xref: /qemu/include/qom/object.h (revision 7a4e543d)
1 /*
2  * QEMU Object Model
3  *
4  * Copyright IBM, Corp. 2011
5  *
6  * Authors:
7  *  Anthony Liguori   <aliguori@us.ibm.com>
8  *
9  * This work is licensed under the terms of the GNU GPL, version 2 or later.
10  * See the COPYING file in the top-level directory.
11  *
12  */
13 
14 #ifndef QEMU_OBJECT_H
15 #define QEMU_OBJECT_H
16 
17 #include <glib.h>
18 #include <stdint.h>
19 #include <stdbool.h>
20 #include "qemu/queue.h"
21 #include "qemu/typedefs.h"
22 #include "qapi/error.h"
23 
24 struct TypeImpl;
25 typedef struct TypeImpl *Type;
26 
27 typedef struct ObjectClass ObjectClass;
28 typedef struct Object Object;
29 
30 typedef struct TypeInfo TypeInfo;
31 
32 typedef struct InterfaceClass InterfaceClass;
33 typedef struct InterfaceInfo InterfaceInfo;
34 
35 #define TYPE_OBJECT "object"
36 
37 /**
38  * SECTION:object.h
39  * @title:Base Object Type System
40  * @short_description: interfaces for creating new types and objects
41  *
42  * The QEMU Object Model provides a framework for registering user creatable
43  * types and instantiating objects from those types.  QOM provides the following
44  * features:
45  *
46  *  - System for dynamically registering types
47  *  - Support for single-inheritance of types
48  *  - Multiple inheritance of stateless interfaces
49  *
50  * <example>
51  *   <title>Creating a minimal type</title>
52  *   <programlisting>
53  * #include "qdev.h"
54  *
55  * #define TYPE_MY_DEVICE "my-device"
56  *
57  * // No new virtual functions: we can reuse the typedef for the
58  * // superclass.
59  * typedef DeviceClass MyDeviceClass;
60  * typedef struct MyDevice
61  * {
62  *     DeviceState parent;
63  *
64  *     int reg0, reg1, reg2;
65  * } MyDevice;
66  *
67  * static const TypeInfo my_device_info = {
68  *     .name = TYPE_MY_DEVICE,
69  *     .parent = TYPE_DEVICE,
70  *     .instance_size = sizeof(MyDevice),
71  * };
72  *
73  * static void my_device_register_types(void)
74  * {
75  *     type_register_static(&my_device_info);
76  * }
77  *
78  * type_init(my_device_register_types)
79  *   </programlisting>
80  * </example>
81  *
82  * In the above example, we create a simple type that is described by #TypeInfo.
83  * #TypeInfo describes information about the type including what it inherits
84  * from, the instance and class size, and constructor/destructor hooks.
85  *
86  * Every type has an #ObjectClass associated with it.  #ObjectClass derivatives
87  * are instantiated dynamically but there is only ever one instance for any
88  * given type.  The #ObjectClass typically holds a table of function pointers
89  * for the virtual methods implemented by this type.
90  *
91  * Using object_new(), a new #Object derivative will be instantiated.  You can
92  * cast an #Object to a subclass (or base-class) type using
93  * object_dynamic_cast().  You typically want to define macro wrappers around
94  * OBJECT_CHECK() and OBJECT_CLASS_CHECK() to make it easier to convert to a
95  * specific type:
96  *
97  * <example>
98  *   <title>Typecasting macros</title>
99  *   <programlisting>
100  *    #define MY_DEVICE_GET_CLASS(obj) \
101  *       OBJECT_GET_CLASS(MyDeviceClass, obj, TYPE_MY_DEVICE)
102  *    #define MY_DEVICE_CLASS(klass) \
103  *       OBJECT_CLASS_CHECK(MyDeviceClass, klass, TYPE_MY_DEVICE)
104  *    #define MY_DEVICE(obj) \
105  *       OBJECT_CHECK(MyDevice, obj, TYPE_MY_DEVICE)
106  *   </programlisting>
107  * </example>
108  *
109  * # Class Initialization #
110  *
111  * Before an object is initialized, the class for the object must be
112  * initialized.  There is only one class object for all instance objects
113  * that is created lazily.
114  *
115  * Classes are initialized by first initializing any parent classes (if
116  * necessary).  After the parent class object has initialized, it will be
117  * copied into the current class object and any additional storage in the
118  * class object is zero filled.
119  *
120  * The effect of this is that classes automatically inherit any virtual
121  * function pointers that the parent class has already initialized.  All
122  * other fields will be zero filled.
123  *
124  * Once all of the parent classes have been initialized, #TypeInfo::class_init
125  * is called to let the class being instantiated provide default initialize for
126  * its virtual functions.  Here is how the above example might be modified
127  * to introduce an overridden virtual function:
128  *
129  * <example>
130  *   <title>Overriding a virtual function</title>
131  *   <programlisting>
132  * #include "qdev.h"
133  *
134  * void my_device_class_init(ObjectClass *klass, void *class_data)
135  * {
136  *     DeviceClass *dc = DEVICE_CLASS(klass);
137  *     dc->reset = my_device_reset;
138  * }
139  *
140  * static const TypeInfo my_device_info = {
141  *     .name = TYPE_MY_DEVICE,
142  *     .parent = TYPE_DEVICE,
143  *     .instance_size = sizeof(MyDevice),
144  *     .class_init = my_device_class_init,
145  * };
146  *   </programlisting>
147  * </example>
148  *
149  * Introducing new virtual methods requires a class to define its own
150  * struct and to add a .class_size member to the #TypeInfo.  Each method
151  * will also have a wrapper function to call it easily:
152  *
153  * <example>
154  *   <title>Defining an abstract class</title>
155  *   <programlisting>
156  * #include "qdev.h"
157  *
158  * typedef struct MyDeviceClass
159  * {
160  *     DeviceClass parent;
161  *
162  *     void (*frobnicate) (MyDevice *obj);
163  * } MyDeviceClass;
164  *
165  * static const TypeInfo my_device_info = {
166  *     .name = TYPE_MY_DEVICE,
167  *     .parent = TYPE_DEVICE,
168  *     .instance_size = sizeof(MyDevice),
169  *     .abstract = true, // or set a default in my_device_class_init
170  *     .class_size = sizeof(MyDeviceClass),
171  * };
172  *
173  * void my_device_frobnicate(MyDevice *obj)
174  * {
175  *     MyDeviceClass *klass = MY_DEVICE_GET_CLASS(obj);
176  *
177  *     klass->frobnicate(obj);
178  * }
179  *   </programlisting>
180  * </example>
181  *
182  * # Interfaces #
183  *
184  * Interfaces allow a limited form of multiple inheritance.  Instances are
185  * similar to normal types except for the fact that are only defined by
186  * their classes and never carry any state.  You can dynamically cast an object
187  * to one of its #Interface types and vice versa.
188  *
189  * # Methods #
190  *
191  * A <emphasis>method</emphasis> is a function within the namespace scope of
192  * a class. It usually operates on the object instance by passing it as a
193  * strongly-typed first argument.
194  * If it does not operate on an object instance, it is dubbed
195  * <emphasis>class method</emphasis>.
