xref: /qemu/include/qom/object.h (revision 423f7cf2)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include "qapi-types.h"
18 #include "qemu/queue.h"
19 
20 struct TypeImpl;
21 typedef struct TypeImpl *Type;
22 
23 typedef struct ObjectClass ObjectClass;
24 typedef struct Object Object;
25 
26 typedef struct TypeInfo TypeInfo;
27 
28 typedef struct InterfaceClass InterfaceClass;
29 typedef struct InterfaceInfo InterfaceInfo;
30 
31 #define TYPE_OBJECT "object"
32 
33 /**
34  * SECTION:object.h
35  * @title:Base Object Type System
36  * @short_description: interfaces for creating new types and objects
37  *
38  * The QEMU Object Model provides a framework for registering user creatable
39  * types and instantiating objects from those types.  QOM provides the following
40  * features:
41  *
42  *  - System for dynamically registering types
43  *  - Support for single-inheritance of types
44  *  - Multiple inheritance of stateless interfaces
45  *
46  * <example>
47  *   <title>Creating a minimal type</title>
48  *   <programlisting>
49  * #include "qdev.h"
50  *
51  * #define TYPE_MY_DEVICE "my-device"
52  *
53  * // No new virtual functions: we can reuse the typedef for the
54  * // superclass.
55  * typedef DeviceClass MyDeviceClass;
56  * typedef struct MyDevice
57  * {
58  *     DeviceState parent;
59  *
60  *     int reg0, reg1, reg2;
61  * } MyDevice;
62  *
63  * static const TypeInfo my_device_info = {
64  *     .name = TYPE_MY_DEVICE,
65  *     .parent = TYPE_DEVICE,
66  *     .instance_size = sizeof(MyDevice),
67  * };
68  *
69  * static void my_device_register_types(void)
70  * {
71  *     type_register_static(&my_device_info);
72  * }
73  *
74  * type_init(my_device_register_types)
75  *   </programlisting>
76  * </example>
77  *
78  * In the above example, we create a simple type that is described by #TypeInfo.
79  * #TypeInfo describes information about the type including what it inherits
80  * from, the instance and class size, and constructor/destructor hooks.
81  *
82  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
83  * are instantiated dynamically but there is only ever one instance for any
84  * given type.  The #ObjectClass typically holds a table of function pointers
85  * for the virtual methods implemented by this type.
86  *
87  * Using object_new(), a new #Object derivative will be instantiated.  You can
88  * cast an #Object to a subclass (or base-class) type using
89  * object_dynamic_cast().  You typically want to define macro wrappers around
90  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
91  * specific type:
92  *
93  * <example>
94  *   <title>Typecasting macros</title>
95  *   <programlisting>
96  *    #define MY_DEVICE_GET_CLASS(obj) \
97  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
98  *    #define MY_DEVICE_CLASS(klass) \
99  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
100  *    #define MY_DEVICE(obj) \
101  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
102  *   </programlisting>
103  * </example>
104  *
105  * # Class Initialization #
106  *
107  * Before an object is initialized, the class for the object must be
108  * initialized.  There is only one class object for all instance objects
109  * that is created lazily.
110  *
111  * Classes are initialized by first initializing any parent classes (if
112  * necessary).  After the parent class object has initialized, it will be
113  * copied into the current class object and any additional storage in the
114  * class object is zero filled.
115  *
116  * The effect of this is that classes automatically inherit any virtual
117  * function pointers that the parent class has already initialized.  All
118  * other fields will be zero filled.
119  *
120  * Once all of the parent classes have been initialized, #TypeInfo::class_init
121  * is called to let the class being instantiated provide default initialize for
122  * its virtual functions.  Here is how the above example might be modified
123  * to introduce an overridden virtual function:
124  *
125  * <example>
126  *   <title>Overriding a virtual function</title>
127  *   <programlisting>
128  * #include "qdev.h"
129  *
130  * void my_device_class_init(ObjectClass *klass, void *class_data)
131  * {
132  *     DeviceClass *dc = DEVICE_CLASS(klass);
133  *     dc->reset = my_device_reset;
134  * }
135  *
136  * static const TypeInfo my_device_info = {
137  *     .name = TYPE_MY_DEVICE,
138  *     .parent = TYPE_DEVICE,
139  *     .instance_size = sizeof(MyDevice),
140  *     .class_init = my_device_class_init,
141  * };
142  *   </programlisting>
143  * </example>
144  *
145  * Introducing new virtual methods requires a class to define its own
146  * struct and to add a .class_size member to the #TypeInfo.  Each method
147  * will also have a wrapper function to call it easily:
148  *
149  * <example>
150  *   <title>Defining an abstract class</title>
151  *   <programlisting>
152  * #include "qdev.h"
153  *
154  * typedef struct MyDeviceClass
155  * {
156  *     DeviceClass parent;
157  *
158  *     void (*frobnicate) (MyDevice *obj);
159  * } MyDeviceClass;
160  *
161  * static const TypeInfo my_device_info = {
162  *     .name = TYPE_MY_DEVICE,
163  *     .parent = TYPE_DEVICE,
164  *     .instance_size = sizeof(MyDevice),
165  *     .abstract = true, // or set a default in my_device_class_init
166  *     .class_size = sizeof(MyDeviceClass),
167  * };
168  *
169  * void my_device_frobnicate(MyDevice *obj)
170  * {
171  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
172  *
173  *     klass->frobnicate(obj);
174  * }
175  *   </programlisting>
176  * </example>
177  *
178  * # Interfaces #
179  *
180  * Interfaces allow a limited form of multiple inheritance.  Instances are
181  * similar to normal types except for the fact that are only defined by
182  * their classes and never carry any state.  You can dynamically cast an object
183  * to one of its #Interface types and vice versa.
184  *
185  * # Methods #
186  *
187  * A <emphasis>method</emphasis> is a function within the namespace scope of
188  * a class. It usually operates on the object instance by passing it as a
189  * strongly-typed first argument.
190  * If it does not operate on an object instance, it is dubbed
191  * <emphasis>class method</emphasis>.
192  *
193  * Methods cannot be overloaded. That is, the #ObjectClass and method name
194  * uniquely identity the function to be called; the signature does not vary
195  * except for trailing varargs.
196  *
197  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
198  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
199  * via OBJECT_GET_CLASS() accessing the overridden function.
200  * The original function is not automatically invoked. It is the responsibility
201  * of the overriding class to determine whether and when to invoke the method
202  * being overridden.
203  *
204  * To invoke the method being overridden, the preferred solution is to store
205  * the original value in the overriding class before overriding the method.
206  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
207  * respectively; this frees the overriding class from hardcoding its parent
208  * class, which someone might choose to change at some point.
