xref: /qemu/include/qemu/timer.h (revision 52ea63de)
1 #ifndef QEMU_TIMER_H
2 #define QEMU_TIMER_H
3 
4 #include "qemu-common.h"
5 #include "qemu/notify.h"
6 #include "qemu/host-utils.h"
7 #include "sysemu/cpus.h"
8 
9 #define NANOSECONDS_PER_SECOND 1000000000LL
10 
11 /* timers */
12 
13 #define SCALE_MS 1000000
14 #define SCALE_US 1000
15 #define SCALE_NS 1
16 
17 /**
18  * QEMUClockType:
19  *
20  * The following clock types are available:
21  *
22  * @QEMU_CLOCK_REALTIME: Real time clock
23  *
24  * The real time clock should be used only for stuff which does not
25  * change the virtual machine state, as it is run even if the virtual
26  * machine is stopped. The real time clock has a frequency of 1000
27  * Hz.
28  *
29  * @QEMU_CLOCK_VIRTUAL: virtual clock
30  *
31  * The virtual clock is only run during the emulation. It is stopped
32  * when the virtual machine is stopped. Virtual timers use a high
33  * precision clock, usually cpu cycles (use ticks_per_sec).
34  *
35  * @QEMU_CLOCK_HOST: host clock
36  *
37  * The host clock should be use for device models that emulate accurate
38  * real time sources. It will continue to run when the virtual machine
39  * is suspended, and it will reflect system time changes the host may
40  * undergo (e.g. due to NTP). The host clock has the same precision as
41  * the virtual clock.
42  *
43  * @QEMU_CLOCK_VIRTUAL_RT: realtime clock used for icount warp
44  *
45  * Outside icount mode, this clock is the same as @QEMU_CLOCK_VIRTUAL.
46  * In icount mode, this clock counts nanoseconds while the virtual
47  * machine is running.  It is used to increase @QEMU_CLOCK_VIRTUAL
48  * while the CPUs are sleeping and thus not executing instructions.
49  */
50 
51 typedef enum {
52     QEMU_CLOCK_REALTIME = 0,
53     QEMU_CLOCK_VIRTUAL = 1,
54     QEMU_CLOCK_HOST = 2,
55     QEMU_CLOCK_VIRTUAL_RT = 3,
56     QEMU_CLOCK_MAX
57 } QEMUClockType;
58 
59 typedef struct QEMUTimerList QEMUTimerList;
60 
61 struct QEMUTimerListGroup {
62     QEMUTimerList *tl[QEMU_CLOCK_MAX];
63 };
64 
65 typedef void QEMUTimerCB(void *opaque);
66 typedef void QEMUTimerListNotifyCB(void *opaque);
67 
68 struct QEMUTimer {
69     int64_t expire_time;        /* in nanoseconds */
70     QEMUTimerList *timer_list;
71     QEMUTimerCB *cb;
72     void *opaque;
73     QEMUTimer *next;
74     int scale;
75 };
76 
77 extern QEMUTimerListGroup main_loop_tlg;
78 
79 /*
80  * QEMUClockType
81  */
82 
83 /*
84  * qemu_clock_get_ns;
85  * @type: the clock type
86  *
87  * Get the nanosecond value of a clock with
88  * type @type
89  *
90  * Returns: the clock value in nanoseconds
91  */
92 int64_t qemu_clock_get_ns(QEMUClockType type);
93 
94 /**
95  * qemu_clock_get_ms;
96  * @type: the clock type
97  *
98  * Get the millisecond value of a clock with
99  * type @type
100  *
101  * Returns: the clock value in milliseconds
102  */
103 static inline int64_t qemu_clock_get_ms(QEMUClockType type)
104 {
105     return qemu_clock_get_ns(type) / SCALE_MS;
106 }
107 
108 /**
109  * qemu_clock_get_us;
110  * @type: the clock type
111  *
112  * Get the microsecond value of a clock with
113  * type @type
114  *
115  * Returns: the clock value in microseconds
116  */
117 static inline int64_t qemu_clock_get_us(QEMUClockType type)
118 {
119     return qemu_clock_get_ns(type) / SCALE_US;
120 }
121 
122 /**
123  * qemu_clock_has_timers:
124  * @type: the clock type
125  *
126  * Determines whether a clock's default timer list
127  * has timers attached
128  *
129  * Note that this function should not be used when other threads also access
130  * the timer list.  The return value may be outdated by the time it is acted
131  * upon.