196  *
197  * Methods cannot be overloaded. That is, the #ObjectClass and method name
198  * uniquely identity the function to be called; the signature does not vary
199  * except for trailing varargs.
200  *
201  * Methods are always <emphasis>virtual</emphasis>. Overriding a method in
202  * #TypeInfo.class_init of a subclass leads to any user of the class obtained
203  * via OBJECT_GET_CLASS() accessing the overridden function.
204  * The original function is not automatically invoked. It is the responsibility
205  * of the overriding class to determine whether and when to invoke the method
206  * being overridden.
207  *
208  * To invoke the method being overridden, the preferred solution is to store
209  * the original value in the overriding class before overriding the method.
210  * This corresponds to |[ {super,base}.method(...) ]| in Java and C#
211  * respectively; this frees the overriding class from hardcoding its parent
212  * class, which someone might choose to change at some point.
213  *
214  * <example>
215  *   <title>Overriding a virtual method</title>
216  *   <programlisting>
217  * typedef struct MyState MyState;
218  *
219  * typedef void (*MyDoSomething)(MyState *obj);
220  *
221  * typedef struct MyClass {
222  *     ObjectClass parent_class;
223  *
224  *     MyDoSomething do_something;
225  * } MyClass;
226  *
227  * static void my_do_something(MyState *obj)
228  * {
229  *     // do something
230  * }
231  *
232  * static void my_class_init(ObjectClass *oc, void *data)
233  * {
234  *     MyClass *mc = MY_CLASS(oc);
235  *
236  *     mc->do_something = my_do_something;
237  * }
238  *
239  * static const TypeInfo my_type_info = {
240  *     .name = TYPE_MY,
241  *     .parent = TYPE_OBJECT,
242  *     .instance_size = sizeof(MyState),
243  *     .class_size = sizeof(MyClass),
244  *     .class_init = my_class_init,
245  * };
246  *
247  * typedef struct DerivedClass {
248  *     MyClass parent_class;
249  *
250  *     MyDoSomething parent_do_something;
251  * } DerivedClass;
252  *
253  * static void derived_do_something(MyState *obj)
254  * {
255  *     DerivedClass *dc = DERIVED_GET_CLASS(obj);
256  *
257  *     // do something here
258  *     dc->parent_do_something(obj);
259  *     // do something else here
260  * }
261  *
262  * static void derived_class_init(ObjectClass *oc, void *data)
263  * {
264  *     MyClass *mc = MY_CLASS(oc);
265  *     DerivedClass *dc = DERIVED_CLASS(oc);
266  *
267  *     dc->parent_do_something = mc->do_something;
268  *     mc->do_something = derived_do_something;
269  * }
270  *
271  * static const TypeInfo derived_type_info = {
272  *     .name = TYPE_DERIVED,
273  *     .parent = TYPE_MY,
274  *     .class_size = sizeof(DerivedClass),
275  *     .class_init = derived_class_init,
276  * };
277  *   </programlisting>
278  * </example>
279  *
280  * Alternatively, object_class_by_name() can be used to obtain the class and
281  * its non-overridden methods for a specific type. This would correspond to
282  * |[ MyClass::method(...) ]| in C++.
283  *
284  * The first example of such a QOM method was #CPUClass.reset,
285  * another example is #DeviceClass.realize.
286  */
287 
288 
289 /**
290  * ObjectPropertyAccessor:
291  * @obj: the object that owns the property
292  * @v: the visitor that contains the property data
293  * @name: the name of the property
294  * @opaque: the object property opaque
295  * @errp: a pointer to an Error that is filled if getting/setting fails.
296  *
297  * Called when trying to get/set a property.
298  */
299 typedef void (ObjectPropertyAccessor)(Object *obj,
300                                       Visitor *v,
301                                       const char *name,
302                                       void *opaque,
303                                       Error **errp);
304 
305 /**
306  * ObjectPropertyResolve:
307  * @obj: the object that owns the property
308  * @opaque: the opaque registered with the property
309  * @part: the name of the property
310  *
311  * Resolves the #Object corresponding to property @part.
312  *
313  * The returned object can also be used as a starting point
314  * to resolve a relative path starting with "@part".
315  *
316  * Returns: If @path is the path that led to @obj, the function
317  * returns the #Object corresponding to "@path/@part".
318  * If "@path/@part" is not a valid object path, it returns #NULL.
319  */
320 typedef Object *(ObjectPropertyResolve)(Object *obj,
321                                         void *opaque,
322                                         const char *part);
323 
324 /**
325  * ObjectPropertyRelease:
326  * @obj: the object that owns the property
327  * @name: the name of the property
328  * @opaque: the opaque registered with the property
329  *
330  * Called when a property is removed from a object.
331  */
332 typedef void (ObjectPropertyRelease)(Object *obj,
333                                      const char *name,
334                                      void *opaque);
335 
336 typedef struct ObjectProperty
337 {
338     gchar *name;
339     gchar *type;
340     gchar *description;
341     ObjectPropertyAccessor *get;
342     ObjectPropertyAccessor *set;
343     ObjectPropertyResolve *resolve;
344     ObjectPropertyRelease *release;
345     void *opaque;
346 } ObjectProperty;
347 
348 /**
349  * ObjectUnparent:
350  * @obj: the object that is being removed from the composition tree
351  *
352  * Called when an object is being removed from the QOM composition tree.
353  * The function should remove any backlinks from children objects to @obj.
354  */
355 typedef void (ObjectUnparent)(Object *obj);
356 
357 /**
358  * ObjectFree:
359  * @obj: the object being freed
360  *
361  * Called when an object's last reference is removed.
362  */
363 typedef void (ObjectFree)(void *obj);
364 
365 #define OBJECT_CLASS_CAST_CACHE 4
366 
367 /**
368  * ObjectClass:
369  *
370  * The base for all classes.  The only thing that #ObjectClass contains is an
371  * integer type handle.
372  */
373 struct ObjectClass
374 {
375     /*< private >*/
376     Type type;
377     GSList *interfaces;
378 
379     const char *object_cast_cache[OBJECT_CLASS_CAST_CACHE];
380     const char *class_cast_cache[OBJECT_CLASS_CAST_CACHE];
381 
382     ObjectUnparent *unparent;
383 
384     GHashTable *properties;
385 };
386 
387 /**
388  * Object:
389  *
390  * The base for all objects.  The first member of this object is a pointer to
391  * a #ObjectClass.  Since C guarantees that the first member of a structure
392  * always begins at byte 0 of that structure, as long as any sub-object places
393  * its parent as the first member, we can cast directly to a #Object.
394  *
395  * As a result, #Object contains a reference to the objects type as its
396  * first member.  This allows identification of the real type of the object at
397  * run time.
398  */
399 struct Object
400 {
401     /*< private >*/
402     ObjectClass *class;
403     ObjectFree *free;
404     GHashTable *properties;
405     uint32_t ref;
406     Object *parent;
407 };
408 
409 /**
410  * TypeInfo:
411  * @name: The name of the type.
412  * @parent: The name of the parent type.
413  * @instance_size: The size of the object (derivative of #Object).  If
414  *   @instance_size is 0, then the size of the object will be the size of the
415  *   parent object.
