xref: /qemu/include/qemu/host-utils.h (revision b355f08a)
1 /*
2  * Utility compute operations used by translated code.
3  *
4  * Copyright (c) 2007 Thiemo Seufer
5  * Copyright (c) 2007 Jocelyn Mayer
6  *
7  * Permission is hereby granted, free of charge, to any person obtaining a copy
8  * of this software and associated documentation files (the "Software"), to deal
9  * in the Software without restriction, including without limitation the rights
10  * to use, copy, modify, merge, publish, distribute, sublicense, and/or sell
11  * copies of the Software, and to permit persons to whom the Software is
12  * furnished to do so, subject to the following conditions:
13  *
14  * The above copyright notice and this permission notice shall be included in
15  * all copies or substantial portions of the Software.
16  *
17  * THE SOFTWARE IS PROVIDED "AS IS", WITHOUT WARRANTY OF ANY KIND, EXPRESS OR
18  * IMPLIED, INCLUDING BUT NOT LIMITED TO THE WARRANTIES OF MERCHANTABILITY,
19  * FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT. IN NO EVENT SHALL
20  * THE AUTHORS OR COPYRIGHT HOLDERS BE LIABLE FOR ANY CLAIM, DAMAGES OR OTHER
21  * LIABILITY, WHETHER IN AN ACTION OF CONTRACT, TORT OR OTHERWISE, ARISING FROM,
22  * OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN
23  * THE SOFTWARE.
24  */
25 
26 #ifndef HOST_UTILS_H
27 #define HOST_UTILS_H
28 
29 #include "qemu/compiler.h"
30 #include "qemu/bswap.h"
31 
32 #ifdef CONFIG_INT128
33 static inline void mulu64(uint64_t *plow, uint64_t *phigh,
34                           uint64_t a, uint64_t b)
35 {
36     __uint128_t r = (__uint128_t)a * b;
37     *plow = r;
38     *phigh = r >> 64;
39 }
40 
41 static inline void muls64(uint64_t *plow, uint64_t *phigh,
42                           int64_t a, int64_t b)
43 {
44     __int128_t r = (__int128_t)a * b;
45     *plow = r;
46     *phigh = r >> 64;
47 }
48 
49 /* compute with 96 bit intermediate result: (a*b)/c */
50 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
51 {
52     return (__int128_t)a * b / c;
53 }
54 
55 static inline int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor)
56 {
57     if (divisor == 0) {
58         return 1;
59     } else {
60         __uint128_t dividend = ((__uint128_t)*phigh << 64) | *plow;
61         __uint128_t result = dividend / divisor;
62         *plow = result;
63         *phigh = dividend % divisor;
64         return result > UINT64_MAX;
65     }
66 }
67 
68 static inline int divs128(int64_t *plow, int64_t *phigh, int64_t divisor)
69 {
70     if (divisor == 0) {
71         return 1;
72     } else {
73         __int128_t dividend = ((__int128_t)*phigh << 64) | *plow;
74         __int128_t result = dividend / divisor;
75         *plow = result;
76         *phigh = dividend % divisor;
77         return result != *plow;
78     }
79 }
80 #else
81 void muls64(uint64_t *plow, uint64_t *phigh, int64_t a, int64_t b);
82 void mulu64(uint64_t *plow, uint64_t *phigh, uint64_t a, uint64_t b);
83 int divu128(uint64_t *plow, uint64_t *phigh, uint64_t divisor);
84 int divs128(int64_t *plow, int64_t *phigh, int64_t divisor);
85 
86 static inline uint64_t muldiv64(uint64_t a, uint32_t b, uint32_t c)
87 {
88     union {
89         uint64_t ll;
90         struct {
91 #ifdef HOST_WORDS_BIGENDIAN
92             uint32_t high, low;
93 #else
94             uint32_t low, high;
95 #endif
96         } l;
97     } u, res;
98     uint64_t rl, rh;
99 
100     u.ll = a;
101     rl = (uint64_t)u.l.low * (uint64_t)b;
102     rh = (uint64_t)u.l.high * (uint64_t)b;
103     rh += (rl >> 32);
104     res.l.high = rh / c;
105     res.l.low = (((rh % c) << 32) + (rl & 0xffffffff)) / c;
106     return res.ll;
107 }
108 #endif
109 
110 /**
111  * clz32 - count leading zeros in a 32-bit value.