132  *
133  * Returns: true if the clock's default timer list
134  * has timers attached
135  */
136 bool qemu_clock_has_timers(QEMUClockType type);
137 
138 /**
139  * qemu_clock_expired:
140  * @type: the clock type
141  *
142  * Determines whether a clock's default timer list
143  * has an expired clock.
144  *
145  * Returns: true if the clock's default timer list has
146  * an expired timer
147  */
148 bool qemu_clock_expired(QEMUClockType type);
149 
150 /**
151  * qemu_clock_use_for_deadline:
152  * @type: the clock type
153  *
154  * Determine whether a clock should be used for deadline
155  * calculations. Some clocks, for instance vm_clock with
156  * use_icount set, do not count in nanoseconds. Such clocks
157  * are not used for deadline calculations, and are presumed
158  * to interrupt any poll using qemu_notify/aio_notify
159  * etc.
160  *
161  * Returns: true if the clock runs in nanoseconds and
162  * should be used for a deadline.
163  */
164 bool qemu_clock_use_for_deadline(QEMUClockType type);
165 
166 /**
167  * qemu_clock_deadline_ns_all:
168  * @type: the clock type
169  *
170  * Calculate the deadline across all timer lists associated
171  * with a clock (as opposed to just the default one)
172  * in nanoseconds, or -1 if no timer is set to expire.
173  *
174  * Returns: time until expiry in nanoseconds or -1
175  */
176 int64_t qemu_clock_deadline_ns_all(QEMUClockType type);
177 
178 /**
179  * qemu_clock_get_main_loop_timerlist:
180  * @type: the clock type
181  *
182  * Return the default timer list assocatiated with a clock.
183  *
184  * Returns: the default timer list
185  */
186 QEMUTimerList *qemu_clock_get_main_loop_timerlist(QEMUClockType type);
187 
188 /**
189  * qemu_clock_nofify:
190  * @type: the clock type
191  *
192  * Call the notifier callback connected with the default timer
193  * list linked to the clock, or qemu_notify() if none.
194  */
195 void qemu_clock_notify(QEMUClockType type);
196 
197 /**
198  * qemu_clock_enable:
199  * @type: the clock type
200  * @enabled: true to enable, false to disable
201  *
202  * Enable or disable a clock
203  * Disabling the clock will wait for related timerlists to stop
204  * executing qemu_run_timers.  Thus, this functions should not
205  * be used from the callback of a timer that is based on @clock.
206  * Doing so would cause a deadlock.
207  *
208  * Caller should hold BQL.
209  */
210 void qemu_clock_enable(QEMUClockType type, bool enabled);
211 
212 /**
213  * qemu_start_warp_timer:
214  *
215  * Starts a timer for virtual clock update
216  */
217 void qemu_start_warp_timer(void);
218 
219 /**
220  * qemu_clock_register_reset_notifier:
221  * @type: the clock type
222  * @notifier: the notifier function
223  *
224  * Register a notifier function to call when the clock
225  * concerned is reset.
226  */
227 void qemu_clock_register_reset_notifier(QEMUClockType type,
228                                         Notifier *notifier);
229 
230 /**
231  * qemu_clock_unregister_reset_notifier:
232  * @type: the clock type
233  * @notifier: the notifier function
234  *
235  * Unregister a notifier function to call when the clock
236  * concerned is reset.
237  */
238 void qemu_clock_unregister_reset_notifier(QEMUClockType type,
239                                           Notifier *notifier);
240 
241 /**
242  * qemu_clock_run_timers:
243  * @type: clock on which to operate
244  *
245  * Run all the timers associated with the default timer list
246  * of a clock.
247  *
248  * Returns: true if any timer ran.
249  */
250 bool qemu_clock_run_timers(QEMUClockType type);
251 
252 /**
253  * qemu_clock_run_all_timers:
254  *
255  * Run all the timers associated with the default timer list
256  * of every clock.