416  * @instance_init: This function is called to initialize an object.  The parent
417  *   class will have already been initialized so the type is only responsible
418  *   for initializing its own members.
419  * @instance_post_init: This function is called to finish initialization of
420  *   an object, after all @instance_init functions were called.
421  * @instance_finalize: This function is called during object destruction.  This
422  *   is called before the parent @instance_finalize function has been called.
423  *   An object should only free the members that are unique to its type in this
424  *   function.
425  * @abstract: If this field is true, then the class is considered abstract and
426  *   cannot be directly instantiated.
427  * @class_size: The size of the class object (derivative of #ObjectClass)
428  *   for this object.  If @class_size is 0, then the size of the class will be
429  *   assumed to be the size of the parent class.  This allows a type to avoid
430  *   implementing an explicit class type if they are not adding additional
431  *   virtual functions.
432  * @class_init: This function is called after all parent class initialization
433  *   has occurred to allow a class to set its default virtual method pointers.
434  *   This is also the function to use to override virtual methods from a parent
435  *   class.
436  * @class_base_init: This function is called for all base classes after all
437  *   parent class initialization has occurred, but before the class itself
438  *   is initialized.  This is the function to use to undo the effects of
439  *   memcpy from the parent class to the descendents.
440  * @class_finalize: This function is called during class destruction and is
441  *   meant to release and dynamic parameters allocated by @class_init.
442  * @class_data: Data to pass to the @class_init, @class_base_init and
443  *   @class_finalize functions.  This can be useful when building dynamic
444  *   classes.
445  * @interfaces: The list of interfaces associated with this type.  This
446  *   should point to a static array that's terminated with a zero filled
447  *   element.
448  */
449 struct TypeInfo
450 {
451     const char *name;
452     const char *parent;
453 
454     size_t instance_size;
455     void (*instance_init)(Object *obj);
456     void (*instance_post_init)(Object *obj);
457     void (*instance_finalize)(Object *obj);
458 
459     bool abstract;
460     size_t class_size;
461 
462     void (*class_init)(ObjectClass *klass, void *data);
463     void (*class_base_init)(ObjectClass *klass, void *data);
464     void (*class_finalize)(ObjectClass *klass, void *data);
465     void *class_data;
466 
467     InterfaceInfo *interfaces;
468 };
469 
470 /**
471  * OBJECT:
472  * @obj: A derivative of #Object
473  *
474  * Converts an object to a #Object.  Since all objects are #Objects,
475  * this function will always succeed.
476  */
477 #define OBJECT(obj) \
478     ((Object *)(obj))
479 
480 /**
481  * OBJECT_CLASS:
482  * @class: A derivative of #ObjectClass.
483  *
484  * Converts a class to an #ObjectClass.  Since all objects are #Objects,
485  * this function will always succeed.
486  */
487 #define OBJECT_CLASS(class) \
488     ((ObjectClass *)(class))
489 
490 /**
491  * OBJECT_CHECK:
492  * @type: The C type to use for the return value.
493  * @obj: A derivative of @type to cast.
494  * @name: The QOM typename of @type
495  *
496  * A type safe version of @object_dynamic_cast_assert.  Typically each class
497  * will define a macro based on this type to perform type safe dynamic_casts to
498  * this object type.
499  *
500  * If an invalid object is passed to this function, a run time assert will be
501  * generated.
502  */
503 #define OBJECT_CHECK(type, obj, name) \
504     ((type *)object_dynamic_cast_assert(OBJECT(obj), (name), \
505                                         __FILE__, __LINE__, __func__))
506 
507 /**
508  * OBJECT_CLASS_CHECK:
509  * @class_type: The C type to use for the return value.
510  * @class: A derivative class of @class_type to cast.
511  * @name: the QOM typename of @class_type.
512  *
513  * A type safe version of @object_class_dynamic_cast_assert.  This macro is
514  * typically wrapped by each type to perform type safe casts of a class to a
515  * specific class type.
516  */
517 #define OBJECT_CLASS_CHECK(class_type, class, name) \
518     ((class_type *)object_class_dynamic_cast_assert(OBJECT_CLASS(class), (name), \
519                                                __FILE__, __LINE__, __func__))
520 
521 /**
522  * OBJECT_GET_CLASS:
523  * @class: The C type to use for the return value.
524  * @obj: The object to obtain the class for.
525  * @name: The QOM typename of @obj.
526  *
527  * This function will return a specific class for a given object.  Its generally
528  * used by each type to provide a type safe macro to get a specific class type
529  * from an object.
530  */
531 #define OBJECT_GET_CLASS(class, obj, name) \
532     OBJECT_CLASS_CHECK(class, object_get_class(OBJECT(obj)), name)
533 
534 /**
535  * InterfaceInfo:
536  * @type: The name of the interface.
537  *
538  * The information associated with an interface.
539  */
540 struct InterfaceInfo {
541     const char *type;
542 };
543 
544 /**
545  * InterfaceClass:
546  * @parent_class: the base class
547  *
548  * The class for all interfaces.  Subclasses of this class should only add
549  * virtual methods.
550  */
551 struct InterfaceClass
552 {
553     ObjectClass parent_class;
554     /*< private >*/
555     ObjectClass *concrete_class;
556     Type interface_type;
557 };
558 
559 #define TYPE_INTERFACE "interface"
560 
561 /**
562  * INTERFACE_CLASS:
563  * @klass: class to cast from
564  * Returns: An #InterfaceClass or raise an error if cast is invalid
565  */
566 #define INTERFACE_CLASS(klass) \
567     OBJECT_CLASS_CHECK(InterfaceClass, klass, TYPE_INTERFACE)
568 
569 /**
570  * INTERFACE_CHECK:
571  * @interface: the type to return
572  * @obj: the object to convert to an interface
573  * @name: the interface type name
574  *
575  * Returns: @obj casted to @interface if cast is valid, otherwise raise error.
576  */
577 #define INTERFACE_CHECK(interface, obj, name) \
578     ((interface *)object_dynamic_cast_assert(OBJECT((obj)), (name), \
579                                              __FILE__, __LINE__, __func__))
580 
581 /**
582  * object_new:
583  * @typename: The name of the type of the object to instantiate.
584  *
585  * This function will initialize a new object using heap allocated memory.
586  * The returned object has a reference count of 1, and will be freed when
587  * the last reference is dropped.
588  *
589  * Returns: The newly allocated and instantiated object.
590  */
591 Object *object_new(const char *typename);
592 
593 /**
594  * object_new_with_type:
595  * @type: The type of the object to instantiate.
596  *
597  * This function will initialize a new object using heap allocated memory.
598  * The returned object has a reference count of 1, and will be freed when
599  * the last reference is dropped.
600  *
601  * Returns: The newly allocated and instantiated object.
602  */
603 Object *object_new_with_type(Type type);
604 
605 /**
606  * object_new_with_props:
607  * @typename:  The name of the type of the object to instantiate.
608  * @parent: the parent object
609  * @id: The unique ID of the object
610  * @errp: pointer to error object
611  * @...: list of property names and values
612  *
613  * This function will initialize a new object using heap allocated memory.
