xref: /qemu/include/qemu/coroutine.h (revision 6402cbbb)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
20 
21 /**
22  * Coroutines are a mechanism for stack switching and can be used for
23  * cooperative userspace threading.  These functions provide a simple but
24  * useful flavor of coroutines that is suitable for writing sequential code,
25  * rather than callbacks, for operations that need to give up control while
26  * waiting for events to complete.
27  *
28  * These functions are re-entrant and may be used outside the global mutex.
29  */
30 
31 /**
32  * Mark a function that executes in coroutine context
33  *
34  * Functions that execute in coroutine context cannot be called directly from
35  * normal functions.  In the future it would be nice to enable compiler or
36  * static checker support for catching such errors.  This annotation might make
37  * it possible and in the meantime it serves as documentation.
38  *
39  * For example:
40  *
41  *   static void coroutine_fn foo(void) {
42  *       ....
43  *   }
44  */
45 #define coroutine_fn
46 
47 typedef struct Coroutine Coroutine;
48 
49 /**
50  * Coroutine entry point
51  *
52  * When the coroutine is entered for the first time, opaque is passed in as an
53  * argument.
54  *
55  * When this function returns, the coroutine is destroyed automatically and
56  * execution continues in the caller who last entered the coroutine.
57  */
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
59 
60 /**
61  * Create a new coroutine
62  *
63  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64  * The opaque argument is passed as the argument to the entry point.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
67 
68 /**
69  * Transfer control to a coroutine
70  */
71 void qemu_coroutine_enter(Coroutine *coroutine);
72 
73 /**
74  * Transfer control to a coroutine if it's not active (i.e. part of the call
75  * stack of the running coroutine). Otherwise, do nothing.
76  */
77 void qemu_coroutine_enter_if_inactive(Coroutine *co);
78 
79 /**
80  * Transfer control to a coroutine and associate it with ctx
81  */
82 void qemu_aio_coroutine_enter(AioContext *ctx, Coroutine *co);
83 
84 /**
85  * Transfer control back to a coroutine's caller
86  *
87  * This function does not return until the coroutine is re-entered using
88  * qemu_coroutine_enter().
89  */
90 void coroutine_fn qemu_coroutine_yield(void);
91 
92 /**
93  * Get the currently executing coroutine
94  */
95 Coroutine *coroutine_fn qemu_coroutine_self(void);
96 
97 /**
98  * Return whether or not currently inside a coroutine
99  *
100  * This can be used to write functions that work both when in coroutine context
101  * and when not in coroutine context.  Note that such functions cannot use the
102  * coroutine_fn annotation since they work outside coroutine context.
103  */
104 bool qemu_in_coroutine(void);
105 
106 /**
107  * Return true if the coroutine is currently entered
108  *
109  * A coroutine is "entered" if it has not yielded from the current
110  * qemu_coroutine_enter() call used to run it.  This does not mean that the
111  * coroutine is currently executing code since it may have transferred control
112  * to another coroutine using qemu_coroutine_enter().
113  *
114  * When several coroutines enter each other there may be no way to know which
115  * ones have already been entered.  In such situations this function can be
116  * used to avoid recursively entering coroutines.
117  */
118 bool qemu_coroutine_entered(Coroutine *co);
119 
120 /**
121  * Provides a mutex that can be used to synchronise coroutines
122  */
123 struct CoWaitRecord;
124 typedef struct CoMutex {
125     /* Count of pending lockers; 0 for a free mutex, 1 for an
126      * uncontended mutex.
127      */
128     unsigned locked;
129 
130     /* Context that is holding the lock.  Useful to avoid spinning
131      * when two coroutines on the same AioContext try to get the lock. :)
132      */
133     AioContext *ctx;
134 
135     /* A queue of waiters.  Elements are added atomically in front of
136      * from_push.  to_pop is only populated, and popped from, by whoever
137      * is in charge of the next wakeup.  This can be an unlocker or,
138      * through the handoff protocol, a locker that is about to go to sleep.
139      */
140     QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
141 
142     unsigned handoff, sequence;
143 
144     Coroutine *holder;
145 } CoMutex;
146 
147 /**
148  * Initialises a CoMutex. This must be called before any other operation is used
149  * on the CoMutex.