257  *
258  * Returns: true if any timer ran.
259  */
260 bool qemu_clock_run_all_timers(void);
261 
262 /*
263  * QEMUTimerList
264  */
265 
266 /**
267  * timerlist_new:
268  * @type: the clock type to associate with the timerlist
269  * @cb: the callback to call on notification
270  * @opaque: the opaque pointer to pass to the callback
271  *
272  * Create a new timerlist associated with the clock of
273  * type @type.
274  *
275  * Returns: a pointer to the QEMUTimerList created
276  */
277 QEMUTimerList *timerlist_new(QEMUClockType type,
278                              QEMUTimerListNotifyCB *cb, void *opaque);
279 
280 /**
281  * timerlist_free:
282  * @timer_list: the timer list to free
283  *
284  * Frees a timer_list. It must have no active timers.
285  */
286 void timerlist_free(QEMUTimerList *timer_list);
287 
288 /**
289  * timerlist_has_timers:
290  * @timer_list: the timer list to operate on
291  *
292  * Determine whether a timer list has active timers
293  *
294  * Note that this function should not be used when other threads also access
295  * the timer list.  The return value may be outdated by the time it is acted
296  * upon.
297  *
298  * Returns: true if the timer list has timers.
299  */
300 bool timerlist_has_timers(QEMUTimerList *timer_list);
301 
302 /**
303  * timerlist_expired:
304  * @timer_list: the timer list to operate on
305  *
306  * Determine whether a timer list has any timers which
307  * are expired.
308  *
309  * Returns: true if the timer list has timers which
310  * have expired.
311  */
312 bool timerlist_expired(QEMUTimerList *timer_list);
313 
314 /**
315  * timerlist_deadline_ns:
316  * @timer_list: the timer list to operate on
317  *
318  * Determine the deadline for a timer_list, i.e.
319  * the number of nanoseconds until the first timer
320  * expires. Return -1 if there are no timers.
321  *
322  * Returns: the number of nanoseconds until the earliest
323  * timer expires -1 if none
324  */
325 int64_t timerlist_deadline_ns(QEMUTimerList *timer_list);
326 
327 /**
328  * timerlist_get_clock:
329  * @timer_list: the timer list to operate on
330  *
331  * Determine the clock type associated with a timer list.
332  *
333  * Returns: the clock type associated with the
334  * timer list.
335  */
336 QEMUClockType timerlist_get_clock(QEMUTimerList *timer_list);
337 
338 /**
339  * timerlist_run_timers:
340  * @timer_list: the timer list to use
341  *
342  * Call all expired timers associated with the timer list.
343  *
344  * Returns: true if any timer expired
345  */
346 bool timerlist_run_timers(QEMUTimerList *timer_list);
347 
348 /**
349  * timerlist_notify:
350  * @timer_list: the timer list to use
351  *
352  * call the notifier callback associated with the timer list.
353  */
354 void timerlist_notify(QEMUTimerList *timer_list);
355 
356 /*
357  * QEMUTimerListGroup
358  */
359 
360 /**
361  * timerlistgroup_init:
362  * @tlg: the timer list group
363  * @cb: the callback to call when a notify is required
364  * @opaque: the opaque pointer to be passed to the callback.
365  *
366  * Initialise a timer list group. This must already be
367  * allocated in memory and zeroed. The notifier callback is
368  * called whenever a clock in the timer list group is
369  * reenabled or whenever a timer associated with any timer
370  * list is modified. If @cb is specified as null, qemu_notify()
371  * is used instead.
372  */
373 void timerlistgroup_init(QEMUTimerListGroup *tlg,
374                          QEMUTimerListNotifyCB *cb, void *opaque);
375 
376 /**
377  * timerlistgroup_deinit:
378  * @tlg: the timer list group
379  *
380  * Deinitialise a timer list group. This must already be
381  * initialised. Note the memory is not freed.
382  */
383 void timerlistgroup_deinit(QEMUTimerListGroup *tlg);
384 
385 /**
386  * timerlistgroup_run_timers:
387  * @tlg: the timer list group
388  *
389  * Run the timers associated with a timer list group.
390  * This will run timers on multiple clocks.