614  * The returned object has a reference count of 1, and will be freed when
615  * the last reference is dropped.
616  *
617  * The @id parameter will be used when registering the object as a
618  * child of @parent in the composition tree.
619  *
620  * The variadic parameters are a list of pairs of (propname, propvalue)
621  * strings. The propname of %NULL indicates the end of the property
622  * list. If the object implements the user creatable interface, the
623  * object will be marked complete once all the properties have been
624  * processed.
625  *
626  * <example>
627  *   <title>Creating an object with properties</title>
628  *   <programlisting>
629  *   Error *err = NULL;
630  *   Object *obj;
631  *
632  *   obj = object_new_with_props(TYPE_MEMORY_BACKEND_FILE,
633  *                               object_get_objects_root(),
634  *                               "hostmem0",
635  *                               &err,
636  *                               "share", "yes",
637  *                               "mem-path", "/dev/shm/somefile",
638  *                               "prealloc", "yes",
639  *                               "size", "1048576",
640  *                               NULL);
641  *
642  *   if (!obj) {
643  *     g_printerr("Cannot create memory backend: %s\n",
644  *                error_get_pretty(err));
645  *   }
646  *   </programlisting>
647  * </example>
648  *
649  * The returned object will have one stable reference maintained
650  * for as long as it is present in the object hierarchy.
651  *
652  * Returns: The newly allocated, instantiated & initialized object.
653  */
654 Object *object_new_with_props(const char *typename,
655                               Object *parent,
656                               const char *id,
657                               Error **errp,
658                               ...) QEMU_SENTINEL;
659 
660 /**
661  * object_new_with_propv:
662  * @typename:  The name of the type of the object to instantiate.
663  * @parent: the parent object
664  * @id: The unique ID of the object
665  * @errp: pointer to error object
666  * @vargs: list of property names and values
667  *
668  * See object_new_with_props() for documentation.
669  */
670 Object *object_new_with_propv(const char *typename,
671                               Object *parent,
672                               const char *id,
673                               Error **errp,
674                               va_list vargs);
675 
676 /**
677  * object_set_props:
678  * @obj: the object instance to set properties on
679  * @errp: pointer to error object
680  * @...: list of property names and values
681  *
682  * This function will set a list of properties on an existing object
683  * instance.
684  *
685  * The variadic parameters are a list of pairs of (propname, propvalue)
686  * strings. The propname of %NULL indicates the end of the property
687  * list.
688  *
689  * <example>
690  *   <title>Update an object's properties</title>
691  *   <programlisting>
692  *   Error *err = NULL;
693  *   Object *obj = ...get / create object...;
694  *
695  *   obj = object_set_props(obj,
696  *                          &err,
697  *                          "share", "yes",
698  *                          "mem-path", "/dev/shm/somefile",
699  *                          "prealloc", "yes",
700  *                          "size", "1048576",
701  *                          NULL);
702  *
703  *   if (!obj) {
704  *     g_printerr("Cannot set properties: %s\n",
705  *                error_get_pretty(err));
706  *   }
707  *   </programlisting>
708  * </example>
709  *
710  * The returned object will have one stable reference maintained
711  * for as long as it is present in the object hierarchy.
712  *
713  * Returns: -1 on error, 0 on success
714  */
715 int object_set_props(Object *obj,
716                      Error **errp,
717                      ...) QEMU_SENTINEL;
718 
719 /**
720  * object_set_propv:
721  * @obj: the object instance to set properties on
722  * @errp: pointer to error object
723  * @vargs: list of property names and values
724  *
725  * See object_set_props() for documentation.
726  *
727  * Returns: -1 on error, 0 on success
728  */
729 int object_set_propv(Object *obj,
730                      Error **errp,
731                      va_list vargs);
732 
733 /**
734  * object_initialize_with_type:
735  * @data: A pointer to the memory to be used for the object.
736  * @size: The maximum size available at @data for the object.
737  * @type: The type of the object to instantiate.
738  *
739  * This function will initialize an object.  The memory for the object should
740  * have already been allocated.  The returned object has a reference count of 1,
741  * and will be finalized when the last reference is dropped.
742  */
743 void object_initialize_with_type(void *data, size_t size, Type type);
744 
745 /**
746  * object_initialize:
747  * @obj: A pointer to the memory to be used for the object.
748  * @size: The maximum size available at @obj for the object.
749  * @typename: The name of the type of the object to instantiate.
750  *
751  * This function will initialize an object.  The memory for the object should
752  * have already been allocated.  The returned object has a reference count of 1,
753  * and will be finalized when the last reference is dropped.
754  */
755 void object_initialize(void *obj, size_t size, const char *typename);
756 
757 /**
758  * object_dynamic_cast:
759  * @obj: The object to cast.
760  * @typename: The @typename to cast to.
761  *
762  * This function will determine if @obj is-a @typename.  @obj can refer to an
763  * object or an interface associated with an object.
764  *
765  * Returns: This function returns @obj on success or #NULL on failure.
766  */
767 Object *object_dynamic_cast(Object *obj, const char *typename);
768 
769 /**
770  * object_dynamic_cast_assert:
771  *
772  * See object_dynamic_cast() for a description of the parameters of this
773  * function.  The only difference in behavior is that this function asserts
774  * instead of returning #NULL on failure if QOM cast debugging is enabled.
775  * This function is not meant to be called directly, but only through
776  * the wrapper macro OBJECT_CHECK.
777  */
778 Object *object_dynamic_cast_assert(Object *obj, const char *typename,
779                                    const char *file, int line, const char *func);
780 
781 /**
782  * object_get_class:
783  * @obj: A derivative of #Object
784  *
785  * Returns: The #ObjectClass of the type associated with @obj.
786  */
787 ObjectClass *object_get_class(Object *obj);
788 
789 /**
790  * object_get_typename:
791  * @obj: A derivative of #Object.
792  *
793  * Returns: The QOM typename of @obj.
794  */
795 const char *object_get_typename(Object *obj);
796 
797 /**
798  * type_register_static:
799  * @info: The #TypeInfo of the new type.
800  *
801  * @info and all of the strings it points to should exist for the life time
802  * that the type is registered.
803  *
804  * Returns: 0 on failure, the new #Type on success.
805  */
806 Type type_register_static(const TypeInfo *info);
807 
808 /**
809  * type_register:
810  * @info: The #TypeInfo of the new type
811  *
812  * Unlike type_register_static(), this call does not require @info or its
813  * string members to continue to exist after the call returns.
814  *
815  * Returns: 0 on failure, the new #Type on success.
816  */
817 Type type_register(const TypeInfo *info);
818 
819 /**
820  * object_class_dynamic_cast_assert:
821  * @klass: The #ObjectClass to attempt to cast.
822  * @typename: The QOM typename of the class to cast to.
823  *
824  * See object_class_dynamic_cast() for a description of the parameters
825  * of this function.  The only difference in behavior is that this function
826  * asserts instead of returning #NULL on failure if QOM cast debugging is
827  * enabled.  This function is not meant to be called directly, but only through
828  * the wrapper macros OBJECT_CLASS_CHECK and INTERFACE_CHECK.