112  * @val: The value to search
113  *
114  * Returns 32 if the value is zero.  Note that the GCC builtin is
115  * undefined if the value is zero.
116  */
117 static inline int clz32(uint32_t val)
118 {
119     return val ? __builtin_clz(val) : 32;
120 }
121 
122 /**
123  * clo32 - count leading ones in a 32-bit value.
124  * @val: The value to search
125  *
126  * Returns 32 if the value is -1.
127  */
128 static inline int clo32(uint32_t val)
129 {
130     return clz32(~val);
131 }
132 
133 /**
134  * clz64 - count leading zeros in a 64-bit value.
135  * @val: The value to search
136  *
137  * Returns 64 if the value is zero.  Note that the GCC builtin is
138  * undefined if the value is zero.
139  */
140 static inline int clz64(uint64_t val)
141 {
142     return val ? __builtin_clzll(val) : 64;
143 }
144 
145 /**
146  * clo64 - count leading ones in a 64-bit value.
147  * @val: The value to search
148  *
149  * Returns 64 if the value is -1.
150  */
151 static inline int clo64(uint64_t val)
152 {
153     return clz64(~val);
154 }
155 
156 /**
157  * ctz32 - count trailing zeros in a 32-bit value.
158  * @val: The value to search
159  *
160  * Returns 32 if the value is zero.  Note that the GCC builtin is
161  * undefined if the value is zero.
162  */
163 static inline int ctz32(uint32_t val)
164 {
165     return val ? __builtin_ctz(val) : 32;
166 }
167 
168 /**
169  * cto32 - count trailing ones in a 32-bit value.
170  * @val: The value to search
171  *
172  * Returns 32 if the value is -1.
173  */
174 static inline int cto32(uint32_t val)
175 {
176     return ctz32(~val);
177 }
178 
179 /**
180  * ctz64 - count trailing zeros in a 64-bit value.
181  * @val: The value to search
182  *
183  * Returns 64 if the value is zero.  Note that the GCC builtin is
184  * undefined if the value is zero.
185  */
186 static inline int ctz64(uint64_t val)
187 {
188     return val ? __builtin_ctzll(val) : 64;
189 }
190 
191 /**
192  * cto64 - count trailing ones in a 64-bit value.
193  * @val: The value to search
194  *
195  * Returns 64 if the value is -1.
196  */
197 static inline int cto64(uint64_t val)
198 {
199     return ctz64(~val);
200 }
201 
202 /**
203  * clrsb32 - count leading redundant sign bits in a 32-bit value.
204  * @val: The value to search
205  *
206  * Returns the number of bits following the sign bit that are equal to it.
207  * No special cases; output range is [0-31].
208  */
209 static inline int clrsb32(uint32_t val)
210 {
211 #if __has_builtin(__builtin_clrsb) || !defined(__clang__)
212     return __builtin_clrsb(val);
213 #else
214     return clz32(val ^ ((int32_t)val >> 1)) - 1;
215 #endif
216 }
217 
218 /**
219  * clrsb64 - count leading redundant sign bits in a 64-bit value.
220  * @val: The value to search
221  *
222  * Returns the number of bits following the sign bit that are equal to it.
223  * No special cases; output range is [0-63].
224  */
225 static inline int clrsb64(uint64_t val)
226 {
227 #if __has_builtin(__builtin_clrsbll) || !defined(__clang__)
228     return __builtin_clrsbll(val);
229 #else
230     return clz64(val ^ ((int64_t)val >> 1)) - 1;
231 #endif
232 }
233 
234 /**
235  * ctpop8 - count the population of one bits in an 8-bit value.