391  *
392  * Returns: true if any timer callback ran
393  */
394 bool timerlistgroup_run_timers(QEMUTimerListGroup *tlg);
395 
396 /**
397  * timerlistgroup_deadline_ns:
398  * @tlg: the timer list group
399  *
400  * Determine the deadline of the soonest timer to
401  * expire associated with any timer list linked to
402  * the timer list group. Only clocks suitable for
403  * deadline calculation are included.
404  *
405  * Returns: the deadline in nanoseconds or -1 if no
406  * timers are to expire.
407  */
408 int64_t timerlistgroup_deadline_ns(QEMUTimerListGroup *tlg);
409 
410 /*
411  * QEMUTimer
412  */
413 
414 /**
415  * timer_init_tl:
416  * @ts: the timer to be initialised
417  * @timer_list: the timer list to attach the timer to
418  * @scale: the scale value for the timer
419  * @cb: the callback to be called when the timer expires
420  * @opaque: the opaque pointer to be passed to the callback
421  *
422  * Initialise a new timer and associate it with @timer_list.
423  * The caller is responsible for allocating the memory.
424  *
425  * You need not call an explicit deinit call. Simply make
426  * sure it is not on a list with timer_del.
427  */
428 void timer_init_tl(QEMUTimer *ts,
429                    QEMUTimerList *timer_list, int scale,
430                    QEMUTimerCB *cb, void *opaque);
431 
432 /**
433  * timer_init:
434  * @type: the clock to associate with the timer
435  * @scale: the scale value for the timer
436  * @cb: the callback to call when the timer expires
437  * @opaque: the opaque pointer to pass to the callback
438  *
439  * Initialize a timer with the given scale on the default timer list
440  * associated with the clock.
441  *
442  * You need not call an explicit deinit call. Simply make
443  * sure it is not on a list with timer_del.
444  */
445 static inline void timer_init(QEMUTimer *ts, QEMUClockType type, int scale,
446                               QEMUTimerCB *cb, void *opaque)
447 {
448     timer_init_tl(ts, main_loop_tlg.tl[type], scale, cb, opaque);
449 }
450 
451 /**
452  * timer_init_ns:
453  * @type: the clock to associate with the timer
454  * @cb: the callback to call when the timer expires
455  * @opaque: the opaque pointer to pass to the callback
456  *
457  * Initialize a timer with nanosecond scale on the default timer list
458  * associated with the clock.
459  *
460  * You need not call an explicit deinit call. Simply make
461  * sure it is not on a list with timer_del.
462  */
463 static inline void timer_init_ns(QEMUTimer *ts, QEMUClockType type,
464                                  QEMUTimerCB *cb, void *opaque)
465 {
466     timer_init(ts, type, SCALE_NS, cb, opaque);
467 }
468 
469 /**
470  * timer_init_us:
471  * @type: the clock to associate with the timer
472  * @cb: the callback to call when the timer expires
473  * @opaque: the opaque pointer to pass to the callback
474  *
475  * Initialize a timer with microsecond scale on the default timer list
476  * associated with the clock.
477  *
478  * You need not call an explicit deinit call. Simply make
479  * sure it is not on a list with timer_del.
480  */
481 static inline void timer_init_us(QEMUTimer *ts, QEMUClockType type,
482                                  QEMUTimerCB *cb, void *opaque)
483 {
484     timer_init(ts, type, SCALE_US, cb, opaque);
485 }
486 
487 /**
488  * timer_init_ms:
489  * @type: the clock to associate with the timer
490  * @cb: the callback to call when the timer expires
491  * @opaque: the opaque pointer to pass to the callback
492  *
493  * Initialize a timer with millisecond scale on the default timer list
494  * associated with the clock.
495  *
496  * You need not call an explicit deinit call. Simply make
497  * sure it is not on a list with timer_del.
498  */
499 static inline void timer_init_ms(QEMUTimer *ts, QEMUClockType type,
500                                  QEMUTimerCB *cb, void *opaque)
501 {
502     timer_init(ts, type, SCALE_MS, cb, opaque);
503 }
504 
505 /**
506  * timer_new_tl:
507  * @timer_list: the timer list to attach the timer to
508  * @scale: the scale value for the timer
509  * @cb: the callback to be called when the timer expires
510  * @opaque: the opaque pointer to be passed to the callback
511  *
512  * Creeate a new timer and associate it with @timer_list.