209  *
210  * <example>
211  *   <title>Overriding a virtual method</title>
212  *   <programlisting>
213  * typedef struct MyState MyState;
214  *
215  * typedef void (*MyDoSomething)(MyState *obj);
216  *
217  * typedef struct MyClass {
218  *     ObjectClass parent_class;
219  *
220  *     MyDoSomething do_something;
221  * } MyClass;
222  *
223  * static void my_do_something(MyState *obj)
224  * {
225  *     // do something
226  * }
227  *
228  * static void my_class_init(ObjectClass *oc, void *data)
229  * {
230  *     MyClass *mc = MY_CLASS(oc);
231  *
232  *     mc->do_something = my_do_something;
233  * }
234  *
235  * static const TypeInfo my_type_info = {
236  *     .name = TYPE_MY,
237  *     .parent = TYPE_OBJECT,
238  *     .instance_size = sizeof(MyState),
239  *     .class_size = sizeof(MyClass),
240  *     .class_init = my_class_init,
241  * };
242  *
243  * typedef struct DerivedClass {
244  *     MyClass parent_class;
245  *
246  *     MyDoSomething parent_do_something;
247  * } DerivedClass;
248  *
249  * static void derived_do_something(MyState *obj)
250  * {
251  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
252  *
253  *     // do something here
254  *     dc->parent_do_something(obj);
255  *     // do something else here
256  * }
257  *
258  * static void derived_class_init(ObjectClass *oc, void *data)
259  * {
260  *     MyClass *mc = MY_CLASS(oc);
261  *     DerivedClass *dc = DERIVED_CLASS(oc);
262  *
263  *     dc->parent_do_something = mc->do_something;
264  *     mc->do_something = derived_do_something;
265  * }
266  *
267  * static const TypeInfo derived_type_info = {
268  *     .name = TYPE_DERIVED,
269  *     .parent = TYPE_MY,
270  *     .class_size = sizeof(DerivedClass),
271  *     .class_init = derived_class_init,
272  * };
273  *   </programlisting>
274  * </example>
275  *
276  * Alternatively, object_class_by_name() can be used to obtain the class and
277  * its non-overridden methods for a specific type. This would correspond to
278  * |[ MyClass::method(...) ]| in C++.
279  *
280  * The first example of such a QOM method was #CPUClass.reset,
281  * another example is #DeviceClass.realize.
282  */
283 
284 
285 /**
286  * ObjectPropertyAccessor:
287  * @obj: the object that owns the property
288  * @v: the visitor that contains the property data
289  * @name: the name of the property
290  * @opaque: the object property opaque
291  * @errp: a pointer to an Error that is filled if getting/setting fails.
292  *
293  * Called when trying to get/set a property.
294  */
295 typedef void (ObjectPropertyAccessor)(Object *obj,
296                                       Visitor *v,
297                                       const char *name,
298                                       void *opaque,
299                                       Error **errp);
300 
301 /**
302  * ObjectPropertyResolve:
303  * @obj: the object that owns the property
304  * @opaque: the opaque registered with the property
305  * @part: the name of the property
306  *
307  * Resolves the #Object corresponding to property @part.
308  *
309  * The returned object can also be used as a starting point
310  * to resolve a relative path starting with "@part".
311  *
312  * Returns: If @path is the path that led to @obj, the function
313  * returns the #Object corresponding to "@path/@part".
314  * If "@path/@part" is not a valid object path, it returns #NULL.
315  */
316 typedef Object *(ObjectPropertyResolve)(Object *obj,
317                                         void *opaque,
318                                         const char *part);
319 
320 /**
321  * ObjectPropertyRelease:
322  * @obj: the object that owns the property
323  * @name: the name of the property
324  * @opaque: the opaque registered with the property
325  *
326  * Called when a property is removed from a object.
327  */
328 typedef void (ObjectPropertyRelease)(Object *obj,
329                                      const char *name,
330                                      void *opaque);
331 
332 typedef struct ObjectProperty
333 {
334     gchar *name;
335     gchar *type;
336     gchar *description;
337     ObjectPropertyAccessor *get;
338     ObjectPropertyAccessor *set;
339     ObjectPropertyResolve *resolve;
340     ObjectPropertyRelease *release;
341     void *opaque;
342 } ObjectProperty;
343 
344 /**
345  * ObjectUnparent:
346  * @obj: the object that is being removed from the composition tree
347  *
348  * Called when an object is being removed from the QOM composition tree.
349  * The function should remove any backlinks from children objects to @obj.
350  */
351 typedef void (ObjectUnparent)(Object *obj);
352 
353 /**
354  * ObjectFree:
355  * @obj: the object being freed
356  *
357  * Called when an object's last reference is removed.
358  */
359 typedef void (ObjectFree)(void *obj);
360 
361 #define OBJECT_CLASS_CAST_CACHE 4
362 
363 /**
364  * ObjectClass:
365  *
366  * The base for all classes.  The only thing that #ObjectClass contains is an
367  * integer type handle.
368  */
369 struct ObjectClass
370 {
371     /*< private >*/
372     Type type;
373     GSList *interfaces;
374 
375     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
376     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
377 
378     ObjectUnparent *unparent;
379 
380     GHashTable *properties;
381 };
382 
383 /**
384  * Object:
385  *
386  * The base for all objects.  The first member of this object is a pointer to
387  * a #ObjectClass.  Since C guarantees that the first member of a structure
388  * always begins at byte 0 of that structure, as long as any sub-object places
389  * its parent as the first member, we can cast directly to a #Object.
390  *
391  * As a result, #Object contains a reference to the objects type as its
392  * first member.  This allows identification of the real type of the object at
393  * run time.
394  */
395 struct Object
396 {
397     /*< private >*/
398     ObjectClass *class;
399     ObjectFree *free;
400     GHashTable *properties;
401     uint32_t ref;
402     Object *parent;
403 };
404 
405 /**
406  * TypeInfo:
407  * @name: The name of the type.
408  * @parent: The name of the parent type.
409  * @instance_size: The size of the object (derivative of #Object).  If
410  *   @instance_size is 0, then the size of the object will be the size of the
411  *   parent object.
412  * @instance_init: This function is called to initialize an object.  The parent
413  *   class will have already been initialized so the type is only responsible
414  *   for initializing its own members.
415  * @instance_post_init: This function is called to finish initialization of
416  *   an object, after all @instance_init functions were called.
417  * @instance_finalize: This function is called during object destruction.  This
418  *   is called before the parent @instance_finalize function has been called.
419  *   An object should only free the members that are unique to its type in this
420  *   function.
421  * @abstract: If this field is true, then the class is considered abstract and
422  *   cannot be directly instantiated.
423  * @class_size: The size of the class object (derivative of #ObjectClass)
424  *   for this object.  If @class_size is 0, then the size of the class will be
425  *   assumed to be the size of the parent class.  This allows a type to avoid
426  *   implementing an explicit class type if they are not adding additional
427  *   virtual functions.