236  * @val: The value to search
237  */
238 static inline int ctpop8(uint8_t val)
239 {
240     return __builtin_popcount(val);
241 }
242 
243 /**
244  * ctpop16 - count the population of one bits in a 16-bit value.
245  * @val: The value to search
246  */
247 static inline int ctpop16(uint16_t val)
248 {
249     return __builtin_popcount(val);
250 }
251 
252 /**
253  * ctpop32 - count the population of one bits in a 32-bit value.
254  * @val: The value to search
255  */
256 static inline int ctpop32(uint32_t val)
257 {
258     return __builtin_popcount(val);
259 }
260 
261 /**
262  * ctpop64 - count the population of one bits in a 64-bit value.
263  * @val: The value to search
264  */
265 static inline int ctpop64(uint64_t val)
266 {
267     return __builtin_popcountll(val);
268 }
269 
270 /**
271  * revbit8 - reverse the bits in an 8-bit value.
272  * @x: The value to modify.
273  */
274 static inline uint8_t revbit8(uint8_t x)
275 {
276 #if __has_builtin(__builtin_bitreverse8)
277     return __builtin_bitreverse8(x);
278 #else
279     /* Assign the correct nibble position.  */
280     x = ((x & 0xf0) >> 4)
281       | ((x & 0x0f) << 4);
282     /* Assign the correct bit position.  */
283     x = ((x & 0x88) >> 3)
284       | ((x & 0x44) >> 1)
285       | ((x & 0x22) << 1)
286       | ((x & 0x11) << 3);
287     return x;
288 #endif
289 }
290 
291 /**
292  * revbit16 - reverse the bits in a 16-bit value.
293  * @x: The value to modify.
294  */
295 static inline uint16_t revbit16(uint16_t x)
296 {
297 #if __has_builtin(__builtin_bitreverse16)
298     return __builtin_bitreverse16(x);
299 #else
300     /* Assign the correct byte position.  */
301     x = bswap16(x);
302     /* Assign the correct nibble position.  */
303     x = ((x & 0xf0f0) >> 4)
304       | ((x & 0x0f0f) << 4);
305     /* Assign the correct bit position.  */
306     x = ((x & 0x8888) >> 3)
307       | ((x & 0x4444) >> 1)
308       | ((x & 0x2222) << 1)
309       | ((x & 0x1111) << 3);
310     return x;
311 #endif
312 }
313 
314 /**
315  * revbit32 - reverse the bits in a 32-bit value.
316  * @x: The value to modify.
317  */
318 static inline uint32_t revbit32(uint32_t x)
319 {
320 #if __has_builtin(__builtin_bitreverse32)
321     return __builtin_bitreverse32(x);
322 #else
323     /* Assign the correct byte position.  */
324     x = bswap32(x);
325     /* Assign the correct nibble position.  */
326     x = ((x & 0xf0f0f0f0u) >> 4)
327       | ((x & 0x0f0f0f0fu) << 4);
328     /* Assign the correct bit position.  */
329     x = ((x & 0x88888888u) >> 3)
330       | ((x & 0x44444444u) >> 1)
331       | ((x & 0x22222222u) << 1)
332       | ((x & 0x11111111u) << 3);
333     return x;
334 #endif
335 }
336 
337 /**
338  * revbit64 - reverse the bits in a 64-bit value.
339  * @x: The value to modify.
340  */
341 static inline uint64_t revbit64(uint64_t x)
342 {
343 #if __has_builtin(__builtin_bitreverse64)
344     return __builtin_bitreverse64(x);
345 #else
346     /* Assign the correct byte position.  */
347     x = bswap64(x);
348     /* Assign the correct nibble position.  */
349     x = ((x & 0xf0f0f0f0f0f0f0f0ull) >> 4)
350       | ((x & 0x0f0f0f0f0f0f0f0full) << 4);
351     /* Assign the correct bit position.  */
352     x = ((x & 0x8888888888888888ull) >> 3)
353       | ((x & 0x4444444444444444ull) >> 1)
354       | ((x & 0x2222222222222222ull) << 1)
355       | ((x & 0x1111111111111111ull) << 3);
356     return x;
357 #endif
358 }
359 
360 /**
361  * sadd32_overflow - addition with overflow indication
362  * @x, @y: addends
363  * @ret: Output for sum
364  *
365  * Computes *@ret = @x + @y, and returns true if and only if that
366  * value has been truncated.