513  * The memory is allocated by the function.
514  *
515  * This is not the preferred interface unless you know you
516  * are going to call timer_free. Use timer_init instead.
517  *
518  * Returns: a pointer to the timer
519  */
520 static inline QEMUTimer *timer_new_tl(QEMUTimerList *timer_list,
521                                       int scale,
522                                       QEMUTimerCB *cb,
523                                       void *opaque)
524 {
525     QEMUTimer *ts = g_malloc0(sizeof(QEMUTimer));
526     timer_init_tl(ts, timer_list, scale, cb, opaque);
527     return ts;
528 }
529 
530 /**
531  * timer_new:
532  * @type: the clock type to use
533  * @scale: the scale value for the timer
534  * @cb: the callback to be called when the timer expires
535  * @opaque: the opaque pointer to be passed to the callback
536  *
537  * Creeate a new timer and associate it with the default
538  * timer list for the clock type @type.
539  *
540  * Returns: a pointer to the timer
541  */
542 static inline QEMUTimer *timer_new(QEMUClockType type, int scale,
543                                    QEMUTimerCB *cb, void *opaque)
544 {
545     return timer_new_tl(main_loop_tlg.tl[type], scale, cb, opaque);
546 }
547 
548 /**
549  * timer_new_ns:
550  * @clock: the clock to associate with the timer
551  * @callback: the callback to call when the timer expires
552  * @opaque: the opaque pointer to pass to the callback
553  *
554  * Create a new timer with nanosecond scale on the default timer list
555  * associated with the clock.
556  *
557  * Returns: a pointer to the newly created timer
558  */
559 static inline QEMUTimer *timer_new_ns(QEMUClockType type, QEMUTimerCB *cb,
560                                       void *opaque)
561 {
562     return timer_new(type, SCALE_NS, cb, opaque);
563 }
564 
565 /**
566  * timer_new_us:
567  * @clock: the clock to associate with the timer
568  * @callback: the callback to call when the timer expires
569  * @opaque: the opaque pointer to pass to the callback
570  *
571  * Create a new timer with microsecond scale on the default timer list
572  * associated with the clock.
573  *
574  * Returns: a pointer to the newly created timer
575  */
576 static inline QEMUTimer *timer_new_us(QEMUClockType type, QEMUTimerCB *cb,
577                                       void *opaque)
578 {
579     return timer_new(type, SCALE_US, cb, opaque);
580 }
581 
582 /**
583  * timer_new_ms:
584  * @clock: the clock to associate with the timer
585  * @callback: the callback to call when the timer expires
586  * @opaque: the opaque pointer to pass to the callback
587  *
588  * Create a new timer with millisecond scale on the default timer list
589  * associated with the clock.
590  *
591  * Returns: a pointer to the newly created timer
592  */
593 static inline QEMUTimer *timer_new_ms(QEMUClockType type, QEMUTimerCB *cb,
594                                       void *opaque)
595 {
596     return timer_new(type, SCALE_MS, cb, opaque);
597 }
598 
599 /**
600  * timer_deinit:
601  * @ts: the timer to be de-initialised
602  *
603  * Deassociate the timer from any timerlist.  You should
604  * call timer_del before.  After this call, any further
605  * timer_del call cannot cause dangling pointer accesses
606  * even if the previously used timerlist is freed.
607  */
608 void timer_deinit(QEMUTimer *ts);
609 
610 /**
611  * timer_free:
612  * @ts: the timer
613  *
614  * Free a timer (it must not be on the active list)
615  */
616 void timer_free(QEMUTimer *ts);
617 
618 /**
619  * timer_del:
620  * @ts: the timer
621  *
622  * Delete a timer from the active list.
623  *
624  * This function is thread-safe but the timer and its timer list must not be
625  * freed while this function is running.