428  * @class_init: This function is called after all parent class initialization
429  *   has occurred to allow a class to set its default virtual method pointers.
430  *   This is also the function to use to override virtual methods from a parent
431  *   class.
432  * @class_base_init: This function is called for all base classes after all
433  *   parent class initialization has occurred, but before the class itself
434  *   is initialized.  This is the function to use to undo the effects of
435  *   memcpy from the parent class to the descendents.
436  * @class_finalize: This function is called during class destruction and is
437  *   meant to release and dynamic parameters allocated by @class_init.
438  * @class_data: Data to pass to the @class_init, @class_base_init and
439  *   @class_finalize functions.  This can be useful when building dynamic
440  *   classes.
441  * @interfaces: The list of interfaces associated with this type.  This
442  *   should point to a static array that's terminated with a zero filled
443  *   element.
444  */
445 struct TypeInfo
446 {
447     const char *name;
448     const char *parent;
449 
450     size_t instance_size;
451     void (*instance_init)(Object *obj);
452     void (*instance_post_init)(Object *obj);
453     void (*instance_finalize)(Object *obj);
454 
455     bool abstract;
456     size_t class_size;
457 
458     void (*class_init)(ObjectClass *klass, void *data);
459     void (*class_base_init)(ObjectClass *klass, void *data);
460     void (*class_finalize)(ObjectClass *klass, void *data);
461     void *class_data;
462 
463     InterfaceInfo *interfaces;
464 };
465 
466 /**
467  * OBJECT:
468  * @obj: A derivative of #Object
469  *
470  * Converts an object to a #Object.  Since all objects are #Objects,
471  * this function will always succeed.
472  */
473 #define OBJECT(obj) \
474     ((Object *)(obj))
475 
476 /**
477  * OBJECT_CLASS:
478  * @class: A derivative of #ObjectClass.
479  *
480  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
481  * this function will always succeed.
482  */
483 #define OBJECT_CLASS(class) \
484     ((ObjectClass *)(class))
485 
486 /**
487  * OBJECT_CHECK:
488  * @type: The C type to use for the return value.
489  * @obj: A derivative of @type to cast.
490  * @name: The QOM typename of @type
491  *
492  * A type safe version of @object_dynamic_cast_assert.  Typically each class
493  * will define a macro based on this type to perform type safe dynamic_casts to
494  * this object type.
495  *
496  * If an invalid object is passed to this function, a run time assert will be
497  * generated.
498  */
499 #define OBJECT_CHECK(type, obj, name) \
500     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
501                                         __FILE__, __LINE__, __func__))
502 
503 /**
504  * OBJECT_CLASS_CHECK:
505  * @class_type: The C type to use for the return value.
506  * @class: A derivative class of @class_type to cast.
507  * @name: the QOM typename of @class_type.
508  *
509  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
510  * typically wrapped by each type to perform type safe casts of a class to a
511  * specific class type.
512  */
513 #define OBJECT_CLASS_CHECK(class_type, class, name) \
514     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
515                                                __FILE__, __LINE__, __func__))
516 
517 /**
518  * OBJECT_GET_CLASS:
519  * @class: The C type to use for the return value.
520  * @obj: The object to obtain the class for.
521  * @name: The QOM typename of @obj.
522  *
523  * This function will return a specific class for a given object.  Its generally
524  * used by each type to provide a type safe macro to get a specific class type
525  * from an object.
526  */
527 #define OBJECT_GET_CLASS(class, obj, name) \
528     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
529 
530 /**
531  * InterfaceInfo:
532  * @type: The name of the interface.
533  *
534  * The information associated with an interface.
535  */
536 struct InterfaceInfo {
537     const char *type;
538 };
539 
540 /**
541  * InterfaceClass:
542  * @parent_class: the base class
543  *
544  * The class for all interfaces.  Subclasses of this class should only add
545  * virtual methods.
546  */
547 struct InterfaceClass
548 {
549     ObjectClass parent_class;
550     /*< private >*/
551     ObjectClass *concrete_class;
552     Type interface_type;
553 };
554 
555 #define TYPE_INTERFACE "interface"
556 
557 /**
558  * INTERFACE_CLASS:
559  * @klass: class to cast from
560  * Returns: An #InterfaceClass or raise an error if cast is invalid
561  */
562 #define INTERFACE_CLASS(klass) \
563     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
564 
565 /**
566  * INTERFACE_CHECK:
567  * @interface: the type to return
568  * @obj: the object to convert to an interface
569  * @name: the interface type name
570  *
571  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
572  */
573 #define INTERFACE_CHECK(interface, obj, name) \
574     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
575                                              __FILE__, __LINE__, __func__))
576 
577 /**
578  * object_new:
579  * @typename: The name of the type of the object to instantiate.
580  *
581  * This function will initialize a new object using heap allocated memory.
582  * The returned object has a reference count of 1, and will be freed when
583  * the last reference is dropped.
584  *
585  * Returns: The newly allocated and instantiated object.
586  */
587 Object *object_new(const char *typename);
588 
589 /**
590  * object_new_with_type:
591  * @type: The type of the object to instantiate.
592  *
593  * This function will initialize a new object using heap allocated memory.
594  * The returned object has a reference count of 1, and will be freed when
595  * the last reference is dropped.
596  *
597  * Returns: The newly allocated and instantiated object.
598  */
599 Object *object_new_with_type(Type type);
600 
601 /**
602  * object_new_with_props:
603  * @typename:  The name of the type of the object to instantiate.
604  * @parent: the parent object
605  * @id: The unique ID of the object
606  * @errp: pointer to error object
607  * @...: list of property names and values
608  *
609  * This function will initialize a new object using heap allocated memory.
610  * The returned object has a reference count of 1, and will be freed when
611  * the last reference is dropped.
612  *
613  * The @id parameter will be used when registering the object as a
614  * child of @parent in the composition tree.
615  *
616  * The variadic parameters are a list of pairs of (propname, propvalue)
617  * strings. The propname of %NULL indicates the end of the property
618  * list. If the object implements the user creatable interface, the
619  * object will be marked complete once all the properties have been
620  * processed.
621  *
622  * <example>
623  *   <title>Creating an object with properties</title>
624  *   <programlisting>
625  *   Error *err = NULL;
626  *   Object *obj;
627  *
628  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
629  *                               object_get_objects_root(),
630  *                               "hostmem0",
631  *                               &err,
632  *                               "share", "yes",
633  *                               "mem-path", "/dev/shm/somefile",
634  *                               "prealloc", "yes",
635  *                               "size", "1048576",
636  *                               NULL);
637  *
638  *   if (!obj) {
639  *     g_printerr("Cannot create memory backend: %s\n",
640  *                error_get_pretty(err));
641  *   }
642  *   </programlisting>
643  * </example>
644  *
645  * The returned object will have one stable reference maintained
646  * for as long as it is present in the object hierarchy.
