xref: /qemu/include/qemu/coroutine.h (revision 603476c2)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
20 
21 /**
22  * Coroutines are a mechanism for stack switching and can be used for
23  * cooperative userspace threading.  These functions provide a simple but
24  * useful flavor of coroutines that is suitable for writing sequential code,
25  * rather than callbacks, for operations that need to give up control while
26  * waiting for events to complete.
27  *
28  * These functions are re-entrant and may be used outside the global mutex.
29  */
30 
31 /**
32  * Mark a function that executes in coroutine context
33  *
34  * Functions that execute in coroutine context cannot be called directly from
35  * normal functions.  In the future it would be nice to enable compiler or
36  * static checker support for catching such errors.  This annotation might make
37  * it possible and in the meantime it serves as documentation.
38  *
39  * For example:
40  *
41  *   static void coroutine_fn foo(void) {
42  *       ....
43  *   }
44  */
45 #define coroutine_fn
46 
47 typedef struct Coroutine Coroutine;
48 
49 /**
50  * Coroutine entry point
51  *
52  * When the coroutine is entered for the first time, opaque is passed in as an
53  * argument.
54  *
55  * When this function returns, the coroutine is destroyed automatically and
56  * execution continues in the caller who last entered the coroutine.
57  */
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
59 
60 /**
61  * Create a new coroutine
62  *
63  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64  * The opaque argument is passed as the argument to the entry point.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
67 
68 /**
69  * Transfer control to a coroutine
70  */
71 void qemu_coroutine_enter(Coroutine *coroutine);
72 
73 /**
74  * Transfer control back to a coroutine's caller
75  *
76  * This function does not return until the coroutine is re-entered using
77  * qemu_coroutine_enter().
78  */
79 void coroutine_fn qemu_coroutine_yield(void);
80 
81 /**
82  * Get the currently executing coroutine
83  */
84 Coroutine *coroutine_fn qemu_coroutine_self(void);
85 
86 /**
87  * Return whether or not currently inside a coroutine
88  *
89  * This can be used to write functions that work both when in coroutine context
90  * and when not in coroutine context.  Note that such functions cannot use the
91  * coroutine_fn annotation since they work outside coroutine context.
92  */
93 bool qemu_in_coroutine(void);
94 
95 /**
96  * Return true if the coroutine is currently entered
97  *
98  * A coroutine is "entered" if it has not yielded from the current
99  * qemu_coroutine_enter() call used to run it.  This does not mean that the
100  * coroutine is currently executing code since it may have transferred control
101  * to another coroutine using qemu_coroutine_enter().
102  *
103  * When several coroutines enter each other there may be no way to know which
104  * ones have already been entered.  In such situations this function can be
105  * used to avoid recursively entering coroutines.
106  */
107 bool qemu_coroutine_entered(Coroutine *co);
108 
109 
110 /**
111  * CoQueues are a mechanism to queue coroutines in order to continue executing
112  * them later. They provide the fundamental primitives on which coroutine locks
113  * are built.
114  */
115 typedef struct CoQueue {
116     QSIMPLEQ_HEAD(, Coroutine) entries;
117 } CoQueue;
118 
119 /**
120  * Initialise a CoQueue. This must be called before any other operation is used
121  * on the CoQueue.
122  */
123 void qemu_co_queue_init(CoQueue *queue);
124 
125 /**
126  * Adds the current coroutine to the CoQueue and transfers control to the
127  * caller of the coroutine.
128  */
129 void coroutine_fn qemu_co_queue_wait(CoQueue *queue);
130 
131 /**
132  * Restarts the next coroutine in the CoQueue and removes it from the queue.
133  *
134  * Returns true if a coroutine was restarted, false if the queue is empty.
135  */
136 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
137 
138 /**
139  * Restarts all coroutines in the CoQueue and leaves the queue empty.
140  */
141 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
142 
143 /**
144  * Enter the next coroutine in the queue
145  */
146 bool qemu_co_enter_next(CoQueue *queue);
147 
148 /**
149  * Checks if the CoQueue is empty.
150  */
151 bool qemu_co_queue_empty(CoQueue *queue);
152 
153 
154 /**
155  * Provides a mutex that can be used to synchronise coroutines
156  */
157 typedef struct CoMutex {
158     bool locked;
159     Coroutine *holder;
160     CoQueue queue;
161 } CoMutex;
162 
163 /**
164  * Initialises a CoMutex. This must be called before any other operation is used
165  * on the CoMutex.
166  */
167 void qemu_co_mutex_init(CoMutex *mutex);
168 
169 /**
170  * Locks the mutex. If the lock cannot be taken immediately, control is
171  * transferred to the caller of the current coroutine.
172  */
173 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
174 
175 /**
176  * Unlocks the mutex and schedules the next coroutine that was waiting for this
177  * lock to be run.
178  */
179 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
180 
181 typedef struct CoRwlock {
182     bool writer;
183     int reader;
184     CoQueue queue;
185 } CoRwlock;
186 
187 /**
188  * Initialises a CoRwlock. This must be called before any other operation
189  * is used on the CoRwlock
190  */
191 void qemu_co_rwlock_init(CoRwlock *lock);
192 
193 /**
194  * Read locks the CoRwlock. If the lock cannot be taken immediately because
195  * of a parallel writer, control is transferred to the caller of the current
196  * coroutine.
197  */
198 void qemu_co_rwlock_rdlock(CoRwlock *lock);
199 
200 /**
201  * Write Locks the mutex. If the lock cannot be taken immediately because
202  * of a parallel reader, control is transferred to the caller of the current
203  * coroutine.
204  */
205 void qemu_co_rwlock_wrlock(CoRwlock *lock);
206 
207 /**
208  * Unlocks the read/write lock and schedules the next coroutine that was
209  * waiting for this lock to be run.
210  */
211 void qemu_co_rwlock_unlock(CoRwlock *lock);
212 
213 /**
214  * Yield the coroutine for a given duration
215  *
216  * Behaves similarly to co_sleep_ns(), but the sleeping coroutine will be
217  * resumed when using aio_poll().
218  */
219 void coroutine_fn co_aio_sleep_ns(AioContext *ctx, QEMUClockType type,
220                                   int64_t ns);
221 
222 /**
223  * Yield until a file descriptor becomes readable
224  *
225  * Note that this function clobbers the handlers for the file descriptor.
226  */
227 void coroutine_fn yield_until_fd_readable(int fd);
228 
229 #endif /* QEMU_COROUTINE_H */
230