626  */
627 void timer_del(QEMUTimer *ts);
628 
629 /**
630  * timer_mod_ns:
631  * @ts: the timer
632  * @expire_time: the expiry time in nanoseconds
633  *
634  * Modify a timer to expire at @expire_time
635  *
636  * This function is thread-safe but the timer and its timer list must not be
637  * freed while this function is running.
638  */
639 void timer_mod_ns(QEMUTimer *ts, int64_t expire_time);
640 
641 /**
642  * timer_mod_anticipate_ns:
643  * @ts: the timer
644  * @expire_time: the expiry time in nanoseconds
645  *
646  * Modify a timer to expire at @expire_time or the current time,
647  * whichever comes earlier.
648  *
649  * This function is thread-safe but the timer and its timer list must not be
650  * freed while this function is running.
651  */
652 void timer_mod_anticipate_ns(QEMUTimer *ts, int64_t expire_time);
653 
654 /**
655  * timer_mod:
656  * @ts: the timer
657  * @expire_time: the expire time in the units associated with the timer
658  *
659  * Modify a timer to expiry at @expire_time, taking into
660  * account the scale associated with the timer.
661  *
662  * This function is thread-safe but the timer and its timer list must not be
663  * freed while this function is running.
664  */
665 void timer_mod(QEMUTimer *ts, int64_t expire_timer);
666 
667 /**
668  * timer_mod_anticipate:
669  * @ts: the timer
670  * @expire_time: the expiry time in nanoseconds
671  *
672  * Modify a timer to expire at @expire_time or the current time, whichever
673  * comes earlier, taking into account the scale associated with the timer.
674  *
675  * This function is thread-safe but the timer and its timer list must not be
676  * freed while this function is running.
677  */
678 void timer_mod_anticipate(QEMUTimer *ts, int64_t expire_time);
679 
680 /**
681  * timer_pending:
682  * @ts: the timer
683  *
684  * Determines whether a timer is pending (i.e. is on the
685  * active list of timers, whether or not it has not yet expired).
686  *
687  * Returns: true if the timer is pending
688  */
689 bool timer_pending(QEMUTimer *ts);
690 
691 /**
692  * timer_expired:
693  * @ts: the timer
694  *
695  * Determines whether a timer has expired.
696  *
697  * Returns: true if the timer has expired
698  */
699 bool timer_expired(QEMUTimer *timer_head, int64_t current_time);
700 
701 /**
702  * timer_expire_time_ns:
703  * @ts: the timer
704  *
705  * Determine the expiry time of a timer
706  *
707  * Returns: the expiry time in nanoseconds
708  */
709 uint64_t timer_expire_time_ns(QEMUTimer *ts);
710 
711 /**
712  * timer_get:
713  * @f: the file
714  * @ts: the timer
715  *
716  * Read a timer @ts from a file @f
717  */
718 void timer_get(QEMUFile *f, QEMUTimer *ts);
719 
720 /**
721  * timer_put:
722  * @f: the file
723  * @ts: the timer
724  */
725 void timer_put(QEMUFile *f, QEMUTimer *ts);
726 
727 /*
728  * General utility functions
729  */
730 
731 /**
732  * qemu_timeout_ns_to_ms:
733  * @ns: nanosecond timeout value
734  *
735  * Convert a nanosecond timeout value (or -1) to
736  * a millisecond value (or -1), always rounding up.
737  *
738  * Returns: millisecond timeout value
739  */
740 int qemu_timeout_ns_to_ms(int64_t ns);
741 
742 /**
743  * qemu_poll_ns:
744  * @fds: Array of file descriptors
745  * @nfds: number of file descriptors
746  * @timeout: timeout in nanoseconds
747  *
748  * Perform a poll like g_poll but with a timeout in nanoseconds.
749  * See g_poll documentation for further details.
750  *
751  * Returns: number of fds ready
752  */
753 int qemu_poll_ns(GPollFD *fds, guint nfds, int64_t timeout);
754 
755 /**
756  * qemu_soonest_timeout:
757  * @timeout1: first timeout in nanoseconds (or -1 for infinite)
758  * @timeout2: second timeout in nanoseconds (or -1 for infinite)
759  *
760  * Calculates the soonest of two timeout values. -1 means infinite, which
761  * is later than any other value.
