xref: /qemu/include/qemu/bswap.h (revision f917eed3)
1 #ifndef BSWAP_H
2 #define BSWAP_H
3 
4 #include "fpu/softfloat-types.h"
5 
6 #ifdef CONFIG_MACHINE_BSWAP_H
7 # include <sys/endian.h>
8 # include <machine/bswap.h>
9 #elif defined(__FreeBSD__)
10 # include <sys/endian.h>
11 #elif defined(__HAIKU__)
12 # include <endian.h>
13 #elif defined(CONFIG_BYTESWAP_H)
14 # include <byteswap.h>
15 
16 static inline uint16_t bswap16(uint16_t x)
17 {
18     return bswap_16(x);
19 }
20 
21 static inline uint32_t bswap32(uint32_t x)
22 {
23     return bswap_32(x);
24 }
25 
26 static inline uint64_t bswap64(uint64_t x)
27 {
28     return bswap_64(x);
29 }
30 # else
31 static inline uint16_t bswap16(uint16_t x)
32 {
33     return (((x & 0x00ff) << 8) |
34             ((x & 0xff00) >> 8));
35 }
36 
37 static inline uint32_t bswap32(uint32_t x)
38 {
39     return (((x & 0x000000ffU) << 24) |
40             ((x & 0x0000ff00U) <<  8) |
41             ((x & 0x00ff0000U) >>  8) |
42             ((x & 0xff000000U) >> 24));
43 }
44 
45 static inline uint64_t bswap64(uint64_t x)
46 {
47     return (((x & 0x00000000000000ffULL) << 56) |
48             ((x & 0x000000000000ff00ULL) << 40) |
49             ((x & 0x0000000000ff0000ULL) << 24) |
50             ((x & 0x00000000ff000000ULL) <<  8) |
51             ((x & 0x000000ff00000000ULL) >>  8) |
52             ((x & 0x0000ff0000000000ULL) >> 24) |
53             ((x & 0x00ff000000000000ULL) >> 40) |
54             ((x & 0xff00000000000000ULL) >> 56));
55 }
56 #endif /* ! CONFIG_MACHINE_BSWAP_H */
57 
58 static inline void bswap16s(uint16_t *s)
59 {
60     *s = bswap16(*s);
61 }
62 
63 static inline void bswap32s(uint32_t *s)
64 {
65     *s = bswap32(*s);
66 }
67 
68 static inline void bswap64s(uint64_t *s)
69 {
70     *s = bswap64(*s);
71 }
72 
73 #if defined(HOST_WORDS_BIGENDIAN)
74 #define be_bswap(v, size) (v)
75 #define le_bswap(v, size) glue(bswap, size)(v)
76 #define be_bswaps(v, size)
77 #define le_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
78 #else
79 #define le_bswap(v, size) (v)
80 #define be_bswap(v, size) glue(bswap, size)(v)
81 #define le_bswaps(v, size)
82 #define be_bswaps(p, size) do { *p = glue(bswap, size)(*p); } while(0)
83 #endif
84 
85 /**
86  * Endianness conversion functions between host cpu and specified endianness.
87  * (We list the complete set of prototypes produced by the macros below
88  * to assist people who search the headers to find their definitions.)
89  *
90  * uint16_t le16_to_cpu(uint16_t v);
91  * uint32_t le32_to_cpu(uint32_t v);
92  * uint64_t le64_to_cpu(uint64_t v);
93  * uint16_t be16_to_cpu(uint16_t v);
94  * uint32_t be32_to_cpu(uint32_t v);
95  * uint64_t be64_to_cpu(uint64_t v);
96  *
97  * Convert the value @v from the specified format to the native
98  * endianness of the host CPU by byteswapping if necessary, and
99  * return the converted value.
100  *
101  * uint16_t cpu_to_le16(uint16_t v);
102  * uint32_t cpu_to_le32(uint32_t v);
103  * uint64_t cpu_to_le64(uint64_t v);
104  * uint16_t cpu_to_be16(uint16_t v);
105  * uint32_t cpu_to_be32(uint32_t v);
106  * uint64_t cpu_to_be64(uint64_t v);
107  *
108  * Convert the value @v from the native endianness of the host CPU to
109  * the specified format by byteswapping if necessary, and return
110  * the converted value.
111  *
112  * void le16_to_cpus(uint16_t *v);
113  * void le32_to_cpus(uint32_t *v);
114  * void le64_to_cpus(uint64_t *v);
115  * void be16_to_cpus(uint16_t *v);
116  * void be32_to_cpus(uint32_t *v);
117  * void be64_to_cpus(uint64_t *v);
118  *
119  * Do an in-place conversion of the value pointed to by @v from the
120  * specified format to the native endianness of the host CPU.
