xref: /qemu/include/qemu/coroutine.h (revision 90ce6e26)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/typedefs.h"
19 #include "qemu/queue.h"
20 #include "qemu/timer.h"
21 
22 /**
23  * Coroutines are a mechanism for stack switching and can be used for
24  * cooperative userspace threading.  These functions provide a simple but
25  * useful flavor of coroutines that is suitable for writing sequential code,
26  * rather than callbacks, for operations that need to give up control while
27  * waiting for events to complete.
28  *
29  * These functions are re-entrant and may be used outside the global mutex.
30  */
31 
32 /**
33  * Mark a function that executes in coroutine context
34  *
35  * Functions that execute in coroutine context cannot be called directly from
36  * normal functions.  In the future it would be nice to enable compiler or
37  * static checker support for catching such errors.  This annotation might make
38  * it possible and in the meantime it serves as documentation.
39  *
40  * For example:
41  *
42  *   static void coroutine_fn foo(void) {
43  *       ....
44  *   }
45  */
46 #define coroutine_fn
47 
48 typedef struct Coroutine Coroutine;
49 
50 /**
51  * Coroutine entry point
52  *
53  * When the coroutine is entered for the first time, opaque is passed in as an
54  * argument.
55  *
56  * When this function returns, the coroutine is destroyed automatically and
57  * execution continues in the caller who last entered the coroutine.
58  */
59 typedef void coroutine_fn CoroutineEntry(void *opaque);
60 
61 /**
62  * Create a new coroutine
63  *
64  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry);
67 
68 /**
69  * Transfer control to a coroutine
70  *
71  * The opaque argument is passed as the argument to the entry point when
72  * entering the coroutine for the first time.  It is subsequently ignored.
73  */
74 void qemu_coroutine_enter(Coroutine *coroutine, void *opaque);
75 
76 /**
77  * Transfer control back to a coroutine's caller
78  *
79  * This function does not return until the coroutine is re-entered using
80  * qemu_coroutine_enter().
81  */
82 void coroutine_fn qemu_coroutine_yield(void);
83 
84 /**
85  * Get the currently executing coroutine
86  */
87 Coroutine *coroutine_fn qemu_coroutine_self(void);
88 
89 /**
90  * Return whether or not currently inside a coroutine
91  *
92  * This can be used to write functions that work both when in coroutine context
93  * and when not in coroutine context.  Note that such functions cannot use the
94  * coroutine_fn annotation since they work outside coroutine context.
95  */
96 bool qemu_in_coroutine(void);
97 
98 
99 
100 /**
101  * CoQueues are a mechanism to queue coroutines in order to continue executing
102  * them later. They provide the fundamental primitives on which coroutine locks
103  * are built.
104  */
105 typedef struct CoQueue {
106     QTAILQ_HEAD(, Coroutine) entries;
107 } CoQueue;
108 
109 /**
110  * Initialise a CoQueue. This must be called before any other operation is used
111  * on the CoQueue.
112  */
113 void qemu_co_queue_init(CoQueue *queue);
114 
115 /**
116  * Adds the current coroutine to the CoQueue and transfers control to the
117  * caller of the coroutine.
118  */
119 void coroutine_fn qemu_co_queue_wait(CoQueue *queue);
120 
121 /**
122  * Restarts the next coroutine in the CoQueue and removes it from the queue.
123  *
124  * Returns true if a coroutine was restarted, false if the queue is empty.
125  */
126 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
127 
128 /**
129  * Restarts all coroutines in the CoQueue and leaves the queue empty.
130  */
131 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
132 
133 /**
134  * Enter the next coroutine in the queue
135  */
136 bool qemu_co_enter_next(CoQueue *queue);
137 
138 /**
139  * Checks if the CoQueue is empty.
140  */
141 bool qemu_co_queue_empty(CoQueue *queue);
142 
143 
144 /**
145  * Provides a mutex that can be used to synchronise coroutines
146  */
147 typedef struct CoMutex {
148     bool locked;
149     CoQueue queue;
150 } CoMutex;
151 
152 /**
153  * Initialises a CoMutex. This must be called before any other operation is used
154  * on the CoMutex.
155  */
156 void qemu_co_mutex_init(CoMutex *mutex);
157 
158 /**
159  * Locks the mutex. If the lock cannot be taken immediately, control is
160  * transferred to the caller of the current coroutine.
161  */
162 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
163 
164 /**
165  * Unlocks the mutex and schedules the next coroutine that was waiting for this
166  * lock to be run.
167  */
168 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
169 
170 typedef struct CoRwlock {
171     bool writer;
172     int reader;
173     CoQueue queue;
174 } CoRwlock;
175 
176 /**
177  * Initialises a CoRwlock. This must be called before any other operation
178  * is used on the CoRwlock
179  */
180 void qemu_co_rwlock_init(CoRwlock *lock);
181 
182 /**
183  * Read locks the CoRwlock. If the lock cannot be taken immediately because
184  * of a parallel writer, control is transferred to the caller of the current
185  * coroutine.
186  */
187 void qemu_co_rwlock_rdlock(CoRwlock *lock);
188 
189 /**
190  * Write Locks the mutex. If the lock cannot be taken immediately because
191  * of a parallel reader, control is transferred to the caller of the current
192  * coroutine.
193  */
194 void qemu_co_rwlock_wrlock(CoRwlock *lock);
195 
196 /**
197  * Unlocks the read/write lock and schedules the next coroutine that was
198  * waiting for this lock to be run.
199  */
200 void qemu_co_rwlock_unlock(CoRwlock *lock);
201 
202 /**
203  * Yield the coroutine for a given duration
204  *
205  * Behaves similarly to co_sleep_ns(), but the sleeping coroutine will be
206  * resumed when using aio_poll().
207  */
208 void coroutine_fn co_aio_sleep_ns(AioContext *ctx, QEMUClockType type,
209                                   int64_t ns);
210 
211 /**
212  * Yield until a file descriptor becomes readable
213  *
214  * Note that this function clobbers the handlers for the file descriptor.
215  */
216 void coroutine_fn yield_until_fd_readable(int fd);
217 
218 #endif /* QEMU_COROUTINE_H */
219