762  *
763  * Returns: soonest timeout value in nanoseconds (or -1 for infinite)
764  */
765 static inline int64_t qemu_soonest_timeout(int64_t timeout1, int64_t timeout2)
766 {
767     /* we can abuse the fact that -1 (which means infinite) is a maximal
768      * value when cast to unsigned. As this is disgusting, it's kept in
769      * one inline function.
770      */
771     return ((uint64_t) timeout1 < (uint64_t) timeout2) ? timeout1 : timeout2;
772 }
773 
774 /**
775  * initclocks:
776  *
777  * Initialise the clock & timer infrastructure
778  */
779 void init_clocks(void);
780 
781 int64_t cpu_get_ticks(void);
782 /* Caller must hold BQL */
783 void cpu_enable_ticks(void);
784 /* Caller must hold BQL */
785 void cpu_disable_ticks(void);
786 
787 static inline int64_t get_max_clock_jump(void)
788 {
789     /* This should be small enough to prevent excessive interrupts from being
790      * generated by the RTC on clock jumps, but large enough to avoid frequent
791      * unnecessary resets in idle VMs.
792      */
793     return 60 * NANOSECONDS_PER_SECOND;
794 }
795 
796 /*
797  * Low level clock functions
798  */
799 
800 /* real time host monotonic timer */
801 static inline int64_t get_clock_realtime(void)
802 {
803     struct timeval tv;
804 
805     gettimeofday(&tv, NULL);
806     return tv.tv_sec * 1000000000LL + (tv.tv_usec * 1000);
807 }
808 
809 /* Warning: don't insert tracepoints into these functions, they are
810    also used by simpletrace backend and tracepoints would cause
811    an infinite recursion! */
812 #ifdef _WIN32
813 extern int64_t clock_freq;
814 
815 static inline int64_t get_clock(void)
816 {
817     LARGE_INTEGER ti;
818     QueryPerformanceCounter(&ti);
819     return muldiv64(ti.QuadPart, NANOSECONDS_PER_SECOND, clock_freq);
820 }
821 
822 #else
823 
824 extern int use_rt_clock;
825 
826 static inline int64_t get_clock(void)
827 {
828 #ifdef CLOCK_MONOTONIC
829     if (use_rt_clock) {
830         struct timespec ts;
831         clock_gettime(CLOCK_MONOTONIC, &ts);
832         return ts.tv_sec * 1000000000LL + ts.tv_nsec;
833     } else
834 #endif
835     {
836         /* XXX: using gettimeofday leads to problems if the date
837            changes, so it should be avoided. */
838         return get_clock_realtime();
839     }
840 }
841 #endif
842 
843 /* icount */
844 int64_t cpu_get_icount_raw(void);
845 int64_t cpu_get_icount(void);
846 int64_t cpu_get_clock(void);
847 int64_t cpu_icount_to_ns(int64_t icount);
848 
849 /*******************************************/
850 /* host CPU ticks (if available) */
851 
852 #if defined(_ARCH_PPC)
853 
854 static inline int64_t cpu_get_host_ticks(void)
855 {
856     int64_t retval;
857 #ifdef _ARCH_PPC64
858     /* This reads timebase in one 64bit go and includes Cell workaround from:
859        http://ozlabs.org/pipermail/linuxppc-dev/2006-October/027052.html
860     */
861     __asm__ __volatile__ ("mftb    %0\n\t"
862                           "cmpwi   %0,0\n\t"
863                           "beq-    $-8"
864                           : "=r" (retval));
865 #else
866     /* http://ozlabs.org/pipermail/linuxppc-dev/1999-October/003889.html */
867     unsigned long junk;
868     __asm__ __volatile__ ("mfspr   %1,269\n\t"  /* mftbu */
869                           "mfspr   %L0,268\n\t" /* mftb */
870                           "mfspr   %0,269\n\t"  /* mftbu */
871                           "cmpw    %0,%1\n\t"
872                           "bne     $-16"
873                           : "=r" (retval), "=r" (junk));
874 #endif
875     return retval;
876 }
877 
878 #elif defined(__i386__)
879 