647  *
648  * Returns: The newly allocated, instantiated & initialized object.
649  */
650 Object *object_new_with_props(const char *typename,
651                               Object *parent,
652                               const char *id,
653                               Error **errp,
654                               ...) QEMU_SENTINEL;
655 
656 /**
657  * object_new_with_propv:
658  * @typename:  The name of the type of the object to instantiate.
659  * @parent: the parent object
660  * @id: The unique ID of the object
661  * @errp: pointer to error object
662  * @vargs: list of property names and values
663  *
664  * See object_new_with_props() for documentation.
665  */
666 Object *object_new_with_propv(const char *typename,
667                               Object *parent,
668                               const char *id,
669                               Error **errp,
670                               va_list vargs);
671 
672 /**
673  * object_set_props:
674  * @obj: the object instance to set properties on
675  * @errp: pointer to error object
676  * @...: list of property names and values
677  *
678  * This function will set a list of properties on an existing object
679  * instance.
680  *
681  * The variadic parameters are a list of pairs of (propname, propvalue)
682  * strings. The propname of %NULL indicates the end of the property
683  * list.
684  *
685  * <example>
686  *   <title>Update an object's properties</title>
687  *   <programlisting>
688  *   Error *err = NULL;
689  *   Object *obj = ...get / create object...;
690  *
691  *   obj = object_set_props(obj,
692  *                          &err,
693  *                          "share", "yes",
694  *                          "mem-path", "/dev/shm/somefile",
695  *                          "prealloc", "yes",
696  *                          "size", "1048576",
697  *                          NULL);
698  *
699  *   if (!obj) {
700  *     g_printerr("Cannot set properties: %s\n",
701  *                error_get_pretty(err));
702  *   }
703  *   </programlisting>
704  * </example>
705  *
706  * The returned object will have one stable reference maintained
707  * for as long as it is present in the object hierarchy.
708  *
709  * Returns: -1 on error, 0 on success
710  */
711 int object_set_props(Object *obj,
712                      Error **errp,
713                      ...) QEMU_SENTINEL;
714 
715 /**
716  * object_set_propv:
717  * @obj: the object instance to set properties on
718  * @errp: pointer to error object
719  * @vargs: list of property names and values
720  *
721  * See object_set_props() for documentation.
722  *
723  * Returns: -1 on error, 0 on success
724  */
725 int object_set_propv(Object *obj,
726                      Error **errp,
727                      va_list vargs);
728 
729 /**
730  * object_initialize_with_type:
731  * @data: A pointer to the memory to be used for the object.
732  * @size: The maximum size available at @data for the object.
733  * @type: The type of the object to instantiate.
734  *
735  * This function will initialize an object.  The memory for the object should
736  * have already been allocated.  The returned object has a reference count of 1,
737  * and will be finalized when the last reference is dropped.
738  */
739 void object_initialize_with_type(void *data, size_t size, Type type);
740 
741 /**
742  * object_initialize:
743  * @obj: A pointer to the memory to be used for the object.
744  * @size: The maximum size available at @obj for the object.
745  * @typename: The name of the type of the object to instantiate.
746  *
747  * This function will initialize an object.  The memory for the object should
748  * have already been allocated.  The returned object has a reference count of 1,
749  * and will be finalized when the last reference is dropped.
750  */
751 void object_initialize(void *obj, size_t size, const char *typename);
752 
753 /**
754  * object_dynamic_cast:
755  * @obj: The object to cast.
756  * @typename: The @typename to cast to.
757  *
758  * This function will determine if @obj is-a @typename.  @obj can refer to an
759  * object or an interface associated with an object.
760  *
761  * Returns: This function returns @obj on success or #NULL on failure.
762  */
763 Object *object_dynamic_cast(Object *obj, const char *typename);
764 
765 /**
766  * object_dynamic_cast_assert:
767  *
768  * See object_dynamic_cast() for a description of the parameters of this
769  * function.  The only difference in behavior is that this function asserts
770  * instead of returning #NULL on failure if QOM cast debugging is enabled.
771  * This function is not meant to be called directly, but only through
772  * the wrapper macro OBJECT_CHECK.
773  */
774 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
775                                    const char *file, int line, const char *func);
776 
777 /**
778  * object_get_class:
779  * @obj: A derivative of #Object
780  *
781  * Returns: The #ObjectClass of the type associated with @obj.
782  */
783 ObjectClass *object_get_class(Object *obj);
784 
785 /**
786  * object_get_typename:
787  * @obj: A derivative of #Object.
788  *
789  * Returns: The QOM typename of @obj.
790  */
791 const char *object_get_typename(Object *obj);
792 
793 /**
794  * type_register_static:
795  * @info: The #TypeInfo of the new type.
796  *
797  * @info and all of the strings it points to should exist for the life time
798  * that the type is registered.
799  *
800  * Returns: 0 on failure, the new #Type on success.
801  */
802 Type type_register_static(const TypeInfo *info);
803 
804 /**
805  * type_register:
806  * @info: The #TypeInfo of the new type
807  *
808  * Unlike type_register_static(), this call does not require @info or its
809  * string members to continue to exist after the call returns.
810  *
811  * Returns: 0 on failure, the new #Type on success.
812  */
813 Type type_register(const TypeInfo *info);
814 
815 /**
816  * object_class_dynamic_cast_assert:
817  * @klass: The #ObjectClass to attempt to cast.
818  * @typename: The QOM typename of the class to cast to.
819  *
820  * See object_class_dynamic_cast() for a description of the parameters
821  * of this function.  The only difference in behavior is that this function
822  * asserts instead of returning #NULL on failure if QOM cast debugging is
823  * enabled.  This function is not meant to be called directly, but only through
824  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
825  */
826 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
827                                               const char *typename,
828                                               const char *file, int line,
829                                               const char *func);
830 
831 /**
832  * object_class_dynamic_cast:
833  * @klass: The #ObjectClass to attempt to cast.
834  * @typename: The QOM typename of the class to cast to.
835  *
836  * Returns: If @typename is a class, this function returns @klass if
837  * @typename is a subtype of @klass, else returns #NULL.
838  *
839  * If @typename is an interface, this function returns the interface
840  * definition for @klass if @klass implements it unambiguously; #NULL
841  * is returned if @klass does not implement the interface or if multiple
842  * classes or interfaces on the hierarchy leading to @klass implement
843  * it.  (FIXME: perhaps this can be detected at type definition time?)
844  */
845 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
846                                        const char *typename);
847 
848 /**
849  * object_class_get_parent:
850  * @klass: The class to obtain the parent for.
