xref: /qemu/include/qemu/coroutine.h (revision b30d1886)
1 /*
2  * QEMU coroutine implementation
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Stefan Hajnoczi    <stefanha@linux.vnet.ibm.com>
8  *  Kevin Wolf         <kwolf@redhat.com>
9  *
10  * This work is licensed under the terms of the GNU LGPL, version 2 or later.
11  * See the COPYING.LIB file in the top-level directory.
12  *
13  */
14 
15 #ifndef QEMU_COROUTINE_H
16 #define QEMU_COROUTINE_H
17 
18 #include "qemu/queue.h"
19 #include "qemu/timer.h"
20 
21 /**
22  * Coroutines are a mechanism for stack switching and can be used for
23  * cooperative userspace threading.  These functions provide a simple but
24  * useful flavor of coroutines that is suitable for writing sequential code,
25  * rather than callbacks, for operations that need to give up control while
26  * waiting for events to complete.
27  *
28  * These functions are re-entrant and may be used outside the global mutex.
29  */
30 
31 /**
32  * Mark a function that executes in coroutine context
33  *
34  * Functions that execute in coroutine context cannot be called directly from
35  * normal functions.  In the future it would be nice to enable compiler or
36  * static checker support for catching such errors.  This annotation might make
37  * it possible and in the meantime it serves as documentation.
38  *
39  * For example:
40  *
41  *   static void coroutine_fn foo(void) {
42  *       ....
43  *   }
44  */
45 #define coroutine_fn
46 
47 typedef struct Coroutine Coroutine;
48 
49 /**
50  * Coroutine entry point
51  *
52  * When the coroutine is entered for the first time, opaque is passed in as an
53  * argument.
54  *
55  * When this function returns, the coroutine is destroyed automatically and
56  * execution continues in the caller who last entered the coroutine.
57  */
58 typedef void coroutine_fn CoroutineEntry(void *opaque);
59 
60 /**
61  * Create a new coroutine
62  *
63  * Use qemu_coroutine_enter() to actually transfer control to the coroutine.
64  * The opaque argument is passed as the argument to the entry point.
65  */
66 Coroutine *qemu_coroutine_create(CoroutineEntry *entry, void *opaque);
67 
68 /**
69  * Transfer control to a coroutine
70  */
71 void qemu_coroutine_enter(Coroutine *coroutine);
72 
73 /**
74  * Transfer control to a coroutine if it's not active (i.e. part of the call
75  * stack of the running coroutine). Otherwise, do nothing.
76  */
77 void qemu_coroutine_enter_if_inactive(Coroutine *co);
78 
79 /**
80  * Transfer control back to a coroutine's caller
81  *
82  * This function does not return until the coroutine is re-entered using
83  * qemu_coroutine_enter().
84  */
85 void coroutine_fn qemu_coroutine_yield(void);
86 
87 /**
88  * Get the currently executing coroutine
89  */
90 Coroutine *coroutine_fn qemu_coroutine_self(void);
91 
92 /**
93  * Return whether or not currently inside a coroutine
94  *
95  * This can be used to write functions that work both when in coroutine context
96  * and when not in coroutine context.  Note that such functions cannot use the
97  * coroutine_fn annotation since they work outside coroutine context.
98  */
99 bool qemu_in_coroutine(void);
100 
101 /**
102  * Return true if the coroutine is currently entered
103  *
104  * A coroutine is "entered" if it has not yielded from the current
105  * qemu_coroutine_enter() call used to run it.  This does not mean that the
106  * coroutine is currently executing code since it may have transferred control
107  * to another coroutine using qemu_coroutine_enter().
108  *
109  * When several coroutines enter each other there may be no way to know which
110  * ones have already been entered.  In such situations this function can be
111  * used to avoid recursively entering coroutines.
112  */
113 bool qemu_coroutine_entered(Coroutine *co);
114 
115 /**
116  * Provides a mutex that can be used to synchronise coroutines
117  */
118 struct CoWaitRecord;
119 typedef struct CoMutex {
120     /* Count of pending lockers; 0 for a free mutex, 1 for an
121      * uncontended mutex.
122      */
123     unsigned locked;
124 
125     /* Context that is holding the lock.  Useful to avoid spinning
126      * when two coroutines on the same AioContext try to get the lock. :)
127      */
128     AioContext *ctx;
129 
130     /* A queue of waiters.  Elements are added atomically in front of
131      * from_push.  to_pop is only populated, and popped from, by whoever
132      * is in charge of the next wakeup.  This can be an unlocker or,
133      * through the handoff protocol, a locker that is about to go to sleep.