829  */
830 ObjectClass *object_class_dynamic_cast_assert(ObjectClass *klass,
831                                               const char *typename,
832                                               const char *file, int line,
833                                               const char *func);
834 
835 /**
836  * object_class_dynamic_cast:
837  * @klass: The #ObjectClass to attempt to cast.
838  * @typename: The QOM typename of the class to cast to.
839  *
840  * Returns: If @typename is a class, this function returns @klass if
841  * @typename is a subtype of @klass, else returns #NULL.
842  *
843  * If @typename is an interface, this function returns the interface
844  * definition for @klass if @klass implements it unambiguously; #NULL
845  * is returned if @klass does not implement the interface or if multiple
846  * classes or interfaces on the hierarchy leading to @klass implement
847  * it.  (FIXME: perhaps this can be detected at type definition time?)
848  */
849 ObjectClass *object_class_dynamic_cast(ObjectClass *klass,
850                                        const char *typename);
851 
852 /**
853  * object_class_get_parent:
854  * @klass: The class to obtain the parent for.
855  *
856  * Returns: The parent for @klass or %NULL if none.
857  */
858 ObjectClass *object_class_get_parent(ObjectClass *klass);
859 
860 /**
861  * object_class_get_name:
862  * @klass: The class to obtain the QOM typename for.
863  *
864  * Returns: The QOM typename for @klass.
865  */
866 const char *object_class_get_name(ObjectClass *klass);
867 
868 /**
869  * object_class_is_abstract:
870  * @klass: The class to obtain the abstractness for.
871  *
872  * Returns: %true if @klass is abstract, %false otherwise.
873  */
874 bool object_class_is_abstract(ObjectClass *klass);
875 
876 /**
877  * object_class_by_name:
878  * @typename: The QOM typename to obtain the class for.
879  *
880  * Returns: The class for @typename or %NULL if not found.
881  */
882 ObjectClass *object_class_by_name(const char *typename);
883 
884 void object_class_foreach(void (*fn)(ObjectClass *klass, void *opaque),
885                           const char *implements_type, bool include_abstract,
886                           void *opaque);
887 
888 /**
889  * object_class_get_list:
890  * @implements_type: The type to filter for, including its derivatives.
891  * @include_abstract: Whether to include abstract classes.
892  *
893  * Returns: A singly-linked list of the classes in reverse hashtable order.
894  */
895 GSList *object_class_get_list(const char *implements_type,
896                               bool include_abstract);
897 
898 /**
899  * object_ref:
900  * @obj: the object
901  *
902  * Increase the reference count of a object.  A object cannot be freed as long
903  * as its reference count is greater than zero.
904  */
905 void object_ref(Object *obj);
906 
907 /**
908  * qdef_unref:
909  * @obj: the object
910  *
911  * Decrease the reference count of a object.  A object cannot be freed as long
912  * as its reference count is greater than zero.
913  */
914 void object_unref(Object *obj);
915 
916 /**
917  * object_property_add:
918  * @obj: the object to add a property to
919  * @name: the name of the property.  This can contain any character except for
920  *  a forward slash.  In general, you should use hyphens '-' instead of
921  *  underscores '_' when naming properties.
922  * @type: the type name of the property.  This namespace is pretty loosely
923  *   defined.  Sub namespaces are constructed by using a prefix and then
924  *   to angle brackets.  For instance, the type 'virtio-net-pci' in the
925  *   'link' namespace would be 'link<virtio-net-pci>'.
926  * @get: The getter to be called to read a property.  If this is NULL, then
927  *   the property cannot be read.
928  * @set: the setter to be called to write a property.  If this is NULL,
929  *   then the property cannot be written.
930  * @release: called when the property is removed from the object.  This is
931  *   meant to allow a property to free its opaque upon object
932  *   destruction.  This may be NULL.
933  * @opaque: an opaque pointer to pass to the callbacks for the property
934  * @errp: returns an error if this function fails
935  *
936  * Returns: The #ObjectProperty; this can be used to set the @resolve
937  * callback for child and link properties.
938  */
939 ObjectProperty *object_property_add(Object *obj, const char *name,
940                                     const char *type,
941                                     ObjectPropertyAccessor *get,
942                                     ObjectPropertyAccessor *set,
943                                     ObjectPropertyRelease *release,
944                                     void *opaque, Error **errp);
945 
946 void object_property_del(Object *obj, const char *name, Error **errp);
947 
948 ObjectProperty *object_class_property_add(ObjectClass *klass, const char *name,
949                                           const char *type,
950                                           ObjectPropertyAccessor *get,
951                                           ObjectPropertyAccessor *set,
952                                           ObjectPropertyRelease *release,
953                                           void *opaque, Error **errp);
954 
955 /**
956  * object_property_find:
957  * @obj: the object
958  * @name: the name of the property
959  * @errp: returns an error if this function fails
960  *
961  * Look up a property for an object and return its #ObjectProperty if found.
962  */
963 ObjectProperty *object_property_find(Object *obj, const char *name,
964                                      Error **errp);
965 ObjectProperty *object_class_property_find(ObjectClass *klass, const char *name,
966                                            Error **errp);
967 
968 typedef struct ObjectPropertyIterator {
969     ObjectClass *nextclass;
970     GHashTableIter iter;
971 } ObjectPropertyIterator;
972 
973 /**
974  * object_property_iter_init:
975  * @obj: the object
976  *
977  * Initializes an iterator for traversing all properties
978  * registered against an object instance, its class and all parent classes.
979  *
980  * It is forbidden to modify the property list while iterating,
981  * whether removing or adding properties.
982  *
983  * Typical usage pattern would be
984  *
985  * <example>
986  *   <title>Using object property iterators</title>
987  *   <programlisting>
988  *   ObjectProperty *prop;
989  *   ObjectPropertyIterator iter;
990  *
991  *   object_property_iter_init(&iter, obj);
992  *   while ((prop = object_property_iter_next(&iter))) {
993  *     ... do something with prop ...
994  *   }
995  *   </programlisting>
996  * </example>
997  */
998 void object_property_iter_init(ObjectPropertyIterator *iter,
999                                Object *obj);
1000 
1001 /**
1002  * object_property_iter_next:
1003  * @iter: the iterator instance
1004  *
1005  * Return the next available property. If no further properties
1006  * are available, a %NULL value will be returned and the @iter
1007  * pointer should not be used again after this point without
1008  * re-initializing it.
1009  *
1010  * Returns: the next property, or %NULL when all properties
1011  * have been traversed.
1012  */
1013 ObjectProperty *object_property_iter_next(ObjectPropertyIterator *iter);
1014 
1015 void object_unparent(Object *obj);
1016 
1017 /**
1018  * object_property_get:
1019  * @obj: the object
1020  * @v: the visitor that will receive the property value.  This should be an
1021  *   Output visitor and the data will be written with @name as the name.
1022  * @name: the name of the property
1023  * @errp: returns an error if this function fails
1024  *
1025  * Reads a property from a object.
1026  */
1027 void object_property_get(Object *obj, Visitor *v, const char *name,
1028                          Error **errp);
1029 
1030 /**
1031  * object_property_set_str:
1032  * @value: the value to be written to the property
1033  * @name: the name of the property
1034  * @errp: returns an error if this function fails
1035  *
1036  * Writes a string value to a property.