367  */
368 static inline bool sadd32_overflow(int32_t x, int32_t y, int32_t *ret)
369 {
370 #if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
371     return __builtin_add_overflow(x, y, ret);
372 #else
373     *ret = x + y;
374     return ((*ret ^ x) & ~(x ^ y)) < 0;
375 #endif
376 }
377 
378 /**
379  * sadd64_overflow - addition with overflow indication
380  * @x, @y: addends
381  * @ret: Output for sum
382  *
383  * Computes *@ret = @x + @y, and returns true if and only if that
384  * value has been truncated.
385  */
386 static inline bool sadd64_overflow(int64_t x, int64_t y, int64_t *ret)
387 {
388 #if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
389     return __builtin_add_overflow(x, y, ret);
390 #else
391     *ret = x + y;
392     return ((*ret ^ x) & ~(x ^ y)) < 0;
393 #endif
394 }
395 
396 /**
397  * uadd32_overflow - addition with overflow indication
398  * @x, @y: addends
399  * @ret: Output for sum
400  *
401  * Computes *@ret = @x + @y, and returns true if and only if that
402  * value has been truncated.
403  */
404 static inline bool uadd32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
405 {
406 #if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
407     return __builtin_add_overflow(x, y, ret);
408 #else
409     *ret = x + y;
410     return *ret < x;
411 #endif
412 }
413 
414 /**
415  * uadd64_overflow - addition with overflow indication
416  * @x, @y: addends
417  * @ret: Output for sum
418  *
419  * Computes *@ret = @x + @y, and returns true if and only if that
420  * value has been truncated.
421  */
422 static inline bool uadd64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
423 {
424 #if __has_builtin(__builtin_add_overflow) || __GNUC__ >= 5
425     return __builtin_add_overflow(x, y, ret);
426 #else
427     *ret = x + y;
428     return *ret < x;
429 #endif
430 }
431 
432 /**
433  * ssub32_overflow - subtraction with overflow indication
434  * @x: Minuend
435  * @y: Subtrahend
436  * @ret: Output for difference
437  *
438  * Computes *@ret = @x - @y, and returns true if and only if that
439  * value has been truncated.
440  */
441 static inline bool ssub32_overflow(int32_t x, int32_t y, int32_t *ret)
442 {
443 #if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
444     return __builtin_sub_overflow(x, y, ret);
445 #else
446     *ret = x - y;
447     return ((*ret ^ x) & (x ^ y)) < 0;
448 #endif
449 }
450 
451 /**
452  * ssub64_overflow - subtraction with overflow indication
453  * @x: Minuend
454  * @y: Subtrahend
455  * @ret: Output for sum
456  *
457  * Computes *@ret = @x - @y, and returns true if and only if that
458  * value has been truncated.
459  */
460 static inline bool ssub64_overflow(int64_t x, int64_t y, int64_t *ret)
461 {
462 #if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
463     return __builtin_sub_overflow(x, y, ret);
464 #else
465     *ret = x - y;
466     return ((*ret ^ x) & (x ^ y)) < 0;
467 #endif
468 }
469 
470 /**
471  * usub32_overflow - subtraction with overflow indication
472  * @x: Minuend
473  * @y: Subtrahend
474  * @ret: Output for sum
475  *
476  * Computes *@ret = @x - @y, and returns true if and only if that
477  * value has been truncated.
478  */
479 static inline bool usub32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
480 {
481 #if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
482     return __builtin_sub_overflow(x, y, ret);
483 #else
484     *ret = x - y;
485     return x < y;
486 #endif
487 }
488 
489 /**
490  * usub64_overflow - subtraction with overflow indication
491  * @x: Minuend
492  * @y: Subtrahend
493  * @ret: Output for sum
494  *
495  * Computes *@ret = @x - @y, and returns true if and only if that
496  * value has been truncated.