851  *
852  * Returns: The parent for @klass or %NULL if none.
853  */
854 ObjectClass *object_class_get_parent(ObjectClass *klass);
855 
856 /**
857  * object_class_get_name:
858  * @klass: The class to obtain the QOM typename for.
859  *
860  * Returns: The QOM typename for @klass.
861  */
862 const char *object_class_get_name(ObjectClass *klass);
863 
864 /**
865  * object_class_is_abstract:
866  * @klass: The class to obtain the abstractness for.
867  *
868  * Returns: %true if @klass is abstract, %false otherwise.
869  */
870 bool object_class_is_abstract(ObjectClass *klass);
871 
872 /**
873  * object_class_by_name:
874  * @typename: The QOM typename to obtain the class for.
875  *
876  * Returns: The class for @typename or %NULL if not found.
877  */
878 ObjectClass *object_class_by_name(const char *typename);
879 
880 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
881                           const char *implements_type, bool include_abstract,
882                           void *opaque);
883 
884 /**
885  * object_class_get_list:
886  * @implements_type: The type to filter for, including its derivatives.
887  * @include_abstract: Whether to include abstract classes.
888  *
889  * Returns: A singly-linked list of the classes in reverse hashtable order.
890  */
891 GSList *object_class_get_list(const char *implements_type,
892                               bool include_abstract);
893 
894 /**
895  * object_ref:
896  * @obj: the object
897  *
898  * Increase the reference count of a object.  A object cannot be freed as long
899  * as its reference count is greater than zero.
900  */
901 void object_ref(Object *obj);
902 
903 /**
904  * object_unref:
905  * @obj: the object
906  *
907  * Decrease the reference count of a object.  A object cannot be freed as long
908  * as its reference count is greater than zero.
909  */
910 void object_unref(Object *obj);
911 
912 /**
913  * object_property_add:
914  * @obj: the object to add a property to
915  * @name: the name of the property.  This can contain any character except for
916  *  a forward slash.  In general, you should use hyphens '-' instead of
917  *  underscores '_' when naming properties.
918  * @type: the type name of the property.  This namespace is pretty loosely
919  *   defined.  Sub namespaces are constructed by using a prefix and then
920  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
921  *   'link' namespace would be 'link<virtio-net-pci>'.
922  * @get: The getter to be called to read a property.  If this is NULL, then
923  *   the property cannot be read.
924  * @set: the setter to be called to write a property.  If this is NULL,
925  *   then the property cannot be written.
926  * @release: called when the property is removed from the object.  This is
927  *   meant to allow a property to free its opaque upon object
928  *   destruction.  This may be NULL.
929  * @opaque: an opaque pointer to pass to the callbacks for the property
930  * @errp: returns an error if this function fails
931  *
932  * Returns: The #ObjectProperty; this can be used to set the @resolve
933  * callback for child and link properties.
934  */
935 ObjectProperty *object_property_add(Object *obj, const char *name,
936                                     const char *type,
937                                     ObjectPropertyAccessor *get,
938                                     ObjectPropertyAccessor *set,
939                                     ObjectPropertyRelease *release,
940                                     void *opaque, Error **errp);
941 
942 void object_property_del(Object *obj, const char *name, Error **errp);
943 
944 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
945                                           const char *type,
946                                           ObjectPropertyAccessor *get,
947                                           ObjectPropertyAccessor *set,
948                                           ObjectPropertyRelease *release,
949                                           void *opaque, Error **errp);
950 
951 /**
952  * object_property_find:
953  * @obj: the object
954  * @name: the name of the property
955  * @errp: returns an error if this function fails
956  *
957  * Look up a property for an object and return its #ObjectProperty if found.
958  */
959 ObjectProperty *object_property_find(Object *obj, const char *name,
960                                      Error **errp);
961 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
962                                            Error **errp);
963 
964 typedef struct ObjectPropertyIterator {
965     ObjectClass *nextclass;
966     GHashTableIter iter;
967 } ObjectPropertyIterator;
968 
969 /**
970  * object_property_iter_init:
971  * @obj: the object
972  *
973  * Initializes an iterator for traversing all properties
974  * registered against an object instance, its class and all parent classes.
975  *
976  * It is forbidden to modify the property list while iterating,
977  * whether removing or adding properties.
978  *
979  * Typical usage pattern would be
980  *
981  * <example>
982  *   <title>Using object property iterators</title>
983  *   <programlisting>
984  *   ObjectProperty *prop;
985  *   ObjectPropertyIterator iter;
986  *
987  *   object_property_iter_init(&iter, obj);
988  *   while ((prop = object_property_iter_next(&iter))) {
989  *     ... do something with prop ...
990  *   }
991  *   </programlisting>
992  * </example>
993  */
994 void object_property_iter_init(ObjectPropertyIterator *iter,
995                                Object *obj);
996 
997 /**
998  * object_property_iter_next:
999  * @iter: the iterator instance
1000  *
1001  * Return the next available property. If no further properties
1002  * are available, a %NULL value will be returned and the @iter
1003  * pointer should not be used again after this point without
1004  * re-initializing it.
1005  *
1006  * Returns: the next property, or %NULL when all properties
1007  * have been traversed.
1008  */
1009 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1010 
1011 void object_unparent(Object *obj);
1012 
1013 /**
1014  * object_property_get:
1015  * @obj: the object
1016  * @v: the visitor that will receive the property value.  This should be an
1017  *   Output visitor and the data will be written with @name as the name.
1018  * @name: the name of the property
1019  * @errp: returns an error if this function fails
1020  *
1021  * Reads a property from a object.
1022  */
1023 void object_property_get(Object *obj, Visitor *v, const char *name,
1024                          Error **errp);
1025 
1026 /**
1027  * object_property_set_str:
1028  * @value: the value to be written to the property
1029  * @name: the name of the property
1030  * @errp: returns an error if this function fails
1031  *
1032  * Writes a string value to a property.
1033  */
1034 void object_property_set_str(Object *obj, const char *value,
1035                              const char *name, Error **errp);
1036 
1037 /**
1038  * object_property_get_str:
1039  * @obj: the object
1040  * @name: the name of the property
1041  * @errp: returns an error if this function fails
1042  *
1043  * Returns: the value of the property, converted to a C string, or NULL if
1044  * an error occurs (including when the property value is not a string).
1045  * The caller should free the string.
1046  */
1047 char *object_property_get_str(Object *obj, const char *name,
1048                               Error **errp);
1049 
1050 /**
1051  * object_property_set_link:
1052  * @value: the value to be written to the property
1053  * @name: the name of the property
1054  * @errp: returns an error if this function fails
1055  *
1056  * Writes an object's canonical path to a property.
