stw_he_p(ptr, le_bswap(v, 16));
318 }
319 
320 static inline void stl_le_p(void *ptr, uint32_t v)
321 {
322     stl_he_p(ptr, le_bswap(v, 32));
323 }
324 
325 static inline void stq_le_p(void *ptr, uint64_t v)
326 {
327     stq_he_p(ptr, le_bswap(v, 64));
328 }
329 
330 /* float access */
331 
332 static inline float32 ldfl_le_p(const void *ptr)
333 {
334     CPU_FloatU u;
335     u.l = ldl_le_p(ptr);
336     return u.f;
337 }
338 
339 static inline void stfl_le_p(void *ptr, float32 v)
340 {
341     CPU_FloatU u;
342     u.f = v;
343     stl_le_p(ptr, u.l);
344 }
345 
346 static inline float64 ldfq_le_p(const void *ptr)
347 {
348     CPU_DoubleU u;
349     u.ll = ldq_le_p(ptr);
350     return u.d;
351 }
352 
353 static inline void stfq_le_p(void *ptr, float64 v)
354 {
355     CPU_DoubleU u;
356     u.d = v;
357     stq_le_p(ptr, u.ll);
358 }
359 
360 static inline int lduw_be_p(const void *ptr)
361 {
362     return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
363 }
364 
365 static inline int ldsw_be_p(const void *ptr)
366 {
367     return (int16_t)be_bswap(lduw_he_p(ptr), 16);
368 }
369 
370 static inline int ldl_be_p(const void *ptr)
371 {
372     return be_bswap(ldl_he_p(ptr), 32);
373 }
374 
375 static inline uint64_t ldq_be_p(const void *ptr)
376 {
377     return be_bswap(ldq_he_p(ptr), 64);
378 }
379 
380 static inline void stw_be_p(void *ptr, uint16_t v)
381 {
382     stw_he_p(ptr, be_bswap(v, 16));
383 }
384 
385 static inline void stl_be_p(void *ptr, uint32_t v)
386 {
387     stl_he_p(ptr, be_bswap(v, 32));
388 }
389 
390 static inline void stq_be_p(void *ptr, uint64_t v)
391 {
392     stq_he_p(ptr, be_bswap(v, 64));
393 }
394 
395 /* float access */
396 
397 static inline float32 ldfl_be_p(const void *ptr)
398 {
399     CPU_FloatU u;
400     u.l = ldl_be_p(ptr);
401     return u.f;
402 }
403 
404 static inline void stfl_be_p(void *ptr, float32 v)
405 {
406     CPU_FloatU u;
407     u.f = v;
408     stl_be_p(ptr, u.l);
409 }
410 
411 static inline float64 ldfq_be_p(const void *ptr)
412 {
413     CPU_DoubleU u;
414     u.ll = ldq_be_p(ptr);
415     return u.d;
416 }
417 
418 static inline void stfq_be_p(void *ptr, float64 v)
419 {
420     CPU_DoubleU u;
421     u.d = v;
422     stq_be_p(ptr, u.ll);
423 }
424 
425 static inline unsigned long leul_to_cpu(unsigned long v)
426 {
427     /* In order to break an include loop between here and
428        qemu-common.h, don't rely on HOST_LONG_BITS.  */
429 #if ULONG_MAX == UINT32_MAX
430     return le_bswap(v, 32);
431 #elif ULONG_MAX == UINT64_MAX
432     return le_bswap(v, 64);
433 #else
434 # error Unknown sizeof long
435 #endif
436 }
437 
438 #undef le_bswap
439 #undef be_bswap
440 #undef le_bswaps
441 #undef be_bswaps
442 
443 #endif /* BSWAP_H */
444