150  */
151 void qemu_co_mutex_init(CoMutex *mutex);
152 
153 /**
154  * Locks the mutex. If the lock cannot be taken immediately, control is
155  * transferred to the caller of the current coroutine.
156  */
157 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
158 
159 /**
160  * Unlocks the mutex and schedules the next coroutine that was waiting for this
161  * lock to be run.
162  */
163 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
164 
165 
166 /**
167  * CoQueues are a mechanism to queue coroutines in order to continue executing
168  * them later.  They are similar to condition variables, but they need help
169  * from an external mutex in order to maintain thread-safety.
170  */
171 typedef struct CoQueue {
172     QSIMPLEQ_HEAD(, Coroutine) entries;
173 } CoQueue;
174 
175 /**
176  * Initialise a CoQueue. This must be called before any other operation is used
177  * on the CoQueue.
178  */
179 void qemu_co_queue_init(CoQueue *queue);
180 
181 /**
182  * Adds the current coroutine to the CoQueue and transfers control to the
183  * caller of the coroutine.  The mutex is unlocked during the wait and
184  * locked again afterwards.
185  */
186 void coroutine_fn qemu_co_queue_wait(CoQueue *queue, CoMutex *mutex);
187 
188 /**
189  * Restarts the next coroutine in the CoQueue and removes it from the queue.
190  *
191  * Returns true if a coroutine was restarted, false if the queue is empty.
192  */
193 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
194 
195 /**
196  * Restarts all coroutines in the CoQueue and leaves the queue empty.
197  */
198 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
199 
200 /**
201  * Enter the next coroutine in the queue
202  */
203 bool qemu_co_enter_next(CoQueue *queue);
204 
205 /**
206  * Checks if the CoQueue is empty.
207  */
208 bool qemu_co_queue_empty(CoQueue *queue);
209 
210 
211 typedef struct CoRwlock {
212     int pending_writer;
213     int reader;
214     CoMutex mutex;
215     CoQueue queue;
216 } CoRwlock;
217 
218 /**
219  * Initialises a CoRwlock. This must be called before any other operation
220  * is used on the CoRwlock
221  */
222 void qemu_co_rwlock_init(CoRwlock *lock);
223 
224 /**
225  * Read locks the CoRwlock. If the lock cannot be taken immediately because
226  * of a parallel writer, control is transferred to the caller of the current
227  * coroutine.
228  */
229 void qemu_co_rwlock_rdlock(CoRwlock *lock);
230 
231 /**
232  * Write Locks the CoRwlock from a reader.  This is a bit more efficient than
233  * @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
234  * However, if the lock cannot be upgraded immediately, control is transferred
235  * to the caller of the current coroutine.  Also, @qemu_co_rwlock_upgrade
236  * only overrides CoRwlock fairness if there are no concurrent readers, so
237  * another writer might run while @qemu_co_rwlock_upgrade blocks.
238  */
239 void qemu_co_rwlock_upgrade(CoRwlock *lock);
240 
241 /**
242  * Downgrades a write-side critical section to a reader.  Downgrading with
243  * @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
244  * followed by @qemu_co_rwlock_rdlock.  This makes it more efficient, but
245  * may also sometimes be necessary for correctness.
246  */
247 void qemu_co_rwlock_downgrade(CoRwlock *lock);
248 
249 /**
250  * Write Locks the mutex. If the lock cannot be taken immediately because
251  * of a parallel reader, control is transferred to the caller of the current
252  * coroutine.
253  */
254 void qemu_co_rwlock_wrlock(CoRwlock *lock);
255 
256 /**
257  * Unlocks the read/write lock and schedules the next coroutine that was
258  * waiting for this lock to be run.
259  */
260 void qemu_co_rwlock_unlock(CoRwlock *lock);
261 
262 /**
263  * Yield the coroutine for a given duration
264  *
265  * Behaves similarly to co_sleep_ns(), but the sleeping coroutine will be
266  * resumed when using aio_poll().
267  */
268 void coroutine_fn co_aio_sleep_ns(AioContext *ctx, QEMUClockType type,
269                                   int64_t ns);
270 
271 /**
272  * Yield until a file descriptor becomes readable
273  *
274  * Note that this function clobbers the handlers for the file descriptor.
275  */
276 void coroutine_fn yield_until_fd_readable(int fd);
277 
278 #endif /* QEMU_COROUTINE_H */
279