1057  */
1058 void object_property_set_link(Object *obj, Object *value,
1059                               const char *name, Error **errp);
1060 
1061 /**
1062  * object_property_get_link:
1063  * @obj: the object
1064  * @name: the name of the property
1065  * @errp: returns an error if this function fails
1066  *
1067  * Returns: the value of the property, resolved from a path to an Object,
1068  * or NULL if an error occurs (including when the property value is not a
1069  * string or not a valid object path).
1070  */
1071 Object *object_property_get_link(Object *obj, const char *name,
1072                                  Error **errp);
1073 
1074 /**
1075  * object_property_set_bool:
1076  * @value: the value to be written to the property
1077  * @name: the name of the property
1078  * @errp: returns an error if this function fails
1079  *
1080  * Writes a bool value to a property.
1081  */
1082 void object_property_set_bool(Object *obj, bool value,
1083                               const char *name, Error **errp);
1084 
1085 /**
1086  * object_property_get_bool:
1087  * @obj: the object
1088  * @name: the name of the property
1089  * @errp: returns an error if this function fails
1090  *
1091  * Returns: the value of the property, converted to a boolean, or NULL if
1092  * an error occurs (including when the property value is not a bool).
1093  */
1094 bool object_property_get_bool(Object *obj, const char *name,
1095                               Error **errp);
1096 
1097 /**
1098  * object_property_set_int:
1099  * @value: the value to be written to the property
1100  * @name: the name of the property
1101  * @errp: returns an error if this function fails
1102  *
1103  * Writes an integer value to a property.
1104  */
1105 void object_property_set_int(Object *obj, int64_t value,
1106                              const char *name, Error **errp);
1107 
1108 /**
1109  * object_property_get_int:
1110  * @obj: the object
1111  * @name: the name of the property
1112  * @errp: returns an error if this function fails
1113  *
1114  * Returns: the value of the property, converted to an integer, or negative if
1115  * an error occurs (including when the property value is not an integer).
1116  */
1117 int64_t object_property_get_int(Object *obj, const char *name,
1118                                 Error **errp);
1119 
1120 /**
1121  * object_property_get_enum:
1122  * @obj: the object
1123  * @name: the name of the property
1124  * @typename: the name of the enum data type
1125  * @errp: returns an error if this function fails
1126  *
1127  * Returns: the value of the property, converted to an integer, or
1128  * undefined if an error occurs (including when the property value is not
1129  * an enum).
1130  */
1131 int object_property_get_enum(Object *obj, const char *name,
1132                              const char *typename, Error **errp);
1133 
1134 /**
1135  * object_property_get_uint16List:
1136  * @obj: the object
1137  * @name: the name of the property
1138  * @list: the returned int list
1139  * @errp: returns an error if this function fails
1140  *
1141  * Returns: the value of the property, converted to integers, or
1142  * undefined if an error occurs (including when the property value is not
1143  * an list of integers).
1144  */
1145 void object_property_get_uint16List(Object *obj, const char *name,
1146                                     uint16List **list, Error **errp);
1147 
1148 /**
1149  * object_property_set:
1150  * @obj: the object
1151  * @v: the visitor that will be used to write the property value.  This should
1152  *   be an Input visitor and the data will be first read with @name as the
1153  *   name and then written as the property value.
1154  * @name: the name of the property
1155  * @errp: returns an error if this function fails
1156  *
1157  * Writes a property to a object.
1158  */
1159 void object_property_set(Object *obj, Visitor *v, const char *name,
1160                          Error **errp);
1161 
1162 /**
1163  * object_property_parse:
1164  * @obj: the object
1165  * @string: the string that will be used to parse the property value.
1166  * @name: the name of the property
1167  * @errp: returns an error if this function fails
1168  *
1169  * Parses a string and writes the result into a property of an object.
1170  */
1171 void object_property_parse(Object *obj, const char *string,
1172                            const char *name, Error **errp);
1173 
1174 /**
1175  * object_property_print:
1176  * @obj: the object
1177  * @name: the name of the property
1178  * @human: if true, print for human consumption
1179  * @errp: returns an error if this function fails
1180  *
1181  * Returns a string representation of the value of the property.  The
1182  * caller shall free the string.
1183  */
1184 char *object_property_print(Object *obj, const char *name, bool human,
1185                             Error **errp);
1186 
1187 /**
1188  * object_property_get_type:
1189  * @obj: the object
1190  * @name: the name of the property
1191  * @errp: returns an error if this function fails
1192  *
1193  * Returns:  The type name of the property.
1194  */
1195 const char *object_property_get_type(Object *obj, const char *name,
1196                                      Error **errp);
1197 
1198 /**
1199  * object_get_root:
1200  *
1201  * Returns: the root object of the composition tree
1202  */
1203 Object *object_get_root(void);
1204 
1205 
1206 /**
1207  * object_get_objects_root:
1208  *
1209  * Get the container object that holds user created
1210  * object instances. This is the object at path
1211  * "/objects"
1212  *
1213  * Returns: the user object container
1214  */
1215 Object *object_get_objects_root(void);
1216 
1217 /**
1218  * object_get_canonical_path_component:
1219  *
1220  * Returns: The final component in the object's canonical path.  The canonical
1221  * path is the path within the composition tree starting from the root.
1222  */
1223 gchar *object_get_canonical_path_component(Object *obj);
1224 
1225 /**
1226  * object_get_canonical_path:
1227  *
1228  * Returns: The canonical path for a object.  This is the path within the
1229  * composition tree starting from the root.
1230  */
1231 gchar *object_get_canonical_path(Object *obj);
1232 
1233 /**
1234  * object_resolve_path:
1235  * @path: the path to resolve
1236  * @ambiguous: returns true if the path resolution failed because of an
1237  *   ambiguous match
1238  *
1239  * There are two types of supported paths--absolute paths and partial paths.
1240  *
1241  * Absolute paths are derived from the root object and can follow child<> or
1242  * link<> properties.  Since they can follow link<> properties, they can be
1243  * arbitrarily long.  Absolute paths look like absolute filenames and are
1244  * prefixed with a leading slash.
1245  *
1246  * Partial paths look like relative filenames.  They do not begin with a
1247  * prefix.  The matching rules for partial paths are subtle but designed to make
1248  * specifying objects easy.  At each level of the composition tree, the partial
1249  * path is matched as an absolute path.  The first match is not returned.  At
1250  * least two matches are searched for.  A successful result is only returned if
1251  * only one match is found.  If more than one match is found, a flag is
1252  * returned to indicate that the match was ambiguous.
1253  *
1254  * Returns: The matched object or NULL on path lookup failure.
1255  */
1256 Object *object_resolve_path(const char *path, bool *ambiguous);
1257 
1258 /**
1259  * object_resolve_path_type:
1260  * @path: the path to resolve
1261  * @typename: the type to look for.