1037  */
1038 void object_property_set_str(Object *obj, const char *value,
1039                              const char *name, Error **errp);
1040 
1041 /**
1042  * object_property_get_str:
1043  * @obj: the object
1044  * @name: the name of the property
1045  * @errp: returns an error if this function fails
1046  *
1047  * Returns: the value of the property, converted to a C string, or NULL if
1048  * an error occurs (including when the property value is not a string).
1049  * The caller should free the string.
1050  */
1051 char *object_property_get_str(Object *obj, const char *name,
1052                               Error **errp);
1053 
1054 /**
1055  * object_property_set_link:
1056  * @value: the value to be written to the property
1057  * @name: the name of the property
1058  * @errp: returns an error if this function fails
1059  *
1060  * Writes an object's canonical path to a property.
1061  */
1062 void object_property_set_link(Object *obj, Object *value,
1063                               const char *name, Error **errp);
1064 
1065 /**
1066  * object_property_get_link:
1067  * @obj: the object
1068  * @name: the name of the property
1069  * @errp: returns an error if this function fails
1070  *
1071  * Returns: the value of the property, resolved from a path to an Object,
1072  * or NULL if an error occurs (including when the property value is not a
1073  * string or not a valid object path).
1074  */
1075 Object *object_property_get_link(Object *obj, const char *name,
1076                                  Error **errp);
1077 
1078 /**
1079  * object_property_set_bool:
1080  * @value: the value to be written to the property
1081  * @name: the name of the property
1082  * @errp: returns an error if this function fails
1083  *
1084  * Writes a bool value to a property.
1085  */
1086 void object_property_set_bool(Object *obj, bool value,
1087                               const char *name, Error **errp);
1088 
1089 /**
1090  * object_property_get_bool:
1091  * @obj: the object
1092  * @name: the name of the property
1093  * @errp: returns an error if this function fails
1094  *
1095  * Returns: the value of the property, converted to a boolean, or NULL if
1096  * an error occurs (including when the property value is not a bool).
1097  */
1098 bool object_property_get_bool(Object *obj, const char *name,
1099                               Error **errp);
1100 
1101 /**
1102  * object_property_set_int:
1103  * @value: the value to be written to the property
1104  * @name: the name of the property
1105  * @errp: returns an error if this function fails
1106  *
1107  * Writes an integer value to a property.
1108  */
1109 void object_property_set_int(Object *obj, int64_t value,
1110                              const char *name, Error **errp);
1111 
1112 /**
1113  * object_property_get_int:
1114  * @obj: the object
1115  * @name: the name of the property
1116  * @errp: returns an error if this function fails
1117  *
1118  * Returns: the value of the property, converted to an integer, or negative if
1119  * an error occurs (including when the property value is not an integer).
1120  */
1121 int64_t object_property_get_int(Object *obj, const char *name,
1122                                 Error **errp);
1123 
1124 /**
1125  * object_property_get_enum:
1126  * @obj: the object
1127  * @name: the name of the property
1128  * @typename: the name of the enum data type
1129  * @errp: returns an error if this function fails
1130  *
1131  * Returns: the value of the property, converted to an integer, or
1132  * undefined if an error occurs (including when the property value is not
1133  * an enum).
1134  */
1135 int object_property_get_enum(Object *obj, const char *name,
1136                              const char *typename, Error **errp);
1137 
1138 /**
1139  * object_property_get_uint16List:
1140  * @obj: the object
1141  * @name: the name of the property
1142  * @list: the returned int list
1143  * @errp: returns an error if this function fails
1144  *
1145  * Returns: the value of the property, converted to integers, or
1146  * undefined if an error occurs (including when the property value is not
1147  * an list of integers).
1148  */
1149 void object_property_get_uint16List(Object *obj, const char *name,
1150                                     uint16List **list, Error **errp);
1151 
1152 /**
1153  * object_property_set:
1154  * @obj: the object
1155  * @v: the visitor that will be used to write the property value.  This should
1156  *   be an Input visitor and the data will be first read with @name as the
1157  *   name and then written as the property value.
1158  * @name: the name of the property
1159  * @errp: returns an error if this function fails
1160  *
1161  * Writes a property to a object.
1162  */
1163 void object_property_set(Object *obj, Visitor *v, const char *name,
1164                          Error **errp);
1165 
1166 /**
1167  * object_property_parse:
1168  * @obj: the object
1169  * @string: the string that will be used to parse the property value.
1170  * @name: the name of the property
1171  * @errp: returns an error if this function fails
1172  *
1173  * Parses a string and writes the result into a property of an object.
1174  */
1175 void object_property_parse(Object *obj, const char *string,
1176                            const char *name, Error **errp);
1177 
1178 /**
1179  * object_property_print:
1180  * @obj: the object
1181  * @name: the name of the property
1182  * @human: if true, print for human consumption
1183  * @errp: returns an error if this function fails
1184  *
1185  * Returns a string representation of the value of the property.  The
1186  * caller shall free the string.
1187  */
1188 char *object_property_print(Object *obj, const char *name, bool human,
1189                             Error **errp);
1190 
1191 /**
1192  * object_property_get_type:
1193  * @obj: the object
1194  * @name: the name of the property
1195  * @errp: returns an error if this function fails
1196  *
1197  * Returns:  The type name of the property.
1198  */
1199 const char *object_property_get_type(Object *obj, const char *name,
1200                                      Error **errp);
1201 
1202 /**
1203  * object_get_root:
1204  *
1205  * Returns: the root object of the composition tree
1206  */
1207 Object *object_get_root(void);
1208 
1209 
1210 /**
1211  * object_get_objects_root:
1212  *
1213  * Get the container object that holds user created
1214  * object instances. This is the object at path
1215  * "/objects"
1216  *
1217  * Returns: the user object container
1218  */
1219 Object *object_get_objects_root(void);
1220 
1221 /**
1222  * object_get_canonical_path_component:
1223  *
1224  * Returns: The final component in the object's canonical path.  The canonical
1225  * path is the path within the composition tree starting from the root.
1226  */
1227 gchar *object_get_canonical_path_component(Object *obj);
1228 
1229 /**
1230  * object_get_canonical_path:
1231  *
1232  * Returns: The canonical path for a object.  This is the path within the
1233  * composition tree starting from the root.
1234  */
1235 gchar *object_get_canonical_path(Object *obj);
1236 
1237 /**
1238  * object_resolve_path:
1239  * @path: the path to resolve
1240  * @ambiguous: returns true if the path resolution failed because of an
1241  *   ambiguous match
1242  *
1243  * There are two types of supported paths--absolute paths and partial paths.
1244  *
1245  * Absolute paths are derived from the root object and can follow child<> or
1246  * link<> properties.  Since they can follow link<> properties, they can be
1247  * arbitrarily long.  Absolute paths look like absolute filenames and are
1248  * prefixed with a leading slash.
1249  *
1250  * Partial paths look like relative filenames.  They do not begin with a
1251  * prefix.  The matching rules for partial paths are subtle but designed to make
1252  * specifying objects easy.  At each level of the composition tree, the partial
1253  * path is matched as an absolute path.  The first match is not returned.  At
1254  * least two matches are searched for.  A successful result is only returned if
1255  * only one match is found.  If more than one match is found, a flag is
1256  * returned to indicate that the match was ambiguous.