497  */
498 static inline bool usub64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
499 {
500 #if __has_builtin(__builtin_sub_overflow) || __GNUC__ >= 5
501     return __builtin_sub_overflow(x, y, ret);
502 #else
503     *ret = x - y;
504     return x < y;
505 #endif
506 }
507 
508 /**
509  * smul32_overflow - multiplication with overflow indication
510  * @x, @y: Input multipliers
511  * @ret: Output for product
512  *
513  * Computes *@ret = @x * @y, and returns true if and only if that
514  * value has been truncated.
515  */
516 static inline bool smul32_overflow(int32_t x, int32_t y, int32_t *ret)
517 {
518 #if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
519     return __builtin_mul_overflow(x, y, ret);
520 #else
521     int64_t z = (int64_t)x * y;
522     *ret = z;
523     return *ret != z;
524 #endif
525 }
526 
527 /**
528  * smul64_overflow - multiplication with overflow indication
529  * @x, @y: Input multipliers
530  * @ret: Output for product
531  *
532  * Computes *@ret = @x * @y, and returns true if and only if that
533  * value has been truncated.
534  */
535 static inline bool smul64_overflow(int64_t x, int64_t y, int64_t *ret)
536 {
537 #if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
538     return __builtin_mul_overflow(x, y, ret);
539 #else
540     uint64_t hi, lo;
541     muls64(&lo, &hi, x, y);
542     *ret = lo;
543     return hi != ((int64_t)lo >> 63);
544 #endif
545 }
546 
547 /**
548  * umul32_overflow - multiplication with overflow indication
549  * @x, @y: Input multipliers
550  * @ret: Output for product
551  *
552  * Computes *@ret = @x * @y, and returns true if and only if that
553  * value has been truncated.
554  */
555 static inline bool umul32_overflow(uint32_t x, uint32_t y, uint32_t *ret)
556 {
557 #if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
558     return __builtin_mul_overflow(x, y, ret);
559 #else
560     uint64_t z = (uint64_t)x * y;
561     *ret = z;
562     return z > UINT32_MAX;
563 #endif
564 }
565 
566 /**
567  * umul64_overflow - multiplication with overflow indication
568  * @x, @y: Input multipliers
569  * @ret: Output for product
570  *
571  * Computes *@ret = @x * @y, and returns true if and only if that
572  * value has been truncated.
573  */
574 static inline bool umul64_overflow(uint64_t x, uint64_t y, uint64_t *ret)
575 {
576 #if __has_builtin(__builtin_mul_overflow) || __GNUC__ >= 5
577     return __builtin_mul_overflow(x, y, ret);
578 #else
579     uint64_t hi;
580     mulu64(ret, &hi, x, y);
581     return hi != 0;
582 #endif
583 }
584 
585 /**
586  * uadd64_carry - addition with carry-in and carry-out
587  * @x, @y: addends
588  * @pcarry: in-out carry value
589  *
590  * Computes @x + @y + *@pcarry, placing the carry-out back
591  * into *@pcarry and returning the 64-bit sum.
592  */
593 static inline uint64_t uadd64_carry(uint64_t x, uint64_t y, bool *pcarry)
594 {
595 #if __has_builtin(__builtin_addcll)
596     unsigned long long c = *pcarry;
597     x = __builtin_addcll(x, y, c, &c);
598     *pcarry = c & 1;
599     return x;
600 #else
601     bool c = *pcarry;
602     /* This is clang's internal expansion of __builtin_addc. */
603     c = uadd64_overflow(x, c, &x);
604     c |= uadd64_overflow(x, y, &x);
605     *pcarry = c;
606     return x;
607 #endif
608 }
609 
610 /**
611  * usub64_borrow - subtraction with borrow-in and borrow-out
612  * @x, @y: addends
613  * @pborrow: in-out borrow value
614  *
615  * Computes @x - @y - *@pborrow, placing the borrow-out back
616  * into *@pborrow and returning the 64-bit sum.