1262  * @ambiguous: returns true if the path resolution failed because of an
1263  *   ambiguous match
1264  *
1265  * This is similar to object_resolve_path.  However, when looking for a
1266  * partial path only matches that implement the given type are considered.
1267  * This restricts the search and avoids spuriously flagging matches as
1268  * ambiguous.
1269  *
1270  * For both partial and absolute paths, the return value goes through
1271  * a dynamic cast to @typename.  This is important if either the link,
1272  * or the typename itself are of interface types.
1273  *
1274  * Returns: The matched object or NULL on path lookup failure.
1275  */
1276 Object *object_resolve_path_type(const char *path, const char *typename,
1277                                  bool *ambiguous);
1278 
1279 /**
1280  * object_resolve_path_component:
1281  * @parent: the object in which to resolve the path
1282  * @part: the component to resolve.
1283  *
1284  * This is similar to object_resolve_path with an absolute path, but it
1285  * only resolves one element (@part) and takes the others from @parent.
1286  *
1287  * Returns: The resolved object or NULL on path lookup failure.
1288  */
1289 Object *object_resolve_path_component(Object *parent, const gchar *part);
1290 
1291 /**
1292  * object_property_add_child:
1293  * @obj: the object to add a property to
1294  * @name: the name of the property
1295  * @child: the child object
1296  * @errp: if an error occurs, a pointer to an area to store the area
1297  *
1298  * Child properties form the composition tree.  All objects need to be a child
1299  * of another object.  Objects can only be a child of one object.
1300  *
1301  * There is no way for a child to determine what its parent is.  It is not
1302  * a bidirectional relationship.  This is by design.
1303  *
1304  * The value of a child property as a C string will be the child object's
1305  * canonical path. It can be retrieved using object_property_get_str().
1306  * The child object itself can be retrieved using object_property_get_link().
1307  */
1308 void object_property_add_child(Object *obj, const char *name,
1309                                Object *child, Error **errp);
1310 
1311 typedef enum {
1312     /* Unref the link pointer when the property is deleted */
1313     OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1,
1314 } ObjectPropertyLinkFlags;
1315 
1316 /**
1317  * object_property_allow_set_link:
1318  *
1319  * The default implementation of the object_property_add_link() check()
1320  * callback function.  It allows the link property to be set and never returns
1321  * an error.
1322  */
1323 void object_property_allow_set_link(Object *, const char *,
1324                                     Object *, Error **);
1325 
1326 /**
1327  * object_property_add_link:
1328  * @obj: the object to add a property to
1329  * @name: the name of the property
1330  * @type: the qobj type of the link
1331  * @child: a pointer to where the link object reference is stored
1332  * @check: callback to veto setting or NULL if the property is read-only
1333  * @flags: additional options for the link
1334  * @errp: if an error occurs, a pointer to an area to store the area
1335  *
1336  * Links establish relationships between objects.  Links are unidirectional
1337  * although two links can be combined to form a bidirectional relationship
1338  * between objects.
1339  *
1340  * Links form the graph in the object model.
1341  *
1342  * The <code>@check()</code> callback is invoked when
1343  * object_property_set_link() is called and can raise an error to prevent the
1344  * link being set.  If <code>@check</code> is NULL, the property is read-only
1345  * and cannot be set.
1346  *
1347  * Ownership of the pointer that @child points to is transferred to the
1348  * link property.  The reference count for <code>*@child</code> is
1349  * managed by the property from after the function returns till the
1350  * property is deleted with object_property_del().  If the
1351  * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set,
1352  * the reference count is decremented when the property is deleted.
1353  */
1354 void object_property_add_link(Object *obj, const char *name,
1355                               const char *type, Object **child,
1356                               void (*check)(Object *obj, const char *name,
1357                                             Object *val, Error **errp),
1358                               ObjectPropertyLinkFlags flags,
1359                               Error **errp);
1360 
1361 /**
1362  * object_property_add_str:
1363  * @obj: the object to add a property to
1364  * @name: the name of the property
1365  * @get: the getter or NULL if the property is write-only.  This function must
1366  *   return a string to be freed by g_free().
1367  * @set: the setter or NULL if the property is read-only
1368  * @errp: if an error occurs, a pointer to an area to store the error
1369  *
1370  * Add a string property using getters/setters.  This function will add a
1371  * property of type 'string'.
1372  */
1373 void object_property_add_str(Object *obj, const char *name,
1374                              char *(*get)(Object *, Error **),
1375                              void (*set)(Object *, const char *, Error **),
1376                              Error **errp);
1377 
1378 void object_class_property_add_str(ObjectClass *klass, const char *name,
1379                                    char *(*get)(Object *, Error **),
1380                                    void (*set)(Object *, const char *,
1381                                                Error **),
1382                                    Error **errp);
1383 
1384 /**
1385  * object_property_add_bool:
1386  * @obj: the object to add a property to
1387  * @name: the name of the property
1388  * @get: the getter or NULL if the property is write-only.
1389  * @set: the setter or NULL if the property is read-only
1390  * @errp: if an error occurs, a pointer to an area to store the error
1391  *
1392  * Add a bool property using getters/setters.  This function will add a
1393  * property of type 'bool'.
1394  */
1395 void object_property_add_bool(Object *obj, const char *name,
1396                               bool (*get)(Object *, Error **),
1397                               void (*set)(Object *, bool, Error **),
1398                               Error **errp);
1399 
1400 void object_class_property_add_bool(ObjectClass *klass, const char *name,
1401                                     bool (*get)(Object *, Error **),
1402                                     void (*set)(Object *, bool, Error **),
1403                                     Error **errp);
1404 
1405 /**
1406  * object_property_add_enum:
1407  * @obj: the object to add a property to
1408  * @name: the name of the property
1409  * @typename: the name of the enum data type
1410  * @get: the getter or %NULL if the property is write-only.
1411  * @set: the setter or %NULL if the property is read-only
1412  * @errp: if an error occurs, a pointer to an area to store the error
1413  *
1414  * Add an enum property using getters/setters.  This function will add a
1415  * property of type '@typename'.
1416  */
1417 void object_property_add_enum(Object *obj, const char *name,
1418                               const char *typename,
1419                               const char * const *strings,
1420                               int (*get)(Object *, Error **),
1421                               void (*set)(Object *, int, Error **),
1422                               Error **errp);
1423 
1424 void object_class_property_add_enum(ObjectClass *klass, const char *name,
1425                                     const char *typename,
1426                                     const char * const *strings,
1427                                     int (*get)(Object *, Error **),
1428                                     void (*set)(Object *, int, Error **),
1429                                     Error **errp);
1430 
1431 /**
1432  * object_property_add_tm:
1433  * @obj: the object to add a property to
1434  * @name: the name of the property
1435  * @get: the getter or NULL if the property is write-only.