121  *
122  * void cpu_to_le16s(uint16_t *v);
123  * void cpu_to_le32s(uint32_t *v);
124  * void cpu_to_le64s(uint64_t *v);
125  * void cpu_to_be16s(uint16_t *v);
126  * void cpu_to_be32s(uint32_t *v);
127  * void cpu_to_be64s(uint64_t *v);
128  *
129  * Do an in-place conversion of the value pointed to by @v from the
130  * native endianness of the host CPU to the specified format.
131  *
132  * Both X_to_cpu() and cpu_to_X() perform the same operation; you
133  * should use whichever one is better documenting of the function your
134  * code is performing.
135  *
136  * Do not use these functions for conversion of values which are in guest
137  * memory, since the data may not be sufficiently aligned for the host CPU's
138  * load and store instructions. Instead you should use the ld*_p() and
139  * st*_p() functions, which perform loads and stores of data of any
140  * required size and endianness and handle possible misalignment.
141  */
142 
143 #define CPU_CONVERT(endian, size, type)\
144 static inline type endian ## size ## _to_cpu(type v)\
145 {\
146     return glue(endian, _bswap)(v, size);\
147 }\
148 \
149 static inline type cpu_to_ ## endian ## size(type v)\
150 {\
151     return glue(endian, _bswap)(v, size);\
152 }\
153 \
154 static inline void endian ## size ## _to_cpus(type *p)\
155 {\
156     glue(endian, _bswaps)(p, size);\
157 }\
158 \
159 static inline void cpu_to_ ## endian ## size ## s(type *p)\
160 {\
161     glue(endian, _bswaps)(p, size);\
162 }
163 
164 CPU_CONVERT(be, 16, uint16_t)
165 CPU_CONVERT(be, 32, uint32_t)
166 CPU_CONVERT(be, 64, uint64_t)
167 
168 CPU_CONVERT(le, 16, uint16_t)
169 CPU_CONVERT(le, 32, uint32_t)
170 CPU_CONVERT(le, 64, uint64_t)
171 
172 /*
173  * Same as cpu_to_le{16,32}, except that gcc will figure the result is
174  * a compile-time constant if you pass in a constant.  So this can be
175  * used to initialize static variables.
176  */
177 #if defined(HOST_WORDS_BIGENDIAN)
178 # define const_le32(_x)                          \
179     ((((_x) & 0x000000ffU) << 24) |              \
180      (((_x) & 0x0000ff00U) <<  8) |              \
181      (((_x) & 0x00ff0000U) >>  8) |              \
182      (((_x) & 0xff000000U) >> 24))
183 # define const_le16(_x)                          \
184     ((((_x) & 0x00ff) << 8) |                    \
185      (((_x) & 0xff00) >> 8))
186 #else
187 # define const_le32(_x) (_x)
188 # define const_le16(_x) (_x)
189 #endif
190 
191 /* Unions for reinterpreting between floats and integers.  */
192 
193 typedef union {
194     float32 f;
195     uint32_t l;
196 } CPU_FloatU;
197 
198 typedef union {
199     float64 d;
200 #if defined(HOST_WORDS_BIGENDIAN)
201     struct {
202         uint32_t upper;
203         uint32_t lower;
204     } l;
205 #else
206     struct {
207         uint32_t lower;
208         uint32_t upper;
209     } l;
210 #endif
211     uint64_t ll;
212 } CPU_DoubleU;
213 
214 typedef union {
215      floatx80 d;
216      struct {
217          uint64_t lower;
218          uint16_t upper;
219      } l;
220 } CPU_LDoubleU;
221 
222 typedef union {
223     float128 q;
224 #if defined(HOST_WORDS_BIGENDIAN)
225     struct {
226         uint32_t upmost;
227         uint32_t upper;
228         uint32_t lower;
229         uint32_t lowest;
230     } l;
231     struct {
232         uint64_t upper;
233         uint64_t lower;
234     } ll;
235 #else
236     struct {
237         uint32_t lowest;
238         uint32_t lower;
239         uint32_t upper;
240         uint32_t upmost;
241     } l;
242     struct {
243         uint64_t lower;
244         uint64_t upper;
245     } ll;
246 #endif
247 } CPU_QuadU;
248 
249 /* unaligned/endian-independent pointer access */
250 
251 /*
252  * the generic syntax is:
253  *
254  * load: ld{type}{sign}{size}_{endian}_p(ptr)
255  *
256  * store: st{type}{size}_{endian}_p(ptr, val)
257  *
258  * Note there are small differences with the softmmu access API!