1257  *
1258  * Returns: The matched object or NULL on path lookup failure.
1259  */
1260 Object *object_resolve_path(const char *path, bool *ambiguous);
1261 
1262 /**
1263  * object_resolve_path_type:
1264  * @path: the path to resolve
1265  * @typename: the type to look for.
1266  * @ambiguous: returns true if the path resolution failed because of an
1267  *   ambiguous match
1268  *
1269  * This is similar to object_resolve_path.  However, when looking for a
1270  * partial path only matches that implement the given type are considered.
1271  * This restricts the search and avoids spuriously flagging matches as
1272  * ambiguous.
1273  *
1274  * For both partial and absolute paths, the return value goes through
1275  * a dynamic cast to @typename.  This is important if either the link,
1276  * or the typename itself are of interface types.
1277  *
1278  * Returns: The matched object or NULL on path lookup failure.
1279  */
1280 Object *object_resolve_path_type(const char *path, const char *typename,
1281                                  bool *ambiguous);
1282 
1283 /**
1284  * object_resolve_path_component:
1285  * @parent: the object in which to resolve the path
1286  * @part: the component to resolve.
1287  *
1288  * This is similar to object_resolve_path with an absolute path, but it
1289  * only resolves one element (@part) and takes the others from @parent.
1290  *
1291  * Returns: The resolved object or NULL on path lookup failure.
1292  */
1293 Object *object_resolve_path_component(Object *parent, const gchar *part);
1294 
1295 /**
1296  * object_property_add_child:
1297  * @obj: the object to add a property to
1298  * @name: the name of the property
1299  * @child: the child object
1300  * @errp: if an error occurs, a pointer to an area to store the area
1301  *
1302  * Child properties form the composition tree.  All objects need to be a child
1303  * of another object.  Objects can only be a child of one object.
1304  *
1305  * There is no way for a child to determine what its parent is.  It is not
1306  * a bidirectional relationship.  This is by design.
1307  *
1308  * The value of a child property as a C string will be the child object's
1309  * canonical path. It can be retrieved using object_property_get_str().
1310  * The child object itself can be retrieved using object_property_get_link().
1311  */
1312 void object_property_add_child(Object *obj, const char *name,
1313                                Object *child, Error **errp);
1314 
1315 typedef enum {
1316     /* Unref the link pointer when the property is deleted */
1317     OBJ_PROP_LINK_UNREF_ON_RELEASE = 0x1,
1318 } ObjectPropertyLinkFlags;
1319 
1320 /**
1321  * object_property_allow_set_link:
1322  *
1323  * The default implementation of the object_property_add_link() check()
1324  * callback function.  It allows the link property to be set and never returns
1325  * an error.
1326  */
1327 void object_property_allow_set_link(Object *, const char *,
1328                                     Object *, Error **);
1329 
1330 /**
1331  * object_property_add_link:
1332  * @obj: the object to add a property to
1333  * @name: the name of the property
1334  * @type: the qobj type of the link
1335  * @child: a pointer to where the link object reference is stored
1336  * @check: callback to veto setting or NULL if the property is read-only
1337  * @flags: additional options for the link
1338  * @errp: if an error occurs, a pointer to an area to store the area
1339  *
1340  * Links establish relationships between objects.  Links are unidirectional
1341  * although two links can be combined to form a bidirectional relationship
1342  * between objects.
1343  *
1344  * Links form the graph in the object model.
1345  *
1346  * The <code>@check()</code> callback is invoked when
1347  * object_property_set_link() is called and can raise an error to prevent the
1348  * link being set.  If <code>@check</code> is NULL, the property is read-only
1349  * and cannot be set.
1350  *
1351  * Ownership of the pointer that @child points to is transferred to the
1352  * link property.  The reference count for <code>*@child</code> is
1353  * managed by the property from after the function returns till the
1354  * property is deleted with object_property_del().  If the
1355  * <code>@flags</code> <code>OBJ_PROP_LINK_UNREF_ON_RELEASE</code> bit is set,
1356  * the reference count is decremented when the property is deleted.
1357  */
1358 void object_property_add_link(Object *obj, const char *name,
1359                               const char *type, Object **child,
1360                               void (*check)(Object *obj, const char *name,
1361                                             Object *val, Error **errp),
1362                               ObjectPropertyLinkFlags flags,
1363                               Error **errp);
1364 
1365 /**
1366  * object_property_add_str:
1367  * @obj: the object to add a property to
1368  * @name: the name of the property
1369  * @get: the getter or NULL if the property is write-only.  This function must
1370  *   return a string to be freed by g_free().
1371  * @set: the setter or NULL if the property is read-only
1372  * @errp: if an error occurs, a pointer to an area to store the error
1373  *
1374  * Add a string property using getters/setters.  This function will add a
1375  * property of type 'string'.
1376  */
1377 void object_property_add_str(Object *obj, const char *name,
1378                              char *(*get)(Object *, Error **),
1379                              void (*set)(Object *, const char *, Error **),
1380                              Error **errp);
1381 
1382 void object_class_property_add_str(ObjectClass *klass, const char *name,
1383                                    char *(*get)(Object *, Error **),
1384                                    void (*set)(Object *, const char *,
1385                                                Error **),
1386                                    Error **errp);
1387 
1388 /**
1389  * object_property_add_bool:
1390  * @obj: the object to add a property to
1391  * @name: the name of the property
1392  * @get: the getter or NULL if the property is write-only.
1393  * @set: the setter or NULL if the property is read-only
1394  * @errp: if an error occurs, a pointer to an area to store the error
1395  *
1396  * Add a bool property using getters/setters.  This function will add a
1397  * property of type 'bool'.
1398  */
1399 void object_property_add_bool(Object *obj, const char *name,
1400                               bool (*get)(Object *, Error **),
1401                               void (*set)(Object *, bool, Error **),
1402                               Error **errp);
1403 
1404 void object_class_property_add_bool(ObjectClass *klass, const char *name,
1405                                     bool (*get)(Object *, Error **),
1406                                     void (*set)(Object *, bool, Error **),
1407                                     Error **errp);
1408 
1409 /**
1410  * object_property_add_enum:
1411  * @obj: the object to add a property to
1412  * @name: the name of the property
1413  * @typename: the name of the enum data type
1414  * @get: the getter or %NULL if the property is write-only.
1415  * @set: the setter or %NULL if the property is read-only
1416  * @errp: if an error occurs, a pointer to an area to store the error
1417  *
1418  * Add an enum property using getters/setters.  This function will add a
1419  * property of type '@typename'.
1420  */
1421 void object_property_add_enum(Object *obj, const char *name,
1422                               const char *typename,
1423                               const char * const *strings,
1424                               int (*get)(Object *, Error **),
1425                               void (*set)(Object *, int, Error **),
1426                               Error **errp);
1427 
1428 void object_class_property_add_enum(ObjectClass *klass, const char *name,
1429                                     const char *typename,
1430                                     const char * const *strings,
1431                                     int (*get)(Object *, Error **),
1432                                     void (*set)(Object *, int, Error **),
1433                                     Error **errp);
1434 
1435 /**
1436  * object_property_add_tm:
1437  * @obj: the object to add a property to
1438  * @name: the name of the property
1439  * @get: the getter or NULL if the property is write-only.