1436  * @errp: if an error occurs, a pointer to an area to store the error
1437  *
1438  * Add a read-only struct tm valued property using a getter function.
1439  * This function will add a property of type 'struct tm'.
1440  */
1441 void object_property_add_tm(Object *obj, const char *name,
1442                             void (*get)(Object *, struct tm *, Error **),
1443                             Error **errp);
1444 
1445 void object_class_property_add_tm(ObjectClass *klass, const char *name,
1446                                   void (*get)(Object *, struct tm *, Error **),
1447                                   Error **errp);
1448 
1449 /**
1450  * object_property_add_uint8_ptr:
1451  * @obj: the object to add a property to
1452  * @name: the name of the property
1453  * @v: pointer to value
1454  * @errp: if an error occurs, a pointer to an area to store the error
1455  *
1456  * Add an integer property in memory.  This function will add a
1457  * property of type 'uint8'.
1458  */
1459 void object_property_add_uint8_ptr(Object *obj, const char *name,
1460                                    const uint8_t *v, Error **errp);
1461 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name,
1462                                          const uint8_t *v, Error **errp);
1463 
1464 /**
1465  * object_property_add_uint16_ptr:
1466  * @obj: the object to add a property to
1467  * @name: the name of the property
1468  * @v: pointer to value
1469  * @errp: if an error occurs, a pointer to an area to store the error
1470  *
1471  * Add an integer property in memory.  This function will add a
1472  * property of type 'uint16'.
1473  */
1474 void object_property_add_uint16_ptr(Object *obj, const char *name,
1475                                     const uint16_t *v, Error **errp);
1476 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name,
1477                                           const uint16_t *v, Error **errp);
1478 
1479 /**
1480  * object_property_add_uint32_ptr:
1481  * @obj: the object to add a property to
1482  * @name: the name of the property
1483  * @v: pointer to value
1484  * @errp: if an error occurs, a pointer to an area to store the error
1485  *
1486  * Add an integer property in memory.  This function will add a
1487  * property of type 'uint32'.
1488  */
1489 void object_property_add_uint32_ptr(Object *obj, const char *name,
1490                                     const uint32_t *v, Error **errp);
1491 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name,
1492                                           const uint32_t *v, Error **errp);
1493 
1494 /**
1495  * object_property_add_uint64_ptr:
1496  * @obj: the object to add a property to
1497  * @name: the name of the property
1498  * @v: pointer to value
1499  * @errp: if an error occurs, a pointer to an area to store the error
1500  *
1501  * Add an integer property in memory.  This function will add a
1502  * property of type 'uint64'.
1503  */
1504 void object_property_add_uint64_ptr(Object *obj, const char *name,
1505                                     const uint64_t *v, Error **Errp);
1506 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name,
1507                                           const uint64_t *v, Error **Errp);
1508 
1509 /**
1510  * object_property_add_alias:
1511  * @obj: the object to add a property to
1512  * @name: the name of the property
1513  * @target_obj: the object to forward property access to
1514  * @target_name: the name of the property on the forwarded object
1515  * @errp: if an error occurs, a pointer to an area to store the error
1516  *
1517  * Add an alias for a property on an object.  This function will add a property
1518  * of the same type as the forwarded property.
1519  *
1520  * The caller must ensure that <code>@target_obj</code> stays alive as long as
1521  * this property exists.  In the case of a child object or an alias on the same
1522  * object this will be the case.  For aliases to other objects the caller is
1523  * responsible for taking a reference.
1524  */
1525 void object_property_add_alias(Object *obj, const char *name,
1526                                Object *target_obj, const char *target_name,
1527                                Error **errp);
1528 
1529 /**
1530  * object_property_add_const_link:
1531  * @obj: the object to add a property to
1532  * @name: the name of the property
1533  * @target: the object to be referred by the link
1534  * @errp: if an error occurs, a pointer to an area to store the error
1535  *
1536  * Add an unmodifiable link for a property on an object.  This function will
1537  * add a property of type link<TYPE> where TYPE is the type of @target.
1538  *
1539  * The caller must ensure that @target stays alive as long as
1540  * this property exists.  In the case @target is a child of @obj,
1541  * this will be the case.  Otherwise, the caller is responsible for
1542  * taking a reference.
1543  */
1544 void object_property_add_const_link(Object *obj, const char *name,
1545                                     Object *target, Error **errp);
1546 
1547 /**
1548  * object_property_set_description:
1549  * @obj: the object owning the property
1550  * @name: the name of the property
1551  * @description: the description of the property on the object
1552  * @errp: if an error occurs, a pointer to an area to store the error
1553  *
1554  * Set an object property's description.
1555  *
1556  */
1557 void object_property_set_description(Object *obj, const char *name,
1558                                      const char *description, Error **errp);
1559 void object_class_property_set_description(ObjectClass *klass, const char *name,
1560                                            const char *description,
1561                                            Error **errp);
1562 
1563 /**
1564  * object_child_foreach:
1565  * @obj: the object whose children will be navigated
1566  * @fn: the iterator function to be called
1567  * @opaque: an opaque value that will be passed to the iterator
1568  *
1569  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1570  * non-zero.
1571  *
1572  * It is forbidden to add or remove children from @obj from the @fn
1573  * callback.
1574  *
1575  * Returns: The last value returned by @fn, or 0 if there is no child.
1576  */
1577 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1578                          void *opaque);
1579 
1580 /**
1581  * object_child_foreach_recursive:
1582  * @obj: the object whose children will be navigated
1583  * @fn: the iterator function to be called
1584  * @opaque: an opaque value that will be passed to the iterator
1585  *
1586  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1587  * non-zero. Calls recursively, all child nodes of @obj will also be passed
1588  * all the way down to the leaf nodes of the tree. Depth first ordering.
1589  *
1590  * It is forbidden to add or remove children from @obj (or its
1591  * child nodes) from the @fn callback.
1592  *
1593  * Returns: The last value returned by @fn, or 0 if there is no child.
1594  */
1595 int object_child_foreach_recursive(Object *obj,
1596                                    int (*fn)(Object *child, void *opaque),
1597                                    void *opaque);
1598 /**
1599  * container_get:
1600  * @root: root of the #path, e.g., object_get_root()
1601  * @path: path to the container
1602  *
1603  * Return a container object whose path is @path.  Create more containers
1604  * along the path if necessary.
1605  *
1606  * Returns: the container object.
1607  */
1608 Object *container_get(Object *root, const char *path);
1609 
1610 /**
1611  * object_type_get_instance_size:
1612  * @typename: Name of the Type whose instance_size is required
1613  *
1614  * Returns the instance_size of the given @typename.
1615  */
1616 size_t object_type_get_instance_size(const char *typename);
1617 #endif
1618