880 static inline int64_t cpu_get_host_ticks(void)
881 {
882     int64_t val;
883     asm volatile ("rdtsc" : "=A" (val));
884     return val;
885 }
886 
887 #elif defined(__x86_64__)
888 
889 static inline int64_t cpu_get_host_ticks(void)
890 {
891     uint32_t low,high;
892     int64_t val;
893     asm volatile("rdtsc" : "=a" (low), "=d" (high));
894     val = high;
895     val <<= 32;
896     val |= low;
897     return val;
898 }
899 
900 #elif defined(__hppa__)
901 
902 static inline int64_t cpu_get_host_ticks(void)
903 {
904     int val;
905     asm volatile ("mfctl %%cr16, %0" : "=r"(val));
906     return val;
907 }
908 
909 #elif defined(__ia64)
910 
911 static inline int64_t cpu_get_host_ticks(void)
912 {
913     int64_t val;
914     asm volatile ("mov %0 = ar.itc" : "=r"(val) :: "memory");
915     return val;
916 }
917 
918 #elif defined(__s390__)
919 
920 static inline int64_t cpu_get_host_ticks(void)
921 {
922     int64_t val;
923     asm volatile("stck 0(%1)" : "=m" (val) : "a" (&val) : "cc");
924     return val;
925 }
926 
927 #elif defined(__sparc__)
928 
929 static inline int64_t cpu_get_host_ticks (void)
930 {
931 #if defined(_LP64)
932     uint64_t        rval;
933     asm volatile("rd %%tick,%0" : "=r"(rval));
934     return rval;
935 #else
936     /* We need an %o or %g register for this.  For recent enough gcc
937        there is an "h" constraint for that.  Don't bother with that.  */
938     union {
939         uint64_t i64;
940         struct {
941             uint32_t high;
942             uint32_t low;
943         }       i32;
944     } rval;
945     asm volatile("rd %%tick,%%g1; srlx %%g1,32,%0; mov %%g1,%1"
946                  : "=r"(rval.i32.high), "=r"(rval.i32.low) : : "g1");
947     return rval.i64;
948 #endif
949 }
950 
951 #elif defined(__mips__) && \
952     ((defined(__mips_isa_rev) && __mips_isa_rev >= 2) || defined(__linux__))
953 /*
954  * binutils wants to use rdhwr only on mips32r2
955  * but as linux kernel emulate it, it's fine
956  * to use it.
957  *
958  */
959 #define MIPS_RDHWR(rd, value) {                         \
960         __asm__ __volatile__ (".set   push\n\t"         \
961                               ".set mips32r2\n\t"       \
962                               "rdhwr  %0, "rd"\n\t"     \
963                               ".set   pop"              \
964                               : "=r" (value));          \
965     }
966 
967 static inline int64_t cpu_get_host_ticks(void)
968 {
969     /* On kernels >= 2.6.25 rdhwr <reg>, $2 and $3 are emulated */
970     uint32_t count;
971     static uint32_t cyc_per_count = 0;
972 
973     if (!cyc_per_count) {
974         MIPS_RDHWR("$3", cyc_per_count);
975     }
976 
977     MIPS_RDHWR("$2", count);
978     return (int64_t)(count * cyc_per_count);
979 }
980 
981 #elif defined(__alpha__)
982 
983 static inline int64_t cpu_get_host_ticks(void)
984 {
985     uint64_t cc;
986     uint32_t cur, ofs;
987 
988     asm volatile("rpcc %0" : "=r"(cc));
989     cur = cc;
990     ofs = cc >> 32;
991     return cur - ofs;
992 }
993 
994 #else
995 /* The host CPU doesn't have an easily accessible cycle counter.
996    Just return a monotonically increasing value.  This will be
997    totally wrong, but hopefully better than nothing.  */
998 static inline int64_t cpu_get_host_ticks (void)
999 {
1000     static int64_t ticks = 0;
1001     return ticks++;
1002 }
1003 #endif
1004 
1005 #ifdef CONFIG_PROFILER
1006 static inline int64_t profile_getclock(void)
1007 {
1008     return get_clock();
1009 }
1010 
1011 extern int64_t tcg_time;
1012 extern int64_t dev_time;
1013 #endif
1014 
1015 #endif
1016