xref: /qemu/include/qemu/coroutine.h (revision b2a3cbb8)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
20 
21 /**
22  * Coroutines are a mechanism for stack switching and can be used for
23  * cooperative userspace threading.  These functions provide a simple but
24  * useful flavor of coroutines that is suitable for writing sequential code,
25  * rather than callbacks, for operations that need to give up control while
26  * waiting for events to complete.
27  *
28  * These functions are re-entrant and may be used outside the global mutex.
29  */
30 
31 /**
32  * Mark a function that executes in coroutine context
33  *
34  * Functions that execute in coroutine context cannot be called directly from
35  * normal functions.  In the future it would be nice to enable compiler or
36  * static checker support for catching such errors.  This annotation might make
37  * it possible and in the meantime it serves as documentation.
38  *
39  * For example:
40  *
41  *   static void coroutine_fn foo(void) {
42  *       ....
43  *   }
44  */
45 #define coroutine_fn
46 
47 typedef struct Coroutine Coroutine;
48 
49 /**
50  * Coroutine entry point
51  *
52  * When the coroutine is entered for the first time, opaque is passed in as an
53  * argument.
54  *
55  * When this function returns, the coroutine is destroyed automatically and
56  * execution continues in the caller who last entered the coroutine.
57  */
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
59 
60 /**
61  * Create a new coroutine
62  *
63  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64  * The opaque argument is passed as the argument to the entry point.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
67 
68 /**
69  * Transfer control to a coroutine
70  */
71 void qemu_coroutine_enter(Coroutine *coroutine);
72 
73 /**
74  * Transfer control to a coroutine if it's not active (i.e. part of the call
75  * stack of the running coroutine). Otherwise, do nothing.
76  */
77 void qemu_coroutine_enter_if_inactive(Coroutine *co);
78 
79 /**
80  * Transfer control to a coroutine and associate it with ctx
81  */
82 void qemu_aio_coroutine_enter(AioContext *ctx, Coroutine *co);
83 
84 /**
85  * Transfer control back to a coroutine's caller
86  *
87  * This function does not return until the coroutine is re-entered using
88  * qemu_coroutine_enter().
89  */
90 void coroutine_fn qemu_coroutine_yield(void);
91 
92 /**
93  * Get the AioContext of the given coroutine
94  */
95 AioContext *qemu_coroutine_get_aio_context(Coroutine *co);
96 
97 /**
98  * Get the currently executing coroutine
99  */
100 Coroutine *qemu_coroutine_self(void);
101 
102 /**
103  * Return whether or not currently inside a coroutine
104  *
105  * This can be used to write functions that work both when in coroutine context
106  * and when not in coroutine context.  Note that such functions cannot use the
107  * coroutine_fn annotation since they work outside coroutine context.
108  */
109 bool qemu_in_coroutine(void);
110 
111 /**
112  * Return true if the coroutine is currently entered
113  *
114  * A coroutine is "entered" if it has not yielded from the current
115  * qemu_coroutine_enter() call used to run it.  This does not mean that the
116  * coroutine is currently executing code since it may have transferred control
117  * to another coroutine using qemu_coroutine_enter().
118  *
119  * When several coroutines enter each other there may be no way to know which
120  * ones have already been entered.  In such situations this function can be
121  * used to avoid recursively entering coroutines.
122  */
123 bool qemu_coroutine_entered(Coroutine *co);
124 
125 /**
126  * Provides a mutex that can be used to synchronise coroutines
127  */
128 struct CoWaitRecord;
129 struct CoMutex {
130     /* Count of pending lockers; 0 for a free mutex, 1 for an
131      * uncontended mutex.
132      */
133     unsigned locked;
134 
135     /* Context that is holding the lock.  Useful to avoid spinning
136      * when two coroutines on the same AioContext try to get the lock. :)
137      */
138     AioContext *ctx;
139 
140     /* A queue of waiters.  Elements are added atomically in front of
141      * from_push.  to_pop is only populated, and popped from, by whoever
142      * is in charge of the next wakeup.  This can be an unlocker or,
143      * through the handoff protocol, a locker that is about to go to sleep.
144      */
145     QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
146 
147     unsigned handoff, sequence;
148 
149     Coroutine *holder;
150 };
151 
152 /**
153  * Initialises a CoMutex. This must be called before any other operation is used
154  * on the CoMutex.
155  */
156 void qemu_co_mutex_init(CoMutex *mutex);
157 
158 /**
159  * Locks the mutex. If the lock cannot be taken immediately, control is
160  * transferred to the caller of the current coroutine.
161  */
162 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
163 
164 /**
165  * Unlocks the mutex and schedules the next coroutine that was waiting for this
166  * lock to be run.
167  */
168 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
169 
170 /**
171  * Assert that the current coroutine holds @mutex.
172  */
173 static inline coroutine_fn void qemu_co_mutex_assert_locked(CoMutex *mutex)
174 {
175     /*
176      * mutex->holder doesn't need any synchronisation if the assertion holds
177      * true because the mutex protects it. If it doesn't hold true, we still
178      * don't mind if another thread takes or releases mutex behind our back,
179      * because the condition will be false no matter whether we read NULL or
180      * the pointer for any other coroutine.