259  *
260  * type is:
261  * (empty): integer access
262  *   f    : float access
263  *
264  * sign is:
265  * (empty): for 32 or 64 bit sizes (including floats and doubles)
266  *   u    : unsigned
267  *   s    : signed
268  *
269  * size is:
270  *   b: 8 bits
271  *   w: 16 bits
272  *   l: 32 bits
273  *   q: 64 bits
274  *
275  * endian is:
276  *   he   : host endian
277  *   be   : big endian
278  *   le   : little endian
279  *   te   : target endian
280  * (except for byte accesses, which have no endian infix).
281  *
282  * The target endian accessors are obviously only available to source
283  * files which are built per-target; they are defined in cpu-all.h.
284  *
285  * In all cases these functions take a host pointer.
286  * For accessors that take a guest address rather than a
287  * host address, see the cpu_{ld,st}_* accessors defined in
288  * cpu_ldst.h.
289  *
290  * For cases where the size to be used is not fixed at compile time,
291  * there are
292  *  stn_{endian}_p(ptr, sz, val)
293  * which stores @val to @ptr as an @endian-order number @sz bytes in size
294  * and
295  *  ldn_{endian}_p(ptr, sz)
296  * which loads @sz bytes from @ptr as an unsigned @endian-order number
297  * and returns it in a uint64_t.
298  */
299 
300 static inline int ldub_p(const void *ptr)
301 {
302     return *(uint8_t *)ptr;
303 }
304 
305 static inline int ldsb_p(const void *ptr)
306 {
307     return *(int8_t *)ptr;
308 }
309 
310 static inline void stb_p(void *ptr, uint8_t v)
311 {
312     *(uint8_t *)ptr = v;
313 }
314 
315 /*
316  * Any compiler worth its salt will turn these memcpy into native unaligned
317  * operations.  Thus we don't need to play games with packed attributes, or
318  * inline byte-by-byte stores.
319  * Some compilation environments (eg some fortify-source implementations)
320  * may intercept memcpy() in a way that defeats the compiler optimization,
321  * though, so we use __builtin_memcpy() to give ourselves the best chance
322  * of good performance.
323  */
324 
325 static inline int lduw_he_p(const void *ptr)
326 {
327     uint16_t r;
328     __builtin_memcpy(&r, ptr, sizeof(r));
329     return r;
330 }
331 
332 static inline int ldsw_he_p(const void *ptr)
333 {
334     int16_t r;
335     __builtin_memcpy(&r, ptr, sizeof(r));
336     return r;
337 }
338 
339 static inline void stw_he_p(void *ptr, uint16_t v)
340 {
341     __builtin_memcpy(ptr, &v, sizeof(v));
342 }
343 
344 static inline int ldl_he_p(const void *ptr)
345 {
346     int32_t r;
347     __builtin_memcpy(&r, ptr, sizeof(r));
348     return r;
349 }
350 
351 static inline void stl_he_p(void *ptr, uint32_t v)
352 {
353     __builtin_memcpy(ptr, &v, sizeof(v));
354 }
355 
356 static inline uint64_t ldq_he_p(const void *ptr)
357 {
358     uint64_t r;
359     __builtin_memcpy(&r, ptr, sizeof(r));
360     return r;
361 }
362 
363 static inline void stq_he_p(void *ptr, uint64_t v)
364 {
365     __builtin_memcpy(ptr, &v, sizeof(v));
366 }
367 
368 static inline int lduw_le_p(const void *ptr)
369 {
370     return (uint16_t)le_bswap(lduw_he_p(ptr), 16);
371 }
372 
373 static inline int ldsw_le_p(const void *ptr)
374 {
375     return (int16_t)le_bswap(lduw_he_p(ptr), 16);
376 }
377 
378 static inline int ldl_le_p(const void *ptr)
379 {
380     return le_bswap(ldl_he_p(ptr), 32);
381 }
382 
383 static inline uint64_t ldq_le_p(const void *ptr)
384 {
385     return le_bswap(ldq_he_p(ptr), 64);
386 }
387 
388 static inline void stw_le_p(void *ptr, uint16_t v)
389 {
390     stw_he_p(ptr, le_bswap(v, 16));
391 }
392 
393 static inline void stl_le_p(void *ptr, uint32_t v)
394 {
395     stl_he_p(ptr, le_bswap(v, 32));
396 }
397 
398 static inline void stq_le_p(void *ptr, uint64_t v)
399 {
400     stq_he_p(ptr, le_bswap(v, 64));
401 }
402 
403 /* float access */
404 
405 static inline float32 ldfl_le_p(const void *ptr)
406 {
407     CPU_FloatU u;
408     u.l = ldl_le_p(ptr);
409     return u.f;
410 }
411 
412 static inline void stfl_le_p(void *ptr, float32 v)
413 {
414     CPU_FloatU u;
415     u.f = v;
416     stl_le_p(ptr, u.l);
417 }
418 
419 static inline float64 ldfq_le_p(const void *ptr)
420 {
421     CPU_DoubleU u;
422     u.ll = ldq_le_p(ptr);
423     return u.d;
424 }
425 
426 static inline void stfq_le_p(void *ptr, float64 v)
427 {
428     CPU_DoubleU u;
429     u.d = v;
430     stq_le_p(ptr, u.ll);
431 }
432 
433 static inline int lduw_be_p(const void *ptr)
434 {