134      */
135     QSLIST_HEAD(, CoWaitRecord) from_push, to_pop;
136 
137     unsigned handoff, sequence;
138 
139     Coroutine *holder;
140 } CoMutex;
141 
142 /**
143  * Initialises a CoMutex. This must be called before any other operation is used
144  * on the CoMutex.
145  */
146 void qemu_co_mutex_init(CoMutex *mutex);
147 
148 /**
149  * Locks the mutex. If the lock cannot be taken immediately, control is
150  * transferred to the caller of the current coroutine.
151  */
152 void coroutine_fn qemu_co_mutex_lock(CoMutex *mutex);
153 
154 /**
155  * Unlocks the mutex and schedules the next coroutine that was waiting for this
156  * lock to be run.
157  */
158 void coroutine_fn qemu_co_mutex_unlock(CoMutex *mutex);
159 
160 
161 /**
162  * CoQueues are a mechanism to queue coroutines in order to continue executing
163  * them later.  They are similar to condition variables, but they need help
164  * from an external mutex in order to maintain thread-safety.
165  */
166 typedef struct CoQueue {
167     QSIMPLEQ_HEAD(, Coroutine) entries;
168 } CoQueue;
169 
170 /**
171  * Initialise a CoQueue. This must be called before any other operation is used
172  * on the CoQueue.
173  */
174 void qemu_co_queue_init(CoQueue *queue);
175 
176 /**
177  * Adds the current coroutine to the CoQueue and transfers control to the
178  * caller of the coroutine.  The mutex is unlocked during the wait and
179  * locked again afterwards.
180  */
181 void coroutine_fn qemu_co_queue_wait(CoQueue *queue, CoMutex *mutex);
182 
183 /**
184  * Restarts the next coroutine in the CoQueue and removes it from the queue.
185  *
186  * Returns true if a coroutine was restarted, false if the queue is empty.
187  */
188 bool coroutine_fn qemu_co_queue_next(CoQueue *queue);
189 
190 /**
191  * Restarts all coroutines in the CoQueue and leaves the queue empty.
192  */
193 void coroutine_fn qemu_co_queue_restart_all(CoQueue *queue);
194 
195 /**
196  * Enter the next coroutine in the queue
197  */
198 bool qemu_co_enter_next(CoQueue *queue);
199 
200 /**
201  * Checks if the CoQueue is empty.
202  */
203 bool qemu_co_queue_empty(CoQueue *queue);
204 
205 
206 typedef struct CoRwlock {
207     int pending_writer;
208     int reader;
209     CoMutex mutex;
210     CoQueue queue;
211 } CoRwlock;
212 
213 /**
214  * Initialises a CoRwlock. This must be called before any other operation
215  * is used on the CoRwlock
216  */
217 void qemu_co_rwlock_init(CoRwlock *lock);
218 
219 /**
220  * Read locks the CoRwlock. If the lock cannot be taken immediately because
221  * of a parallel writer, control is transferred to the caller of the current
222  * coroutine.
223  */
224 void qemu_co_rwlock_rdlock(CoRwlock *lock);
225 
226 /**
227  * Write Locks the mutex. If the lock cannot be taken immediately because
228  * of a parallel reader, control is transferred to the caller of the current
229  * coroutine.
230  */
231 void qemu_co_rwlock_wrlock(CoRwlock *lock);
232 
233 /**
234  * Unlocks the read/write lock and schedules the next coroutine that was
235  * waiting for this lock to be run.
236  */
237 void qemu_co_rwlock_unlock(CoRwlock *lock);
238 
239 /**
240  * Yield the coroutine for a given duration
241  *
242  * Behaves similarly to co_sleep_ns(), but the sleeping coroutine will be
243  * resumed when using aio_poll().
244  */
245 void coroutine_fn co_aio_sleep_ns(AioContext *ctx, QEMUClockType type,
246                                   int64_t ns);
247 
248 /**
249  * Yield until a file descriptor becomes readable
250  *
251  * Note that this function clobbers the handlers for the file descriptor.
252  */
253 void coroutine_fn yield_until_fd_readable(int fd);
254 
255 #endif /* QEMU_COROUTINE_H */
256