181      */
182     assert(qatomic_read(&mutex->locked) &&
183            mutex->holder == qemu_coroutine_self());
184 }
185 
186 /**
187  * CoQueues are a mechanism to queue coroutines in order to continue executing
188  * them later.  They are similar to condition variables, but they need help
189  * from an external mutex in order to maintain thread-safety.
190  */
191 typedef struct CoQueue {
192     QSIMPLEQ_HEAD(, Coroutine) entries;
193 } CoQueue;
194 
195 /**
196  * Initialise a CoQueue. This must be called before any other operation is used
197  * on the CoQueue.
198  */
199 void qemu_co_queue_init(CoQueue *queue);
200 
201 typedef enum {
202     /*
203      * Enqueue at front instead of back. Use this to re-queue a request when
204      * its wait condition is not satisfied after being woken up.
205      */
206     CO_QUEUE_WAIT_FRONT = 0x1,
207 } CoQueueWaitFlags;
208 
209 /**
210  * Adds the current coroutine to the CoQueue and transfers control to the
211  * caller of the coroutine.  The mutex is unlocked during the wait and
212  * locked again afterwards.
213  */
214 #define qemu_co_queue_wait(queue, lock) \
215     qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), 0)
216 #define qemu_co_queue_wait_flags(queue, lock, flags) \
217     qemu_co_queue_wait_impl(queue, QEMU_MAKE_LOCKABLE(lock), (flags))
218 void coroutine_fn qemu_co_queue_wait_impl(CoQueue *queue, QemuLockable *lock,
219                                           CoQueueWaitFlags flags);
220 
221 /**
222  * Removes the next coroutine from the CoQueue, and queue it to run after
223  * the currently-running coroutine yields.
224  * Returns true if a coroutine was removed, false if the queue is empty.
225  * Used from coroutine context, use qemu_co_enter_next outside.
226  */
227 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
228 
229 /**
230  * Empties the CoQueue and queues the coroutine to run after
231  * the currently-running coroutine yields.
232  * Used from coroutine context, use qemu_co_enter_all outside.
233  */
234 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
235 
236 /**
237  * Removes the next coroutine from the CoQueue, and wake it up.  Unlike
238  * qemu_co_queue_next, this function releases the lock during aio_co_wake
239  * because it is meant to be used outside coroutine context; in that case, the
240  * coroutine is entered immediately, before qemu_co_enter_next returns.
241  *
242  * If used in coroutine context, qemu_co_enter_next is equivalent to
243  * qemu_co_queue_next.
244  */
245 #define qemu_co_enter_next(queue, lock) \
246     qemu_co_enter_next_impl(queue, QEMU_MAKE_LOCKABLE(lock))
247 bool qemu_co_enter_next_impl(CoQueue *queue, QemuLockable *lock);
248 
249 /**
250  * Empties the CoQueue, waking the waiting coroutine one at a time.  Unlike
251  * qemu_co_queue_all, this function releases the lock during aio_co_wake
252  * because it is meant to be used outside coroutine context; in that case, the
253  * coroutine is entered immediately, before qemu_co_enter_all returns.
254  *
255  * If used in coroutine context, qemu_co_enter_all is equivalent to
256  * qemu_co_queue_all.
257  */
258 #define qemu_co_enter_all(queue, lock) \
259     qemu_co_enter_all_impl(queue, QEMU_MAKE_LOCKABLE(lock))
260 void qemu_co_enter_all_impl(CoQueue *queue, QemuLockable *lock);
261 
262 /**
263  * Checks if the CoQueue is empty.
264  */
265 bool qemu_co_queue_empty(CoQueue *queue);
266 
267 
268 typedef struct CoRwTicket CoRwTicket;
269 typedef struct CoRwlock {
270     CoMutex mutex;
271 
272     /* Number of readers, or -1 if owned for writing.  */
273     int owners;
274 
275     /* Waiting coroutines.  */
276     QSIMPLEQ_HEAD(, CoRwTicket) tickets;
277 } CoRwlock;
278 
279 /**
280  * Initialises a CoRwlock. This must be called before any other operation
281  * is used on the CoRwlock
282  */
283 void qemu_co_rwlock_init(CoRwlock *lock);
284 
285 /**
286  * Read locks the CoRwlock. If the lock cannot be taken immediately because
287  * of a parallel writer, control is transferred to the caller of the current
288  * coroutine.
289  */
290 void coroutine_fn qemu_co_rwlock_rdlock(CoRwlock *lock);
291 
292 /**
293  * Write Locks the CoRwlock from a reader.  This is a bit more efficient than
294  * @qemu_co_rwlock_unlock followed by a separate @qemu_co_rwlock_wrlock.
295  * Note that if the lock cannot be upgraded immediately, control is transferred
296  * to the caller of the current coroutine; another writer might run while
297  * @qemu_co_rwlock_upgrade blocks.