617  */
618 static inline uint64_t usub64_borrow(uint64_t x, uint64_t y, bool *pborrow)
619 {
620 #if __has_builtin(__builtin_subcll)
621     unsigned long long b = *pborrow;
622     x = __builtin_subcll(x, y, b, &b);
623     *pborrow = b & 1;
624     return x;
625 #else
626     bool b = *pborrow;
627     b = usub64_overflow(x, b, &x);
628     b |= usub64_overflow(x, y, &x);
629     *pborrow = b;
630     return x;
631 #endif
632 }
633 
634 /* Host type specific sizes of these routines.  */
635 
636 #if ULONG_MAX == UINT32_MAX
637 # define clzl   clz32
638 # define ctzl   ctz32
639 # define clol   clo32
640 # define ctol   cto32
641 # define ctpopl ctpop32
642 # define revbitl revbit32
643 #elif ULONG_MAX == UINT64_MAX
644 # define clzl   clz64
645 # define ctzl   ctz64
646 # define clol   clo64
647 # define ctol   cto64
648 # define ctpopl ctpop64
649 # define revbitl revbit64
650 #else
651 # error Unknown sizeof long
652 #endif
653 
654 static inline bool is_power_of_2(uint64_t value)
655 {
656     if (!value) {
657         return false;
658     }
659 
660     return !(value & (value - 1));
661 }
662 
663 /**
664  * Return @value rounded down to the nearest power of two or zero.
665  */
666 static inline uint64_t pow2floor(uint64_t value)
667 {
668     if (!value) {
669         /* Avoid undefined shift by 64 */
670         return 0;
671     }
672     return 0x8000000000000000ull >> clz64(value);
673 }
674 
675 /*
676  * Return @value rounded up to the nearest power of two modulo 2^64.
677  * This is *zero* for @value > 2^63, so be careful.
678  */
679 static inline uint64_t pow2ceil(uint64_t value)
680 {
681     int n = clz64(value - 1);
682 
683     if (!n) {
684         /*
685          * @value - 1 has no leading zeroes, thus @value - 1 >= 2^63
686          * Therefore, either @value == 0 or @value > 2^63.
687          * If it's 0, return 1, else return 0.
688          */
689         return !value;
690     }
691     return 0x8000000000000000ull >> (n - 1);
692 }
693 
694 static inline uint32_t pow2roundup32(uint32_t x)
695 {
696     x |= (x >> 1);
697     x |= (x >> 2);
698     x |= (x >> 4);
699     x |= (x >> 8);
700     x |= (x >> 16);
701     return x + 1;
702 }
703 
704 /**
705  * urshift - 128-bit Unsigned Right Shift.
706  * @plow: in/out - lower 64-bit integer.
707  * @phigh: in/out - higher 64-bit integer.
708  * @shift: in - bytes to shift, between 0 and 127.
709  *
710  * Result is zero-extended and stored in plow/phigh, which are
711  * input/output variables. Shift values outside the range will
712  * be mod to 128. In other words, the caller is responsible to
713  * verify/assert both the shift range and plow/phigh pointers.
714  */
715 void urshift(uint64_t *plow, uint64_t *phigh, int32_t shift);
716 
717 /**
718  * ulshift - 128-bit Unsigned Left Shift.
719  * @plow: in/out - lower 64-bit integer.
720  * @phigh: in/out - higher 64-bit integer.
721  * @shift: in - bytes to shift, between 0 and 127.
722  * @overflow: out - true if any 1-bit is shifted out.
723  *
724  * Result is zero-extended and stored in plow/phigh, which are
725  * input/output variables. Shift values outside the range will
726  * be mod to 128. In other words, the caller is responsible to
727  * verify/assert both the shift range and plow/phigh pointers.
728  */
729 void ulshift(uint64_t *plow, uint64_t *phigh, int32_t shift, bool *overflow);
730 
731 #endif
732