1440  * @errp: if an error occurs, a pointer to an area to store the error
1441  *
1442  * Add a read-only struct tm valued property using a getter function.
1443  * This function will add a property of type 'struct tm'.
1444  */
1445 void object_property_add_tm(Object *obj, const char *name,
1446                             void (*get)(Object *, struct tm *, Error **),
1447                             Error **errp);
1448 
1449 void object_class_property_add_tm(ObjectClass *klass, const char *name,
1450                                   void (*get)(Object *, struct tm *, Error **),
1451                                   Error **errp);
1452 
1453 /**
1454  * object_property_add_uint8_ptr:
1455  * @obj: the object to add a property to
1456  * @name: the name of the property
1457  * @v: pointer to value
1458  * @errp: if an error occurs, a pointer to an area to store the error
1459  *
1460  * Add an integer property in memory.  This function will add a
1461  * property of type 'uint8'.
1462  */
1463 void object_property_add_uint8_ptr(Object *obj, const char *name,
1464                                    const uint8_t *v, Error **errp);
1465 void object_class_property_add_uint8_ptr(ObjectClass *klass, const char *name,
1466                                          const uint8_t *v, Error **errp);
1467 
1468 /**
1469  * object_property_add_uint16_ptr:
1470  * @obj: the object to add a property to
1471  * @name: the name of the property
1472  * @v: pointer to value
1473  * @errp: if an error occurs, a pointer to an area to store the error
1474  *
1475  * Add an integer property in memory.  This function will add a
1476  * property of type 'uint16'.
1477  */
1478 void object_property_add_uint16_ptr(Object *obj, const char *name,
1479                                     const uint16_t *v, Error **errp);
1480 void object_class_property_add_uint16_ptr(ObjectClass *klass, const char *name,
1481                                           const uint16_t *v, Error **errp);
1482 
1483 /**
1484  * object_property_add_uint32_ptr:
1485  * @obj: the object to add a property to
1486  * @name: the name of the property
1487  * @v: pointer to value
1488  * @errp: if an error occurs, a pointer to an area to store the error
1489  *
1490  * Add an integer property in memory.  This function will add a
1491  * property of type 'uint32'.
1492  */
1493 void object_property_add_uint32_ptr(Object *obj, const char *name,
1494                                     const uint32_t *v, Error **errp);
1495 void object_class_property_add_uint32_ptr(ObjectClass *klass, const char *name,
1496                                           const uint32_t *v, Error **errp);
1497 
1498 /**
1499  * object_property_add_uint64_ptr:
1500  * @obj: the object to add a property to
1501  * @name: the name of the property
1502  * @v: pointer to value
1503  * @errp: if an error occurs, a pointer to an area to store the error
1504  *
1505  * Add an integer property in memory.  This function will add a
1506  * property of type 'uint64'.
1507  */
1508 void object_property_add_uint64_ptr(Object *obj, const char *name,
1509                                     const uint64_t *v, Error **Errp);
1510 void object_class_property_add_uint64_ptr(ObjectClass *klass, const char *name,
1511                                           const uint64_t *v, Error **Errp);
1512 
1513 /**
1514  * object_property_add_alias:
1515  * @obj: the object to add a property to
1516  * @name: the name of the property
1517  * @target_obj: the object to forward property access to
1518  * @target_name: the name of the property on the forwarded object
1519  * @errp: if an error occurs, a pointer to an area to store the error
1520  *
1521  * Add an alias for a property on an object.  This function will add a property
1522  * of the same type as the forwarded property.
1523  *
1524  * The caller must ensure that <code>@target_obj</code> stays alive as long as
1525  * this property exists.  In the case of a child object or an alias on the same
1526  * object this will be the case.  For aliases to other objects the caller is
1527  * responsible for taking a reference.
1528  */
1529 void object_property_add_alias(Object *obj, const char *name,
1530                                Object *target_obj, const char *target_name,
1531                                Error **errp);
1532 
1533 /**
1534  * object_property_add_const_link:
1535  * @obj: the object to add a property to
1536  * @name: the name of the property
1537  * @target: the object to be referred by the link
1538  * @errp: if an error occurs, a pointer to an area to store the error
1539  *
1540  * Add an unmodifiable link for a property on an object.  This function will
1541  * add a property of type link<TYPE> where TYPE is the type of @target.
1542  *
1543  * The caller must ensure that @target stays alive as long as
1544  * this property exists.  In the case @target is a child of @obj,
1545  * this will be the case.  Otherwise, the caller is responsible for
1546  * taking a reference.
1547  */
1548 void object_property_add_const_link(Object *obj, const char *name,
1549                                     Object *target, Error **errp);
1550 
1551 /**
1552  * object_property_set_description:
1553  * @obj: the object owning the property
1554  * @name: the name of the property
1555  * @description: the description of the property on the object
1556  * @errp: if an error occurs, a pointer to an area to store the error
1557  *
1558  * Set an object property's description.
1559  *
1560  */
1561 void object_property_set_description(Object *obj, const char *name,
1562                                      const char *description, Error **errp);
1563 void object_class_property_set_description(ObjectClass *klass, const char *name,
1564                                            const char *description,
1565                                            Error **errp);
1566 
1567 /**
1568  * object_child_foreach:
1569  * @obj: the object whose children will be navigated
1570  * @fn: the iterator function to be called
1571  * @opaque: an opaque value that will be passed to the iterator
1572  *
1573  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1574  * non-zero.
1575  *
1576  * It is forbidden to add or remove children from @obj from the @fn
1577  * callback.
1578  *
1579  * Returns: The last value returned by @fn, or 0 if there is no child.
1580  */
1581 int object_child_foreach(Object *obj, int (*fn)(Object *child, void *opaque),
1582                          void *opaque);
1583 
1584 /**
1585  * object_child_foreach_recursive:
1586  * @obj: the object whose children will be navigated
1587  * @fn: the iterator function to be called
1588  * @opaque: an opaque value that will be passed to the iterator
1589  *
1590  * Call @fn passing each child of @obj and @opaque to it, until @fn returns
1591  * non-zero. Calls recursively, all child nodes of @obj will also be passed
1592  * all the way down to the leaf nodes of the tree. Depth first ordering.
1593  *
1594  * It is forbidden to add or remove children from @obj (or its
1595  * child nodes) from the @fn callback.
1596  *
1597  * Returns: The last value returned by @fn, or 0 if there is no child.
1598  */
1599 int object_child_foreach_recursive(Object *obj,
1600                                    int (*fn)(Object *child, void *opaque),
1601                                    void *opaque);
1602 /**
1603  * container_get:
1604  * @root: root of the #path, e.g., object_get_root()
1605  * @path: path to the container
1606  *
1607  * Return a container object whose path is @path.  Create more containers
1608  * along the path if necessary.
1609  *
1610  * Returns: the container object.
1611  */
1612 Object *container_get(Object *root, const char *path);
1613 
1614 
1615 #endif
1616