298  */
299 void coroutine_fn qemu_co_rwlock_upgrade(CoRwlock *lock);
300 
301 /**
302  * Downgrades a write-side critical section to a reader.  Downgrading with
303  * @qemu_co_rwlock_downgrade never blocks, unlike @qemu_co_rwlock_unlock
304  * followed by @qemu_co_rwlock_rdlock.  This makes it more efficient, but
305  * may also sometimes be necessary for correctness.
306  */
307 void coroutine_fn qemu_co_rwlock_downgrade(CoRwlock *lock);
308 
309 /**
310  * Write Locks the mutex. If the lock cannot be taken immediately because
311  * of a parallel reader, control is transferred to the caller of the current
312  * coroutine.
313  */
314 void coroutine_fn qemu_co_rwlock_wrlock(CoRwlock *lock);
315 
316 /**
317  * Unlocks the read/write lock and schedules the next coroutine that was
318  * waiting for this lock to be run.
319  */
320 void coroutine_fn qemu_co_rwlock_unlock(CoRwlock *lock);
321 
322 typedef struct QemuCoSleep {
323     Coroutine *to_wake;
324 } QemuCoSleep;
325 
326 /**
327  * Yield the coroutine for a given duration. Initializes @w so that,
328  * during this yield, it can be passed to qemu_co_sleep_wake() to
329  * terminate the sleep.
330  */
331 void coroutine_fn qemu_co_sleep_ns_wakeable(QemuCoSleep *w,
332                                             QEMUClockType type, int64_t ns);
333 
334 /**
335  * Yield the coroutine until the next call to qemu_co_sleep_wake.
336  */
337 void coroutine_fn qemu_co_sleep(QemuCoSleep *w);
338 
339 static inline void coroutine_fn qemu_co_sleep_ns(QEMUClockType type, int64_t ns)
340 {
341     QemuCoSleep w = { 0 };
342     qemu_co_sleep_ns_wakeable(&w, type, ns);
343 }
344 
345 typedef void CleanupFunc(void *opaque);
346 /**
347  * Run entry in a coroutine and start timer. Wait for entry to finish or for
348  * timer to elapse, what happen first. If entry finished, return 0, if timer
349  * elapsed earlier, return -ETIMEDOUT.
350  *
351  * Be careful, entry execution is not canceled, user should handle it somehow.
352  * If @clean is provided, it's called after coroutine finish if timeout
353  * happened.
354  */
355 int coroutine_fn qemu_co_timeout(CoroutineEntry *entry, void *opaque,
356                                  uint64_t timeout_ns, CleanupFunc clean);
357 
358 /**
359  * Wake a coroutine if it is sleeping in qemu_co_sleep_ns. The timer will be
360  * deleted. @sleep_state must be the variable whose address was given to
361  * qemu_co_sleep_ns() and should be checked to be non-NULL before calling
362  * qemu_co_sleep_wake().
363  */
364 void qemu_co_sleep_wake(QemuCoSleep *w);
365 
366 /**
367  * Yield until a file descriptor becomes readable
368  *
369  * Note that this function clobbers the handlers for the file descriptor.
370  */
371 void coroutine_fn yield_until_fd_readable(int fd);
372 
373 /**
374  * Increase coroutine pool size
375  */
376 void qemu_coroutine_inc_pool_size(unsigned int additional_pool_size);
377 
378 /**
379  * Decrease coroutine pool size
380  */
381 void qemu_coroutine_dec_pool_size(unsigned int additional_pool_size);
382 
383 #include "qemu/lockable.h"
384 
385 /**
386  * Sends a (part of) iovec down a socket, yielding when the socket is full, or
387  * Receives data into a (part of) iovec from a socket,
388  * yielding when there is no data in the socket.
389  * The same interface as qemu_sendv_recvv(), with added yielding.
390  * XXX should mark these as coroutine_fn
391  */
392 ssize_t coroutine_fn qemu_co_sendv_recvv(int sockfd, struct iovec *iov,
393                                          unsigned iov_cnt, size_t offset,
394                                          size_t bytes, bool do_send);
395 #define qemu_co_recvv(sockfd, iov, iov_cnt, offset, bytes) \
396   qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, false)
397 #define qemu_co_sendv(sockfd, iov, iov_cnt, offset, bytes) \
398   qemu_co_sendv_recvv(sockfd, iov, iov_cnt, offset, bytes, true)
399 
400 /**
401  * The same as above, but with just a single buffer
402  */
403 ssize_t coroutine_fn qemu_co_send_recv(int sockfd, void *buf, size_t bytes,
404                                        bool do_send);
405 #define qemu_co_recv(sockfd, buf, bytes) \
406   qemu_co_send_recv(sockfd, buf, bytes, false)
407 #define qemu_co_send(sockfd, buf, bytes) \
408   qemu_co_send_recv(sockfd, buf, bytes, true)
409 
410 #endif /* QEMU_COROUTINE_H */
411