435     return (uint16_t)be_bswap(lduw_he_p(ptr), 16);
436 }
437 
438 static inline int ldsw_be_p(const void *ptr)
439 {
440     return (int16_t)be_bswap(lduw_he_p(ptr), 16);
441 }
442 
443 static inline int ldl_be_p(const void *ptr)
444 {
445     return be_bswap(ldl_he_p(ptr), 32);
446 }
447 
448 static inline uint64_t ldq_be_p(const void *ptr)
449 {
450     return be_bswap(ldq_he_p(ptr), 64);
451 }
452 
453 static inline void stw_be_p(void *ptr, uint16_t v)
454 {
455     stw_he_p(ptr, be_bswap(v, 16));
456 }
457 
458 static inline void stl_be_p(void *ptr, uint32_t v)
459 {
460     stl_he_p(ptr, be_bswap(v, 32));
461 }
462 
463 static inline void stq_be_p(void *ptr, uint64_t v)
464 {
465     stq_he_p(ptr, be_bswap(v, 64));
466 }
467 
468 /* float access */
469 
470 static inline float32 ldfl_be_p(const void *ptr)
471 {
472     CPU_FloatU u;
473     u.l = ldl_be_p(ptr);
474     return u.f;
475 }
476 
477 static inline void stfl_be_p(void *ptr, float32 v)
478 {
479     CPU_FloatU u;
480     u.f = v;
481     stl_be_p(ptr, u.l);
482 }
483 
484 static inline float64 ldfq_be_p(const void *ptr)
485 {
486     CPU_DoubleU u;
487     u.ll = ldq_be_p(ptr);
488     return u.d;
489 }
490 
491 static inline void stfq_be_p(void *ptr, float64 v)
492 {
493     CPU_DoubleU u;
494     u.d = v;
495     stq_be_p(ptr, u.ll);
496 }
497 
498 static inline unsigned long leul_to_cpu(unsigned long v)
499 {
500 #if HOST_LONG_BITS == 32
501     return le_bswap(v, 32);
502 #elif HOST_LONG_BITS == 64
503     return le_bswap(v, 64);
504 #else
505 # error Unknown sizeof long
506 #endif
507 }
508 
509 /* Store v to p as a sz byte value in host order */
510 #define DO_STN_LDN_P(END) \
511     static inline void stn_## END ## _p(void *ptr, int sz, uint64_t v)  \
512     {                                                                   \
513         switch (sz) {                                                   \
514         case 1:                                                         \
515             stb_p(ptr, v);                                              \
516             break;                                                      \
517         case 2:                                                         \
518             stw_ ## END ## _p(ptr, v);                                  \
519             break;                                                      \
520         case 4:                                                         \
521             stl_ ## END ## _p(ptr, v);                                  \
522             break;                                                      \
523         case 8:                                                         \
524             stq_ ## END ## _p(ptr, v);                                  \
525             break;                                                      \
526         default:                                                        \
527             g_assert_not_reached();                                     \
528         }                                                               \
529     }                                                                   \
530     static inline uint64_t ldn_## END ## _p(const void *ptr, int sz)    \
531     {                                                                   \
532         switch (sz) {                                                   \
533         case 1:                                                         \
534             return ldub_p(ptr);                                         \
535         case 2:                                                         \
536             return lduw_ ## END ## _p(ptr);                             \
537         case 4:                                                         \
538             return (uint32_t)ldl_ ## END ## _p(ptr);                    \
539         case 8:                                                         \
540             return ldq_ ## END ## _p(ptr);                              \
541         default:                                                        \
542             g_assert_not_reached();                                     \
543         }                                                               \
544     }
545 
546 DO_STN_LDN_P(he)
547 DO_STN_LDN_P(le)
548 DO_STN_LDN_P(be)
549 
550 #undef DO_STN_LDN_P
551 
552 #undef le_bswap
553 #undef be_bswap
554 #undef le_bswaps
555 #undef be_bswaps
556 
557 #endif /* BSWAP_H */
558